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Abstract 
This paper presents a model of fully flexible bladed rotor developed in the rotating frame. An 
energetic method is used to obtain the matrix equations of the dynamic behaviour of the 
system. The gyroscopic effects as well as the spin softening effects and the centrifugal 
stiffening effects, taken into account through a pre-stressed potential, are included in the 
model. In the rotating frame, the eigenvalues’ imaginary parts of the latter matrix equation 
give the Campbell diagram of the system and its stability can be analysed through its 
associated eigenvalues’ real parts. The turbo machine casing is also modelled by an elastic 
ring in the rotating frame through an energetic method. Thus, the contact problem between the 
rotor and the stator can be treated as a static problem. Prior to the study of the complete 
problem of contact between the flexible blades of the rotor and the flexible casing, a simple 
model of an elastic ring having only one mode shape, excited by rotating loads is developed in 
the rotating frame too, in order to underline divergence instabilities and mode couplings. 
Then, the real complex problem of contact between the blades and the casing, without 
rubbing, is studied. The stable balanced static contact configurations of the structure are found 
as function of the rotational speed of the rotor. Finally, the results are compared to these of the 
simple model of rotating spring-masses on an elastic ring.   
 
Keywords 
Rotor dynamics, flexible bladed-rotor, stability analysis, Campbell diagram, rotor/stator 
contacts, rotating loads. 
 

I. Introduction 
Nowadays, more than ever, turbo machinery designers seek for increase the efficiency of their 
machine what could result in a loss of weight and a decrease in fuel consumption. The 
efficiency of turbo-generators depends strongly on the clearance between the rotating and 
stationary parts (Song and Martinez-Sanchez, 1997-a, Song and Martinez-Sanchez, 1997-b, 
Childs, 1993, Ehrich, 1992, Yamamoto and Ishida, 2001): the wider the clearance, the less 
efficient the machine. Hence it is desirable to reduce the clearance by as much as possible. 
Unfortunately, it cannot be reduced below a certain minimum level due to uncertainties in the 
dynamics, fluid dynamics (Muszynska and Bently, 1996, Ehrich, 1993), thermal loads 
(Goldman and Muszynska, 1995), machining tolerances and material properties (Maozhong, 
et al., 2002, Marscher, 1980). The more accurately these parameters are known, the smaller 
the clearance that can be made. However, reduced clearances increase the possibility of 
violent contacts between rotor and stator. Under certain operating conditions,  depending for 
instance on the dynamic properties of the rotor or/and the stator and on the rotational speed, 
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the contacts may lead to an unstable rotor-stator system (Feng and Zhang, 2002, Edwards et 
al., 1999). 
A common interest of the rotating-machinery industry is to better understand the dynamic 
behaviour of rotating structures and in particular that of flexible bladed-rotors whose dynamic 
behaviour differs from those usually studied in rotor-dynamics especially because of the 
dynamics of the flexible blades that can lead to instabilities (Crandall and Dugundji, 1981, 
Genta, 2003). The study of such structures is quite complex and must be performed using 
numerical models (Gmür, 1997, Lalanne and Ferraris, 1990). To obtain a closed form solution 
suitable for stability analysis, it is possible to resort to simplified models (Sinha, 2004, Al-
Bedoor and Al-Qaisia, 2005, Turhan and  Bulut, 2005).  
It is fundamental for turbo machinery industries to understand the leading phenomenon in 
case of contacts between the blades of the rotor and the casing and some researches have been 
recently investigated (Schmiechen, 1997, Arnoult, 1998, Legrand, 2005). 
This paper presents firstly a simplified model of a flexible fully-bladed rotor constructed in 
the rotating frame by using an energetic approach and taking into account the basic effects of 
rotating machines. In a second part, an elastic ring having only one mode shape is modelled 
also in the rotating frame by using an energetic method. Its behaviour when excited by 
rotating loads is studied. Finally, the contact problem of the blades of the rotor with a casing 
modelled by a flexible ring is investigated. The results and the phenomenon underlined are 
compared to the latter ones. 
 
 

II. Model formulation 
 
The rotor considered in this study is shown on Fig. 1. The model is inspired from an existing 
model by Sinha (Sinha, 2004) but developed in the rotating frame by using an energetic 
method. The rotor is composed of a shaft modelled by an Euler-Bernoulli beam, connected to 
a rigid disk modelled by a concentrated mass with rotational inertia. This shaft is set on 
bearings at multiple locations. On the rigid disk is clamped a full set of flexible blades also 
modelled by Euler-Bernoulli beams.  
In the rotating frame, two degrees of freedom are considered for the shaft: two orthogonal 
translations ),( tzu  and ),( tz  in the disk’s plane (see Fig. 2), and one degree of freedom for 

each blade defining its deflection ( , )j s t . 

A Rayleigh-Ritz approximation is used to express the degrees of freedom of these different 
parts.  Thus, they are expressed by a sum of shape functions multiplied by time-dependent 
coefficients: 

                                                        1

( , ) ( ) ( ) ( )
totm

o m m
m

u z t U t U t W z


 
                                                   (1) 

                                                        1

( , ) ( ) ( ) ( )
totm

o m m
m

z t V t V t W z


 
                                                    (2) 

                                                        
1

( , ) ( ( )) ( ( ))
totn

j n j n j
n

s t X t Y s


                                                     (3) 

where z  is the axis of the shaft and s , the axis along the blade. In these expressions, )(tUo  

and )(tVo  are rigid-body translations of the shaft. totm  and totn  are the number of modes 

considered to express its motion and the flexure of the thj  blade respectively. In this 

Rayleigh-Ritz approach, the shape functions have only to verify the geometric boundary 
conditions of the problem. Due to the fact that all blades are clamped in the rigid disk, the 
shape functions of these latter ones must verify 0)0( nY  and 0)0'( nY , where prime denotes 
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differentiation versus space coordinates. Thus, the chosen expression for the shape function of 
the blade deflection is:  

( ) sin( )n n nY s a s s           (4) 

with )2()12( Lnn   , and n na   . Concerning the shaft, since it is supported by bearings, 

its shape function has no geometric boundary conditions to verify and its chosen expression 
is:  

 )cos(1)( zzW mm           (5) 

with )2()12( lmm   . However, it could be noticed that these functions verify 0)0( mW  and 

0)0'( mW  thus no motion is permitted at the right end of the shaft (i.e. at z = 0). 
Since an energetic method is used to develop this model, energies and potentials have to be 
defined for the shaft and for the blades as well. Thus, the kinetic energy bladeT  of  the thj  

blade, located at an angle 
tot

j
N

j 2  in this frame (as indicated in Fig. 2) where totN  is the total 

number of blades, can be fully expressed by the following relation: 

                                               
0 0 0

2
/ / /

0 0

1 1
( )

2 2

L L
T

blade b b S R S R S RT S V G ds ds     I
  

                                           (6) 

where b and bS  are the density and the area of a blade cross section respectively. )(0/ GV RS


, 

0/RS


 and I  are the speed, the rotation of the mass center of a blade cross section (in relation 
to  the  fixed frame) and its inertia matrix, defined in its inertial frame. It may be noticed that 
the complete expression of the kinetic energy should be considered because in certain extreme 
geometric conditions, an approached kinetic energy can lead to unrealistic instabilities of the 
rotor. 
The potential energy bladeint  associated with the elastic deformation of the blade: 

         
L

bb dstsIEblade

0

2int )),(''(
2
1           (7) 

where bE  and bI  are the elastic Young’s modulus of the blade material and the blade area 
moment of inertia for flexure respectively, is defined, as well as a function of dissipation 

bladedF  associated with the internal damping  (viscous damping with coefficient b ) of the thj  

blade:  

       
L

bbbd dstsIEF blade

0

2)),(''(
2
1            (8) 

Next, a pre-stress potential taking into account the centrifugal stiffening effects is defined by:   

            
2 2

2 2

0

1 ( )
' ( , )

2 2blade

L

g b b

R s r
S s t ds  

  
   

 
         (9) 

In the same way, the kinetic energy shaftT  (Lesaffre et al., in press), the potential energy shaftint  
associated with the elastic deformation of the shaft: 

   2 2
int

0

1
( '' ( , ) '' ( , ))

2shaft

l

s sE I u z t z t dz         (10) 

where sE  and sI  are the elastic Young’s modulus of the shaft material and the shaft area 
moment of inertia for flexure respectively, are defined, as well as a function of dissipation 

shaftdF  associated with the internal damping (viscous damping with coefficient s ) of the 
shaft: 

    2 2

0

1
( '' ( , ) '' ( , ))

2shaft

l

d s s sF E I u z t z t dz           (11) 
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Figure 1 Model of flexible bladed-rotor (Sinha, 2004) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 Front view of the bladed-disk 
 
The bearings are introduced through a potential bearings  and a function of dissipation bearingsdF  

associated with their damping (Lesaffre et al., in press).  
Then, Lagrange’s equations are used to obtain the system of equations of the dynamic 
behaviour of the full flexible bladed-rotor. This system of equations can be written under the 
following form:  
                                   M X D G X K K N X 0

rotorrotor rotor rotor rotor rotor rotor geom rotor rotor                             (12) 

where rotorM , Drotor , G rotor , K rotor , K
rotorgeom  and Nrotor  are the mass matrix, the damping matrix, the 

gyroscopic matrix, the stiffness matrix, the centrifugal stiffening matrix and the spin softening 
matrix, respectively. The vector rotorX  defining the generalised degrees of freedom vector of 
the system contains 2 2tot tot totm n N   elements and has the following expression: 

                0 0 1 1 11 21 1 1. . . . . . . . . .
tot tot tot tot tot tot

T

rotor m m n N n NU V U V U V X X X X X   X    (13) 

Since the model has been fully developed in the rotating frame there are no time-dependent 
terms resulting from the periodicity of the rotating structure, in the analytical formulation and 
this is particularly useful to study such rotating structure. For instance, the eigenvalues and 
the stability of the flexible bladed rotor can be investigated by determining the solutions 

iba  of the characteristic equation: 
det( ² ) 0rotor rotor rotor   M C K        (14) 
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where Crotor
  and K rotor

  are the generalised damping and stiffness matrices for the stator 
respectively. The rotor becomes unstable if any one or more of the eigenvalues’ real part a  is 
positive whereas the eigenvalues’ imaginary parts correspond to the eigen frequencies of the 
system. So, the evolution of these eigenvalues’ imaginary parts as a function of the rotational 
speed of the rotor give a Campbell diagram in the rotating frame. Figure 3(a) represents  a 
Campbell diagram for a flexible twenty eight-bladed-rotor of one meter in length, supported 
by three isotropic bearings having radial stiffness and viscous damping coefficients of 

17 .10.2  mNkbearing  and 3 12.10 . .bearingD N s m . In the rotating frame, the negative slope curves 

are forward modes (precession motions in the same sense of rotation as the own rotation of 
the shaft) and the positive slope ones are backward modes. The evolutions of the shaft’s 
eigen-frequencies, shown on Fig. 3(a), are mainly due to the gyroscopic effects. The evolution 
of the blades’ eigen-frequencies (starting at 31 Hz) i.e. their stiffening,  is due to the 
centrifugal effects included in the pre-stress potential bladeg . Two loci separation phenomena 
(Pierre, 1988) can be seen as illustrated by the points A and B: when two eigenvalue loci 
approach each other, they either cross or do not cross; often in the latter case, even though the 
loci nearly intersect, in fact they do not but rather veer away from each other. Fig. 4 
represents the mode shapes associated with the veering phenomenon A. Before this 
phenomenon, the mode shape associated with the lower frequency (among both concerned 
mode shapes) consists mainly in a shaft mode having one node (see Fig. 4(a)) and the one 
associated with the higher frequency consists also mainly in a shape mode but, having two 
nodes (see Fig. 4(b)). After the veering, the mode shape associated with the lower frequency 
consists in a shaft mode having two nodes (see Fig. 4(d)) where as the mode associated with 
the higher frequency consists in a shaft mode having one node (see Fig. 4(c)).During these 
veering phenomena, mode shapes and sense of rotation are switched between the eigenvalues 
that veer away from each other. Moreover, the stability of the system can be known by 
correlating these curves to these of the Fig. 3(b) representing the evolution of the eigenvalues’ 
imaginary parts but as a function of the associated eigenvalues’ real parts. In this case, it can 
be seen that the system is perfectly stable because there is no eigenvalues having a real part 
positive.Such stability analysis can be performed for several rotating systems and stability 
maps can also be obtained (Lesaffre et al., 2004).  
 
 

 
(a)                                                                       (b) 

Figure 3 (a) Campbell diagram (b) Complex plane diagram for a twenty eight-bladed-rotor 
with blades of one meter in length  
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Fig. 4. Mode shapes of the rotor associated to the veering phenomenon A on Fig. 3, (a) and 
(b): before the veering, (c) and (d): after the veering. 

 
 

III. Rotor-stator contact 
 

a. Simple model of rotating loads on the elastic casing 
Prior to the study of the contact between the blades of the rotor and the casing, a 

simple model of an elastic ring excited by rotating loads is developed in the rotating frame by 
using also an energetic method. This model consists in p  loads, composed of a spring (with 

stiffness jk ) and a mass jm  located at the angles j  in the rotating frame, rotating 

permanently on an elastic stator without rubbing (Cf. Fig. 5b). The only radial degree of 
freedom of these spring-masses are thus the same as the radial displacements su  of the ring at 

j . Their kinetic energy and their potential energy are defined: 

   22 2

1

1
( , ) ( , )

2

p

loads j s stat s j
j

T m u t R u t    


            (15) 

 2

1

1
( , )

2

p

loads j s j
j

k u t    


         (16) 

The casing is modelled by a flexible circular beam (see Fig. 5a). The in-plane flexural 
vibrations of the ring are considered. Thus, two degrees of freedom are considered in the 
rotating frame: the radial displacement ( , )su t  and the tangential displacement ( , )w t   (see 
Fig. 5). This latter one can be expressed by (Love, 1944) : 
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2

( , ) ( ) cos ( )sin
totk

n n
n

w t A t n B t n  


       (17) 

where the rigid body motion has been eliminated. The considered stator is supposed to be 
inextensible, implying thus that the radial displacement can be expressed from the tangential 
one by:  

        ,
,s

w t
u t










                  (18) 

The stator is also fully described in the rotating frame. Its kinetic energy statT , as well as its 
potential energy stat  are defined: 

2 221
( , ) ( , ) ( , ) ( , )

2

t
s

stat stat stat s stat

t

u w
T S u t t w t t R d



     
 





                   
       (19) 

22

3

1 ²
( , ) ( , )

2 ²

t
stat stat s

stat
statt

E I u w
t t d

R



   
 





  
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  
       (20) 

In these expressions, stat , statS , statE  and statI  are the density, the cross section area, the elastic 
Young’s modulus of the ring material and the area moment of inertia for flexure of the casing 
respectively. It must be noted that the present ring is not damped. For simplicity reason, only 
one mode shape of the casing (the thn  one) is considered at a time thus the dynamic behaviour 
of the system is governed by a 2 2  matrix equation. The matrix equation of the dynamic 
behaviour of the ring excited by p  rotating spring-masses, without rubbing, can be obtained 
by using Lagrange’s equations and has the following expression: 
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(b) 
 
 
 
 
 
 

Figure 5 (a) Flexible casing, (b) model of moving loads on an elastic stator without rubbing  
 
 

 The stability of the casing can be studied by determining the eigenvalues of this 
matrix equation. The influence of the stiffness, of the mass and of the number of the moving 
loads can be studied. For instance, in the particular case of only one rotating radial spring-
mass on the casing, the matrix equation of the dynamic behaviour of the system is the 
following one: 
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with stat stat stat statM S R   and 
3

stat stat
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E I
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R


  

It can be seem that the stiffness matrix can become singular and thus the system is likely to 
experience some unstable phenomenon (Crandall, 1995) as shown on Fig. 5 representing a 
stability analysis of the two nodal diameter mode shape of the stator excited by one rotating 
spring-mass. 

Two kinds of instabilities appear: divergence (instability at zero frequency) of the 
forward mode shape and mode coupling (the forward and the backward mode shapes of the 
stator become two mode shapes having the same eigen-frequency but one of them being 
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stable and the other, unstable). The critical rotational speeds where the system diverges can be 
expressed analytically through the Routh-Hurwitz criterion applied to the characteristic 
polynom 2( )P x Ax Bx C    instead of   4 2 2( ) det M G KP s As Bs C s s      ,  in this simple case 

of only one rotating spring-mass (in the latter equation, M , G  and K  are the matrix written 
in Eq. 22). According to this criterion, the polynom 2( )P x Ax Bx C    has all its roots with real 
parts negative if A , B  and C  have the same sign. Thus, it turns out that : 

- for a light mass i.e. 2 statM m , with stat stat stat statM S R , the system can experience 
divergence if : 

2 2 2
2c c              (23) 

with  

 
 

2 2
2

2 2

2
11 11
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 

       (24) 

and  

      22 2
2

4 2 2

1

1
nstatstat stat

c
stat stat stat

nE I

S R n n





  


     (25) 

in the case of 2 2
c

k

m
     or, if 2 2 2

2c c      in the case of 2 2
c   . 

-  if the spring-mass has a heavy mass i.e. 2 statM m , the system can also experience 
divergence if : 

2 2
3c          (26) 

with 
 

       
2 2

2 2
3 2 2 2 2

2 1

1 2 1 1 2 1

stat

c c

stat stat

M n n m k

m n M n m n M n

  
    

       
    (27) 

In these expressions, c  is the wave propagation speed in the stator for its thn  mode shape 

and so, its thn  critical rotational speed in the rotating frame. Thus, it appears that both the 
mass and the stiffness of the spring-mass can make the system diverge. In a general manner, 
the bigger the stiffness is, the larger the speed range where the system can experience 
divergence is. For strong stiffness, this speed range begins at c  and closes far away at 2c . 

Concerning the mass, the heavier it is, the earlier the speed range where the system can 
experience divergence is. The critical speed where the system experiences mode coupling 
cannot be determined with the Routh-Hurwitz criterion as for the divergence instabilities (in 
the general case, the real part of 2x s  is not the same as s ). However, this critical speed can 
also be determined analytically in the particular case of only one rotating spring-mass. As a 
matter of fact, a sufficient condition for the apparition of flutter, in this particular case of an 
undamped structure, is to have two eigenvalues with real parts null and opposite imaginary 
parts. These conditions can be satisfied if the discriminant of ( )P x  is null. Thus, the critical 

speed of mode coupling for the system satisfy 2 4 0B AC  . In the particular case of only 
one rotating spring-mass, the rotational speeds satisfying the latter equation can be expressed 
by : 

 
1

2

4
mc

m

mn

  



           (28) 

providing that the square roots can be defined, with:  

   2 22 28 1 1statM n m n       
      (29) 
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     2 2 2 2 2 24 1 2 4 1stat stat stat cM n K n k mn K n k n m               (30) 

       22 2 2 2 2 2 2 21 1 2 1stat stat stat stat cM n n m M n n k K K mn mn k n                  (31) 

 23
3

stat stat
stat

stat

E I
K n n

R


       (32) 

The following figures illustrate these theoretical results. Figure 7 shows a stability 
analysis of the system in the case of a light mass 2 statM m . Figure 7b shows that only the mass 
is responsible of mode couplings. Figures 7c and 7d show that the stiffness seems to move 
back the critical speed where mode couplings appear. Figure 8 shows also a stability analysis 
for the same system but in the case of a heavy mass 2 statM m . It should have two speed ranges 

where the system diverges: the first one from  2c  to c , the second one being from 

3 403c RPM  . However, this latter divergence cannot be seen on Fig. 8 because mode 

couplings occur before. Thus, this shows (with Fig. 7b and 7c) that the heavier the mass is, the 
earlier the system experiences mode couplings (at least in the mass range studied here). 

The last parameter study considers the number of moving loads. Figures 9a, 9b, 9c and 
9d represent the real parts and the eigen-frequencies of the two nodal diameter mode shape of 
the stator with respectively one, two, three moving loads separated from 60° to each others 
(like blades , ,  on Fig. 11) and three moving loads, two separated from 180° and the 
third one at 60° from one of the latter two (like blades ,  and  on Fig. 11). These 
pictures have been made in the case of light masses 10m kg and stiffness 11 7 .k e N m . In a 
general case, the influence of the number of moving loads on the stability of the stator is not 
obvious. However, in some particular configurations of the moving loads in comparison to the 
mode shape considered, the divergence instability can disappear as shown on Fig. 8c. In our 
case and according to the Routh-Hurwitz criterion, a sufficient condition for the stator excited 

by several rotating loads with light masses (
 

2

2 2

22

2 sin ( )

2
1

j j
j

stat j
j

stat

n m n

M m
M n


  
  
    

 
   


 ) to avoid divergence 

instability is: 

 
 

Figure 6 Stability analysis of the two nodal diameter mode shape of the stator excited by one 
rotating spring-mass with 10m kg  and 11 7 .k e N m  
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2 2

1 1

1

2 2

1 1

1

sin ( ) cos ( )

sin( )cos( ) 0

sin ( ) cos ( )

sin( )cos( ) 0

p p

j j j j
j j

p

j j j
j

p p

j j j j
j j

p

j j j
j

k n k n

k n n

m n m n

m n n

 

 

 

 

 



 








 


 






 



 



            (33) 

Thus, for instance, in the case shown on Fig. 9c, all the conditions are satisfied: the masses are 
light, all the stiffness and masses are the same and: 

2 2 2 2 2 22 3 2 3
6 6 6 6 6 6

3
sin (2 ) sin (2 ) sin (2 ) cos (2 ) cos (2 ) cos (2 )

2
2 2 3 3

sin(2 )cos(2 ) sin(2 )cos(2 ) sin(2 )cos(2 ) 0
6 6 6 6 6 6

     

     

      

   


    (34) 

 what is not the case of the Fig. 9d:  
2 2 22 4

6 6 6

2 2 22 4
6 6 6

9
sin (2 ) sin (2 ) sin (2 )

4
3

cos (2 ) cos (2 ) cos (2 )
4

2 2 4 4 3
sin(2 )cos(2 ) sin(2 )cos(2 ) sin(2 )cos(2 ) 0

6 6 6 6 6 6 4

  

  

     


  


   



   


    (35) 

The Routh-Hurwitz criterion shows also that if 
 

2

2 2

22

2 sin ( )

2
1

j j
j

stat j
j

stat

n m n

M m
M n


  
  
    

 
   


  then, the 

system can experience divergence for : 

     

     

 

 
 

2 2 2 22 2

2 2
2 2

2 2 2 2

22 2 2
2 2

1 2 sin ( ) sin ( )2 1

2 sin ( ) 2 sin ( )

1 2 1 1
1 1

stat j j j j jstat j
j j jj

c

j j j j
j j

j stat stat j
j jstat stat

M n k n k n m nM n n m

n m n n m n

n m M n M n m
M n M n

 

 

 
 
     

       
                         

   

  

 
  2 2 statM

 
 
 

 
 
 
 

  
(36)

 

Figure 10 shows the same stability analysis as Fig. 8c but with three masses of 1000kg . The 
system would have experience divergence from 786RPM   but since it has be seen that 
the heavier the mass is, the earlier the system experiences mode couplings, the system is 
unstable from 622RPM   but does not diverge. 
Since some phenomenon occurring when an elastic structure is excited by rotating loads have 
been analysed and understood, the study of the contact between the blades of the rotor and the 
flexible casing of a turbo-machine can be performed. 
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(a)       (b) 

 
(c)                                                                   (d) 

 
Figure 7 Stability analysis of the two nodal diameter mode shape of the stator excited by one 
rotating spring-mass with 2 statM m  a) 11 7 .k e N m , 10m kg ( 9550 164 cRPM RPM     ), 

b) 11 7 .k e N m ,  0m kg , c)  11 5 .k e N m , 1000m kg ( 95,5 164 cRPM RPM     ), d)  
10 .k N m ,  1000m kg  

 

 
Figure 8 Stability analysis of the two nodal diameter mode shape of the stator excited by one 

rotating spring-mass with 2000m kg  ( 2 statm M ) and 11 5 .k e N m  
 

2 522,1c RPM   2 522,8c RPM 

164c RPM   

2 152c RPM   

164c RPM 

2 146c RPM 

253RPM  249RPM

164c RPM   164c RPM 

164c RPM 

2 138c RPM 

206RPM
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(a)       (b) 

 
(c)       (d) 

 
Figure 9 Influence of the number of moving loads on the two nodal diameter mode shape of 
the stator with a) one moving load b) two moving loads in a configuration like blades  and 
 c) three moving loads in configuration like blades ,  and   and d) with three moving 

loads in configuration like blades ,  and  
 
 

b. Blade tips/Casing Contact 
 

The contact between the flexible blade tips and a flexible casing is introduced by 
assuming no rubbing between the two structures. 

In this section, the casing considered is the same as in the latter section but with 
internal viscous damping (with coefficient stat ) introduced through a function of dissipation 

statdF : 

      

22 3 2 2

3 3 2 2

1
( , ) ( , ) ( , ) ( , )

2stat

t
stat stat s s

d stat
statt

E I u u w w
F t t t t d

R



     
   





    
     

    


 

               
   (37) 

and with more than one mode shape considered. If totk  modes shapes are considered to 

express the ring displacements, its dynamic behaviour in the rotating frame can be described, 
as for the rotor, by a set of equations that can be written under the following form:  

stat stat stat stat stat stat  M X C X K X 0                     (38) 
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where statM , statC  and statK  are the mass matrix, the generalised damping matrix, including the 
gyroscopic matrix, and the generalised stiffness matrix, including the spin softening matrix, 
for the stator respectively. The vector statX  which defines the generalised degrees of freedom 
vector of the stator contains 2 2totk   elements and has the following expression: 

2 2 . . .
tot tot

T

stat k kA B A B   X . 

The contact problem is treated by using Lagrangian multipliers j . A contact energy 
j

E  is 

defined for each contact at the thj blade located at the angle j  in the rotating frame: 

 ( , ) cos ( , )sin ( , )
j j j j s jE u l t l t u t clearance               (39) 

This energy is proportional to a Lagrangian multiplier (one per contact) and to the clearance 
between the blade tip and the casing. Thus there is one more equation per contact and also one 
more second member per contact in the behaviour equation of the system. Since the contact 
energy depends also on the radial displacement of the ring, the degrees of freedom of both 
structures are coupled. The contact between the rotor and the casing is supposed to be due to 
an unbalance strength. The dynamic behaviour of the whole structure can be described 
through the following matrix equation: 
 
 
 
              (40) 
 
 
The rotational speed where the first contact appears has been placed under both the critical 
rotational speed of the rotor and of the stator by increasing the unbalance mass. In the rotating 
frame, this non linear problem is a static one. The balanced static contact configurations of the 
system are found by iterations: the first configuration of the rotor is found by resolving: 
 
      rotor rotor unbalanceK X F

       (41) 
 
If the clearance is consumed, the contact blades/casing exists and a new balanced static 
position is calculated by resolving the static part of Eq. 40: 
 

          

(42)

 
 
This non linear system has several balanced contact configurations and the evolution of the 
load acting on the system will influence the balanced configuration adopted. Thus, by 
increasing the rotational speed of the rotor, the evolution of the clearance between each blade 
tip and the casing can be followed as a function of the its rotational speed as shown in Fig. 12, 
in the particular case of a rotor having six blades (see Fig. 11). It can be seen that the first 
blade to touch the casing is the blade , then successively the blades ,  and , when the 
rotational speed increases. The associated deformed shape, at 164 RPM, is plotted on Fig. 
13(a). When the rotational speed increases again, the blade  touches the stator. Thus, all the 
blades are in contact with the casing apart from the blade . The deformed shape associated, 
at 286 RPM, is plotted on Fig. 13(b). The system keeps this configuration while the rotational 
speed increases, until 310 RPM corresponding actually to the three nodal diameter mode 
shape critical speed of the casing. The associated deformed shape, at 310 RPM, is plotted on 
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Fig. 13(c). From this point, the algorithm diverges. It appears that up to this rotational speed, 
all the balanced static contact configurations found are stable ones but after this speed, the 
system has only unstable balanced static contact configurations. Moreover, from about 700 
RPM, the system has no longer balanced static contact configurations. Figure 14 shows a 
synthesis of these three rotational speed ranges. It could have been thought that between 310 
RPM and 700 RPM, the system might have stable dynamic contact configurations but, all the 
time integrations performed diverged on the three nodal diameter mode shape of the casing. 
This phenomenon can be explained by using the simple model of rotating loads on an elastic 
structure studied in the previous section. 

Effectively, it has been shown that an elastic ring excited by rotating loads could 
experience two kind of instabilities: divergence instabilities and mode couplings. In order to 
know if the divergence of the rotor coupled with the flexible casing is due to this 
phenomenon, the latter model of rotating loads on the elastic ring can be used. To compare 
the results of both models, the loads exciting the ring must have the same modal parameters 
than the rotor hence, its modal parameters have to be evaluated. For simplicity, this will be 
done at 0RPM  . If the rotor is submitted to a constant strength, its first modal mass an 
modal stiffness can be expressed by: 1 1 1X M XT

rotorm    and 1 1 1X K XT
rotork   , 1X  being its first eigen 

vector and 1X , its first eigen vector normalized so that the displacement of the rotor at the 
point of application of the strength and in its direction could be unity. The modal parameters 
for the rotor estimated like this are 4

1 4,45.10m kg  and 12 1
1 6.23.10 .k N m . The latest stable 

balanced contact configuration (i.e. just before the system diverges) obtained statically and by 
time integration consists in five contacts: at blades , , , , and . Figures 15a and b 
represent the comparison between respectively the results (real parts and eigen-frequencies) 
obtained with the three nodal diameter mode shape of the simplified model having five 
moving loads configured like blades , , , , and  with 1m  and 1k  as parameters and, 
the Campbell diagram and the associated decay rate plot for the flexible casing in contact at 
blades , , ,  and . The importance as well as the influence of the others mode shapes 
of the stator on each others appears through all the others instabilities that can be seen on Fig. 
15b and not on Fig. 15a.  However, these figures confirm that the stator experiences 
divergence through its three nodal diameter mode shape just after 310 RPM which is the 
critical speed c  of this mode shape. So it can be said now that the instability of the three 

nodal diameter mode shape of the stator results from rotating loads on this elastic structure. 
Moreover, with this configuration of rotor i.e. with six blades separated by 60° from each 
others, there is no contact configuration that satisfies the four conditions to avoid the 
divergence of the three nodal diameter of the stator. Thus, until the dynamics of the blades is 
not introduced during contact i.e. until the balanced contact configurations consist in steady 
state contact, the blades will act as rotating loads on the stator and this one will always 
experience divergence on its three nodal diameter mode shape. 
 



 16 

 
Figure 10 Stability analysis for the same system as shown by Fig. 8c but with masses of 

1000kg  
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 11 Blade numbers of a six bladed-rotor 
 

 

 
(a)          (b) 

Figure 12 (a) Evolution of the clearances between the blade tips and the flexible stator (b) 
zoom 
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Figure 13 Contact configuration with a flexible casing at a) 164 RPM, b) 286 RPM and c) 310 RPM 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14 Rotational speed ranges for the evolution of the system 
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(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 
 

Figure 15 Comparison of real parts and eigen-frequencies between a) the three nodal diameter 
mode shape of the stator excited by five rotating loads angularly set like blades , , ,  
and  and whose parameters are 1m  and 1k  and b) the stator excited by the blades , , , 

 and  
 
 
 
Conclusion  
A flexible fully bladed-rotor has been modelled in the rotating frame using an energetic 
approach. The gyroscopic effects, the spin softening effects and the centrifugal stiffening 
effects have been taken into account so from a phenomenological point of view the system is 
almost complete. Moreover, the formulation obtained in the rotating frame appears to be 
useful to study such rotating structures, especially in case of contacts between the flexible 
blades and the casing. This very important problem has been first studied through a simple 
model of an elastic ring having only one mode shape and excited by rotating loads. This study 
has underlined that the considered structure can experience two kinds of instabilities: 
divergence instabilities and mode couplings. The influences of the loads’ parameters have 
been analysed and in some simple cases, the critical speeds associated have been determined 

n=3

n=3 

n=3

n=3 
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analytically. Then, the casing of a turbo-machine has been modelled by an elastic ring too and 
the contact between the rotor of the machine and this casing has been studied. This problem 
has been solved, in part, by calculating the succession of the balanced static contact 
configurations of the system during an increase in its rotational speed, by using a Lagrangian 
multipliers method. It turns out that in the particular case of the rotor considered in this study, 
the system has several balanced configurations and adopts stable static configurations as a 
function of its rotational speed until the three nodal diameter mode shape critical speed of the 
casing where it always diverges. From this rotational speed, the system has neither stable 
balanced static contact configurations nor stable dynamic contact configurations. The latter 
simple model of an elastic ring excited by rotating loads used with the same parameters as the 
rotor has shown that this phenomenon results indeed from the action of the blades of the rotor 
acting like rotating loads on the casing. 
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