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Contact analysis of a flexible bladed-rotor

I. Introduction

Nowadays, more than ever, turbo machinery designers seek for increase the efficiency of their machine what could result in a loss of weight and a decrease in fuel consumption. The efficiency of turbo-generators depends strongly on the clearance between the rotating and stationary parts (Song and Martinez-Sanchez, 1997-a, Song and Martinez-Sanchez, 1997-b, Childs, 1993[START_REF] Ehrich | Handbook of Rotordynamics[END_REF][START_REF] Yamamoto | Linear and Nonlinear Rotordynamics: a Modern Treatment with Applications[END_REF]: the wider the clearance, the less efficient the machine. Hence it is desirable to reduce the clearance by as much as possible. Unfortunately, it cannot be reduced below a certain minimum level due to uncertainties in the dynamics, fluid dynamics (Muszynska andBently, 1996, Ehrich, 1993), thermal loads [START_REF] Goldman | Rotor-to-Stator, Rub-related, Thermal/Mechanical Effects in Rotating Machinery[END_REF], machining tolerances and material properties [START_REF] Maozhong | Erosion Wear Behaviour and Model of Abradable Seal Coating[END_REF][START_REF] Marscher | A Phenomenological Model of Abradable Wear in High Performance Turbomachinery[END_REF]. The more accurately these parameters are known, the smaller the clearance that can be made. However, reduced clearances increase the possibility of violent contacts between rotor and stator. Under certain operating conditions, depending for instance on the dynamic properties of the rotor or/and the stator and on the rotational speed, the contacts may lead to an unstable rotor-stator system [START_REF] Feng | Rubbing Phenomena in Rotor-Stator Contact[END_REF]Zhang, 2002, Edwards et al., 1999). A common interest of the rotating-machinery industry is to better understand the dynamic behaviour of rotating structures and in particular that of flexible bladed-rotors whose dynamic behaviour differs from those usually studied in rotor-dynamics especially because of the dynamics of the flexible blades that can lead to instabilities [START_REF] Crandall | Rotordynamics[END_REF]Dugundji, 1981, Genta, 2003). The study of such structures is quite complex and must be performed using numerical models (Gmür, 1997, Lalanne and[START_REF] Lalanne | Rotordynamics Prediction in Engineering[END_REF]. To obtain a closed form solution suitable for stability analysis, it is possible to resort to simplified models [START_REF] Sinha | Dynamic Characteristics of a Flexible Bladed-rotor with Coulomb Damping Due to Tip-rub[END_REF][START_REF] Al-Bedoor | Stability Analysis of Rotating Blade Bending Vibration Due to Torsional Excitation[END_REF][START_REF] Turhan | Dynamic Stability of Rotating Blades (Beams) Eccentrically Clamped to a Shaft with Fluctuating Speed[END_REF]. It is fundamental for turbo machinery industries to understand the leading phenomenon in case of contacts between the blades of the rotor and the casing and some researches have been recently investigated [START_REF] Schmiechen | Travelling Wave Speed Coincidence[END_REF][START_REF] Arnoult | Modelisation Numerique et Approche Experimentale du Contact en Dynamique: Application au Contact Aubes/Carter de Turboreacteur[END_REF][START_REF] Legrand | Modèles de prédiction de l'interaction rotor-stator dans un moteur d'avion[END_REF]. This paper presents firstly a simplified model of a flexible fully-bladed rotor constructed in the rotating frame by using an energetic approach and taking into account the basic effects of rotating machines. In a second part, an elastic ring having only one mode shape is modelled also in the rotating frame by using an energetic method. Its behaviour when excited by rotating loads is studied. Finally, the contact problem of the blades of the rotor with a casing modelled by a flexible ring is investigated. The results and the phenomenon underlined are compared to the latter ones.

II. Model formulation

The rotor considered in this study is shown on Fig. 1. The model is inspired from an existing model by Sinha [START_REF] Sinha | Dynamic Characteristics of a Flexible Bladed-rotor with Coulomb Damping Due to Tip-rub[END_REF] but developed in the rotating frame by using an energetic method. The rotor is composed of a shaft modelled by an Euler-Bernoulli beam, connected to a rigid disk modelled by a concentrated mass with rotational inertia. This shaft is set on bearings at multiple locations. On the rigid disk is clamped a full set of flexible blades also modelled by Euler-Bernoulli beams. In the rotating frame, two degrees of freedom are considered for the shaft: two orthogonal translations ) , ( t z u and ) , ( t z  in the disk's plane (see Fig. 2), and one degree of freedom for each blade defining its deflection ( , ) j s t  .

A Rayleigh-Ritz approximation is used to express the degrees of freedom of these different parts. Thus, they are expressed by a sum of shape functions multiplied by time-dependent coefficients:
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where z is the axis of the shaft and s , the axis along the blade. In these expressions, ) (t Uo and ) (t Vo are rigid-body translations of the shaft. tot m and tot n are the number of modes considered to express its motion and the flexure of the th j blade respectively. In this Rayleigh-Ritz approach, the shape functions have only to verify the geometric boundary conditions of the problem. Due to the fact that all blades are clamped in the rigid disk, the shape functions of these latter ones must verify
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, where prime denotes differentiation versus space coordinates. Thus, the chosen expression for the shape function of the blade deflection is:
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, and n n a    . Concerning the shaft, since it is supported by bearings, its shape function has no geometric boundary conditions to verify and its chosen expression is:
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. However, it could be noticed that these functions verify
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thus no motion is permitted at the right end of the shaft (i.e. at z = 0). Since an energetic method is used to develop this model, energies and potentials have to be defined for the shaft and for the blades as well. Thus, the kinetic energy blade T of the th j blade, located at an angle

tot j N j   2 
in this frame (as indicated in Fig. 2) where tot N is the total number of blades, can be fully expressed by the following relation:
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where b  and b S are the density and the area of a blade cross section respectively.
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and I are the speed, the rotation of the mass center of a blade cross section (in relation to the fixed frame) and its inertia matrix, defined in its inertial frame. It may be noticed that the complete expression of the kinetic energy should be considered because in certain extreme geometric conditions, an approached kinetic energy can lead to unrealistic instabilities of the rotor. The potential energy blade 
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Next, a pre-stress potential taking into account the centrifugal stiffening effects is defined by:
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In the same way, the kinetic energy shaft T (Lesaffre et al., in press), the potential energy shaft int  associated with the elastic deformation of the shaft:

2 2 int 0 1 ( '' ( , ) '' ( , )) 2 shaft l s s E I u z t z t dz      ( 10 
)
where s E and s I are the elastic Young's modulus of the shaft material and the shaft area moment of inertia for flexure respectively, are defined, as well as a function of dissipation (Lesaffre et al., in press). Then, Lagrange's equations are used to obtain the system of equations of the dynamic behaviour of the full flexible bladed-rotor. This system of equations can be written under the following form: and N rotor are the mass matrix, the damping matrix, the gyroscopic matrix, the stiffness matrix, the centrifugal stiffening matrix and the spin softening matrix, respectively. The vector rotor X defining the generalised degrees of freedom vector of the system contains 2
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elements and has the following expression:
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Since the model has been fully developed in the rotating frame there are no time-dependent terms resulting from the periodicity of the rotating structure, in the analytical formulation and this is particularly useful to study such rotating structure. For instance, the eigenvalues and the stability of the flexible bladed rotor can be investigated by determining the solutions ib a   of the characteristic equation: are the generalised damping and stiffness matrices for the stator respectively. The rotor becomes unstable if any one or more of the eigenvalues' real part a is positive whereas the eigenvalues' imaginary parts correspond to the eigen frequencies of the system. So, the evolution of these eigenvalues' imaginary parts as a function of the rotational speed of the rotor give a Campbell diagram in the rotating frame. Figure 3 . In the rotating frame, the negative slope curves are forward modes (precession motions in the same sense of rotation as the own rotation of the shaft) and the positive slope ones are backward modes. The evolutions of the shaft's eigen-frequencies, shown on Fig. 3(a), are mainly due to the gyroscopic effects. The evolution of the blades' eigen-frequencies (starting at 31 Hz) i.e. their stiffening, is due to the centrifugal effects included in the pre-stress potential blade g  . Two loci separation phenomena [START_REF] Pierre | Mode Localization and Eigenvalue Loci Veering Phenomena in Disordered Structures[END_REF] can be seen as illustrated by the points A and B: when two eigenvalue loci approach each other, they either cross or do not cross; often in the latter case, even though the loci nearly intersect, in fact they do not but rather veer away from each other. Fig. 4 represents the mode shapes associated with the veering phenomenon A. Before this phenomenon, the mode shape associated with the lower frequency (among both concerned mode shapes) consists mainly in a shaft mode having one node (see Fig. 4(a)) and the one associated with the higher frequency consists also mainly in a shape mode but, having two nodes (see Fig. 4(b)). After the veering, the mode shape associated with the lower frequency consists in a shaft mode having two nodes (see Fig. 4(d)) where as the mode associated with the higher frequency consists in a shaft mode having one node (see Fig. 4(c)).During these veering phenomena, mode shapes and sense of rotation are switched between the eigenvalues that veer away from each other. Moreover, the stability of the system can be known by correlating these curves to these of the Fig. 3(b) representing the evolution of the eigenvalues' imaginary parts but as a function of the associated eigenvalues' real parts. In this case, it can be seen that the system is perfectly stable because there is no eigenvalues having a real part positive.Such stability analysis can be performed for several rotating systems and stability maps can also be obtained [START_REF] Lesaffre | Stability Analysis of a Flexible Blade-Rotor[END_REF]. 
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III. Rotor-stator contact a. Simple model of rotating loads on the elastic casing

Prior to the study of the contact between the blades of the rotor and the casing, a simple model of an elastic ring excited by rotating loads is developed in the rotating frame by using also an energetic method. This model consists in p loads, composed of a spring (with stiffness j k ) and a mass j m located at the angles j  in the rotating frame, rotating permanently on an elastic stator without rubbing (Cf. Fig. 5b). The only radial degree of freedom of these spring-masses are thus the same as the radial displacements s u of the ring at j  . Their kinetic energy and their potential energy are defined:
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The casing is modelled by a flexible circular beam (see Fig. 5a). The in-plane flexural vibrations of the ring are considered. Thus, two degrees of freedom are considered in the rotating frame: the radial displacement ( , )

s u t 
and the tangential displacement ( , ) w t  (see Fig. 5). This latter one can be expressed by [START_REF] Love | A Treatise on The Mathematical Theory of Elasticity[END_REF] 
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where the rigid body motion has been eliminated. The considered stator is supposed to be inextensible, implying thus that the radial displacement can be expressed from the tangential one by:

    , , s w t u t       (18)
The stator is also fully described in the rotating frame. Its kinetic energy stat T , as well as its potential energy stat  are defined:
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In these expressions, stat  , stat S , stat E and stat I are the density, the cross section area, the elastic Young's modulus of the ring material and the area moment of inertia for flexure of the casing respectively. It must be noted that the present ring is not damped. For simplicity reason, only one mode shape of the casing (the th n one) is considered at a time thus the dynamic behaviour of the system is governed by a 2 2  matrix equation. The matrix equation of the dynamic behaviour of the ring excited by p rotating spring-masses, without rubbing, can be obtained by using Lagrange's equations and has the following expression: The stability of the casing can be studied by determining the eigenvalues of this matrix equation. The influence of the stiffness, of the mass and of the number of the moving loads can be studied. For instance, in the particular case of only one rotating radial springmass on the casing, the matrix equation of the dynamic behaviour of the system is the following one:
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It can be seem that the stiffness matrix can become singular and thus the system is likely to experience some unstable phenomenon [START_REF] Crandall | Rotordynamics[END_REF] as shown on Fig. 5 representing a stability analysis of the two nodal diameter mode shape of the stator excited by one rotating spring-mass. Two kinds of instabilities appear: divergence (instability at zero frequency) of the forward mode shape and mode coupling (the forward and the backward mode shapes of the stator become two mode shapes having the same eigen-frequency but one of them being X-axis
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stable and the other, unstable). The critical rotational speeds where the system diverges can be expressed analytically through the Routh-Hurwitz criterion applied to the characteristic polynom 2 ( )
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, in this simple case of only one rotating spring-mass (in the latter equation, M , G and K are the matrix written in Eq. 22). According to this criterion, the polynom 2 ( )
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has all its roots with real parts negative if A , B and C have the same sign. Thus, it turns out that :

for a light mass i.e. 
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if the spring-mass has a heavy mass i.e. 2 stat M m  , the system can also experience divergence if :
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In these expressions, c  is the wave propagation speed in the stator for its th n mode shape and so, its th n critical rotational speed in the rotating frame. Thus, it appears that both the mass and the stiffness of the spring-mass can make the system diverge. In a general manner, the bigger the stiffness is, the larger the speed range where the system can experience divergence is. For strong stiffness, this speed range begins at c  and closes far away at 2 c  .

Concerning the mass, the heavier it is, the earlier the speed range where the system can experience divergence is. The critical speed where the system experiences mode coupling cannot be determined with the Routh-Hurwitz criterion as for the divergence instabilities (in the general case, the real part of 2 x s  is not the same as s ). However, this critical speed can also be determined analytically in the particular case of only one rotating spring-mass. As a matter of fact, a sufficient condition for the apparition of flutter, in this particular case of an undamped structure, is to have two eigenvalues with real parts null and opposite imaginary parts. These conditions can be satisfied if the discriminant of ( ) P x  is null. Thus, the critical speed of mode coupling for the system satisfy 2 4 0 B AC   . In the particular case of only one rotating spring-mass, the rotational speeds satisfying the latter equation can be expressed by :
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providing that the square roots can be defined, with:
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The following figures illustrate these theoretical results. Figure 7 shows a stability analysis of the system in the case of a light mass 2 stat M m  . Figure 7b shows that only the mass is responsible of mode couplings. Figures 7c and7d show that the stiffness seems to move back the critical speed where mode couplings appear. Figure 8 shows also a stability analysis for the same system but in the case of a heavy mass . However, this latter divergence cannot be seen on Fig. 8 because mode couplings occur before. Thus, this shows (with Fig. 7b and7c) that the heavier the mass is, the earlier the system experiences mode couplings (at least in the mass range studied here).

The last parameter study considers the number of moving loads. Figures 9a,9b, 9c and 9d represent the real parts and the eigen-frequencies of the two nodal diameter mode shape of the stator with respectively one, two, three moving loads separated from 60° to each others (like blades , ,  on Fig. 11) and three moving loads, two separated from 180° and the third one at 60° from one of the latter two (like blades ,  and  on Fig. 11). These pictures have been made in the case of light masses 10 m kg  and stiffness 1 1 7 . k e N m   . In a general case, the influence of the number of moving loads on the stability of the stator is not obvious. However, in some particular configurations of the moving loads in comparison to the mode shape considered, the divergence instability can disappear as shown on 
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Thus, for instance, in the case shown on Fig. 9c, all the conditions are satisfied: the masses are light, all the stiffness and masses are the same and:
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what is not the case of the Fig. 9d 
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The Routh-Hurwitz criterion shows also that if
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Figure 10 shows the same stability analysis as Fig. 8c but with three masses of 1000kg . The system would have experience divergence from 786RPM   but since it has be seen that the heavier the mass is, the earlier the system experiences mode couplings, the system is unstable from 622RPM   but does not diverge. Since some phenomenon occurring when an elastic structure is excited by rotating loads have been analysed and understood, the study of the contact between the blades of the rotor and the flexible casing of a turbo-machine can be performed. The contact between the flexible blade tips and a flexible casing is introduced by assuming no rubbing between the two structures.

In this section, the casing considered is the same as in the latter section but with internal viscous damping (with coefficient stat  ) introduced through a function of dissipation

stat d F : 2 2 3 2 2 3 3 2 2 1 ( , ) ( , ) ( , ) ( , ) 2 stat t stat stat s s d s t a t stat t E I u u w w F t t t td R                                      (37) 
and with more than one mode shape considered. If tot k modes shapes are considered to express the ring displacements, its dynamic behaviour in the rotating frame can be described, as for the rotor, by a set of equations that can be written under the following form:

stat stat stat stat stat stat    M X C X K X 0     (38) 
where stat M , stat C  and stat K  are the mass matrix, the generalised damping matrix, including the gyroscopic matrix, and the generalised stiffness matrix, including the spin softening matrix, for the stator respectively. The vector stat X which defines the generalised degrees of freedom vector of the stator contains 2 2 tot k  elements and has the following expression: 2 2 . . .

tot tot T stat k k A B A B      X .
The contact problem is treated by using Lagrangian multipliers j  . A contact energy j E  is defined for each contact at the th j blade located at the angle j  in the rotating frame:

  ( , )cos ( , )sin ( , )

j j j j s j E u l t l t u t clearance             ( 39 
)
This energy is proportional to a Lagrangian multiplier (one per contact) and to the clearance between the blade tip and the casing. Thus there is one more equation per contact and also one more second member per contact in the behaviour equation of the system. Since the contact energy depends also on the radial displacement of the ring, the degrees of freedom of both structures are coupled. The contact between the rotor and the casing is supposed to be due to an unbalance strength. The dynamic behaviour of the whole structure can be described through the following matrix equation:

(40)

The rotational speed where the first contact appears has been placed under both the critical rotational speed of the rotor and of the stator by increasing the unbalance mass. In the rotating frame, this non linear problem is a static one. The balanced static contact configurations of the system are found by iterations: the first configuration of the rotor is found by resolving:

rotor rotor unbalance  K X F  (41)
If the clearance is consumed, the contact blades/casing exists and a new balanced static position is calculated by resolving the static part of Eq. 40:

(42) This non linear system has several balanced contact configurations and the evolution of the load acting on the system will influence the balanced configuration adopted. Thus, by increasing the rotational speed of the rotor, the evolution of the clearance between each blade tip and the casing can be followed as a function of the its rotational speed as shown in Fig. 12, in the particular case of a rotor having six blades (see Fig. 11). It can be seen that the first blade to touch the casing is the blade , then successively the blades ,  and , when the rotational speed increases. The associated deformed shape, at 164 RPM, is plotted on Fig. 13(a). When the rotational speed increases again, the blade  touches the stator. Thus, all the blades are in contact with the casing apart from the blade . The deformed shape associated, at 286 RPM, is plotted on Fig. 13(b). The system keeps this configuration while the rotational speed increases, until 310 RPM corresponding actually to the three nodal diameter mode shape critical speed of the casing. The associated deformed shape, at 310 RPM, is plotted on Fig. 13(c). From this point, the algorithm diverges. It appears that up to this rotational speed, all the balanced static contact configurations found are stable ones but after this speed, the system has only unstable balanced static contact configurations. Moreover, from about 700 RPM, the system has no longer balanced static contact configurations. Figure 14 shows a synthesis of these three rotational speed ranges. It could have been thought that between 310 RPM and 700 RPM, the system might have stable dynamic contact configurations but, all the time integrations performed diverged on the three nodal diameter mode shape of the casing. This phenomenon can be explained by using the simple model of rotating loads on an elastic structure studied in the previous section.

Effectively, it has been shown that an elastic ring excited by rotating loads could experience two kind of instabilities: divergence instabilities and mode couplings. In order to know if the divergence of the rotor coupled with the flexible casing is due to this phenomenon, the latter model of rotating loads on the elastic ring can be used. To compare the results of both models, the loads exciting the ring must have the same modal parameters than the rotor hence, its modal parameters have to be evaluated. For simplicity, this will be done at 0RPM  

. If the rotor is submitted to a constant strength, its first modal mass an modal stiffness can be expressed by: 1

1 1 X M X T rotor m   and 1 1 1 X K X T rotor k  
, 1 X being its first eigen vector and 1 X  , its first eigen vector normalized so that the displacement of the rotor at the point of application of the strength and in its direction could be unity. The modal parameters for the rotor estimated like this are . The latest stable balanced contact configuration (i.e. just before the system diverges) obtained statically and by time integration consists in five contacts: at blades , , , , and . Figures 15a andb represent the comparison between respectively the results (real parts and eigen-frequencies) obtained with the three nodal diameter mode shape of the simplified model having five moving loads configured like blades , , , , and  with 1 m and 1 k as parameters and, the Campbell diagram and the associated decay rate plot for the flexible casing in contact at blades , , ,  and . The importance as well as the influence of the others mode shapes of the stator on each others appears through all the others instabilities that can be seen on Fig. 15b and not on Fig. 15a. However, these figures confirm that the stator experiences divergence through its three nodal diameter mode shape just after 310 RPM which is the critical speed c  of this mode shape. So it can be said now that the instability of the three nodal diameter mode shape of the stator results from rotating loads on this elastic structure. Moreover, with this configuration of rotor i.e. with six blades separated by 60° from each others, there is no contact configuration that satisfies the four conditions to avoid the divergence of the three nodal diameter of the stator. Thus, until the dynamics of the blades is not introduced during contact i.e. until the balanced contact configurations consist in steady state contact, the blades will act as rotating loads on the stator and this one will always experience divergence on its three nodal diameter mode shape. 

Conclusion

A flexible fully bladed-rotor has been modelled in the rotating frame using an energetic approach. The gyroscopic effects, the spin softening effects and the centrifugal stiffening effects have been taken into account so from a phenomenological point of view the system is almost complete. Moreover, the formulation obtained in the rotating frame appears to be useful to study such rotating structures, especially in case of contacts between the flexible blades and the casing. This very important problem has been first studied through a simple model of an elastic ring having only one mode shape and excited by rotating loads. This study has underlined that the considered structure can experience two kinds of instabilities: divergence instabilities and mode couplings. The influences of the loads' parameters have been analysed and in some simple cases, the critical speeds associated have been determined analytically. Then, the casing of a turbo-machine has been modelled by an elastic ring too and the contact between the rotor of the machine and this casing has been studied. This problem has been solved, in part, by calculating the succession of the balanced static contact configurations of the system during an increase in its rotational speed, by using a Lagrangian multipliers method. It turns out that in the particular case of the rotor considered in this study, the system has several balanced configurations and adopts stable static configurations as a function of its rotational speed until the three nodal diameter mode shape critical speed of the casing where it always diverges. From this rotational speed, the system has neither stable balanced static contact configurations nor stable dynamic contact configurations. The latter simple model of an elastic ring excited by rotating loads used with the same parameters as the rotor has shown that this phenomenon results indeed from the action of the blades of the rotor acting like rotating loads on the casing.

F

  elastic Young's modulus of the blade material and the blade area moment of inertia for flexure respectively, is defined, as well as a function of dissipation blade d associated with the internal damping (viscous damping with coefficient b  ) of the th j blade:
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 12 Figure1Model of flexible bladed-rotor[START_REF] Sinha | Dynamic Characteristics of a Flexible Bladed-rotor with Coulomb Damping Due to Tip-rub[END_REF] 

  (a) represents a Campbell diagram for a flexible twenty eight-bladed-rotor of one meter in length, supported by three isotropic bearings having radial stiffness and viscous damping coefficients

  Fig. 4. Mode shapes of the rotor associated to the veering phenomenon A on Fig. 3, (a) and (b): before the veering, (c) and (d): after the veering.

Figure 5

 5 Figure 5 (a) Flexible casing, (b) model of moving loads on an elastic stator without rubbing

  Fig. 8c. In our case and according to the Routh-Hurwitz criterion, a sufficient condition for the stator excited by several rotating loads with light masses (

Figure 6

 6 Figure 6 Stability analysis of the two nodal diameter mode shape of the stator excited by one rotating spring-mass with 10 m kg  and
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 789 Figure 7 Stability analysis of the two nodal diameter mode shape of the stator excited by one rotating spring-mass with 2 stat M m  a)
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 101315 Figure 10 Stability analysis for the same system as shown by Fig. 8c but with masses of 1000kg
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