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Abstract 
In any high-performance turbo-machinery, instability prediction and damage are commonly 
occurring problems. The aim of this paper is to present stability analysis of a fully-bladed 
flexible rotor. The flexural vibrations of the blades as well as those of the shaft are 
considered; the energetic approach used includes the effect of the rotational inertia.  
Then stability detection, bringing loci veering phenomena and coalescence, in case of 
asymmetric rotor, to the fore, is made in order to determine a parametric domain where turbo-
machinery cannot encounter damages. Moreover, extensive parametric studies including for 
instance the length and the stagger angle of the blades are presented in order to obtain robust 
criterion for stable and unstable areas prediction.  
Finally, the rotor/stator contact is introduced and the effect of the radial load acting on the 
blades when rubbing against a carter is considered.  
 
 
Introduction 
The basic objective of turbo-machinery designers is to increase the efficiency of their 
machine. The efficiencies of both turbo-generators and jet engines depend strongly on the 
clearance between the rotating and the stationary parts [1,2]: the wider the clearance, the less 
efficient the machine. Hence it is desirable to reduce the clearance by as much as possible. It 
cannot be reduced below a certain minimum level due to uncertainties in the dynamics, fluid 
dynamics [3,4], thermal loads [5], the machining tolerances and material properties [6,7]. The 
more accurate these parameters are known, the smaller the clearance can be made. However, 
reduced clearances increase the possibility of violent contacts between rotor and stator and 
under certain operating conditions,  including the dynamic properties of the rotor and the 
stator and the speed of rotation, the contacts may continue and drive the rotor-stator system 
unstable [8,9,10]. 
A common interest of the rotating-machinery industry is to better understand the dynamic 
behaviour of rotating structures and in particular that of flexible bladed-rotor whose dynamic 
behaviour differs from those usually studied in rotor-dynamics. Thus, the instability of 



propellers due to the interaction between the dynamics of the blades and that of the engine 
suspension is a well-known phenomenon [11]. This kind of instability may also occur in 
bladed-rotor, like those present in turbo-machinery [12].  
The study of such structure is quite complex and must be performed using numerical models. 
However, to obtain a closed form solution suitable for a stability analysis, it is possible to 
resort to simplified models [13,14 and 15]. In this paper, a model of fully-bladed flexible rotor 
constructed by using an energetic approach is firstly presented. Then, in a second part, 
stability analysis and parametric studies are investigated in order to detect the stable and 
unstable regions of this structure in case of dissymmetries. Finally, the contact between the 
blade tips and a stator is introduced. 
 

Model formulation 
The rotor considered in this study is shown in Fig.1(a). It has been developed on an energetic 
approach based on the same kind of approximation as the one described by Sinha [13]. It 
consists of a shaft modelled by an Euler-Bernoulli beam, connected to a rigid disk modelled 
by a punctual mass with rotational inertia. Several Euler-Bernoulli beams are clamped in the 
disk and model the blades. The shaft is set on bearings at multiple locations. 
Two degrees of freedom are considered for the shaft: two orthogonal translations ),( tzu  and 

),( tz  in the disk’s plan (see Fig. 1(b)), and one degree of freedom for each blade defining its 
deflection ),( ts . 
 
 

 

 

 

 

 

(a)                                                                        (b) 

Figure 1 (a) Model of flexible bladed-rotor (Sinha [13]) (b) Front view of the bladed-disk 

A Rayleigh-Ritz approximation is used to express the degrees of freedom of these different 
parts.  Thus, they are expressed by a sum of shape functions level-headed by time-dependant 
coefficients. 
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where z  is the abscissa of the shaft and s , the abscissa along the blade. In these expressions, 
)(tUo  and )(tVo  are rigid-body translations of the shaft, totm  and totn , the number of modes 

considered to express its motion and the flexion of the thj  blade respectively. In this 
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Rayleigh-Ritz approach, the shape functions have only to verify the cinematic conditions of 
the problem so, the shape functions of the blades must verify 0)0( nY  and 0)0'( nY , where 
prime denotes differentiation versus space coordinates, because they are clamped in the rigid 
disk. Thus, the chosen expression for the shape function of the blade deflection is: 

1( ) sin( )n n nY s a s s   with )2()12( Lnn    and nna 1 . Concerning the shaft, since its is 
supported by bearings, its shape function has no cinematic conditions to verify and its chosen 
expression is: )cos(1)( zzW mm   with )2()12( lmm   . 
An energetic method is used to develop this model thus, potentials have to be defined for the 
shaft and for the blades as well. The model has been fully developed in the rotating frame in 
order to avoid having time-dependant terms, resulting from the periodicity of the rotating 
structure, in the analytical formulation. Thus, the kinetic energy bladeT  of the thj  blade, located 

at an angle 
tot

j
N

j 2  in this frame, as indicated in Fig. 1(b) and where totN  is the total number 

of blades, can be fully expressed by the following relation: 
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where b and bS  are the density and the area respectively of a blade cross section and 
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 and I  are the speed  and the rotation of the center of mass of a blade cross 
section in relation to  the  fixed frame and its inertia matrix, defined in its inertial frame. 
A potential energy bladeint associated with the elastic deformation of the blade, a function of 
dissipation bladedF associated with the internal damping of the thj  blade and a pre-stress 
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inertia are formulated.  
In the same way, a kinetic energy shaftT , a potential energy shaftint associated with the elastic 
deformation of the shaft, a function of dissipation shaftdF  associated with the internal damping 

of the shaft as well as a potential bearings  and a function of dissipation bearingsdF  associated with 
the bearing are defined.  
Then, Lagrange’s equations are used to obtain the system of equations of the dynamic 
behaviour of the full flexible bladed-rotor. This system of equations can be set under the 
following form:  
                                                                   MX CX KX 0                                                         (5) 
where M , C  and K  are the mass matrix, the generalised damping matrix and the generalised 
stiffness matrix respectively. X  which defines the generalised degree of freedom vector of the 
system contains 2 2tot tot totm n N   elements and has the following expression: 
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Stability analysis 
As explained previously, one of the most important objectives for turbo-machinery designers 
is to define dangerous operating speed ranges and the associated stable and unstable regions 
of bladed-rotor vibrations. The stability of the flexible bladed rotor is investigated by 
determining the solution   of the characteristic equation det( ² ) 0   M C K  .   can be 
expressed as iba . The flexible bladed-rotor becomes unstable if any of the real part a  is 
positive.  



In this following study, we consider a shaft supported by three diagonal  bearings located at 
its free, and at 300cm and at 325 cm and whose radial stiffness and radial viscous damping 
coefficients are 17 .10.2  mNkbearing  and 13 ..10.2  msNDbearaing .  

Fig. 2(a) illustrates the evolution of the eigen frequencies of a flexible twenty eight-bladed-
rotor of one meter in length, plotted in a Campbell diagram. Fig. 2(b) shows the evolution of 
the eigenvalues in the complex plane. The evolutions of the shaft’s eigen frequencies, shown 
on Fig.2(a), are mainly due to the gyroscopic effects. The evolution of the blades’ eigen 
frequencies (starting at 31 Hz) i.e. their stiffening,  is due to the centrifugal effects included in 
the pre stress potential bladeg . Two loci veering phenomena can be seen and are located by the 
points A and B on Fig. 2. When two eigenvalue loci approach each other, they either cross or 
do not cross; often in the latter case, even though the loci nearly intersect, in fact they do not 
but rather veer away from each other with high local curvature. During these phenomena, 
mode shapes and sense of rotation are switched between both eigenvalue that veer away. 
The system is perfectly stable as shown on Fig. 2(b). However, in the particular case of a two-
bladed rotor, in addition to loci veering phenomena, instabilities can be observed as illustrated 
in  Fig.3. In this case, two kinds of instabilities are observed. They both result from an inertial 
dissymmetry of the system. The first and more common one is noted by  and occurs at the 
first critical speed (intersection with the abscissa axis). The second one, indicated by 2b, 2c 
and 2d, consists in mode couplings i.e. two separated mode shapes at a speed rotation become 
two mode shapes having the same eigen frequency but one of them being stable and the other 
being unstable with its amplitude increasing in the time. The points indicated by X1 and X2 
do not show instabilities but since the observed phenomenon is due to dissymmetry, one can 
think, essentially by looking Fig.3(b), that the length of the blades will influence mode 
couplings and for sufficient length may drive the two-bladed rotor instable at these 
configurations. 
Fig.4(a) shows a stability map for a two-bladed rotor function of its rotation speed and of its 
blade length and Fig.4(b) shows the instable frequencies associated. These two pictures 
confirm the two kinds of instabilities, the one noted  corresponding to  0Hz and the one 
noted 2a, 2b, 2c and 2d corresponding to mode couplings. Fig.4(a) shows that up to 15 cm, 
the dissymmetry of the rotor is sufficiently light to leave the system stable but above this 
blade length, the rotor may experience several speed ranges where it is unstable. Only the 
instable frequencies different from 0Hz and corresponding to mode couplings can be seen on 
Fig.4(b), underlying the two kinds of instabilities. Thus, the configuration noted X1 on Fig.3 
can be an instable one if the blade length is up to 1.1m and corresponds to the area noted 2a. It 
is the same thing for the points noted X2 on Fig.3 which correspond to the area  just before 
8000 tr/min for blades longer than 1.1m. 
As it has been said earlier, these instabilities are mainly due to dissymmetry of the system but, 
the flexibility of the blades can influence these phenomena. Fig.5(a) and (b) show the stability 
map and the instable frequencies’ evolution respectively in the case of a two-rigid-bladed 
rotor. 
 



 
(a)                                                                     (b) 

Figure 2 (a) Campbell diagram (b) Complex plane diagram  for a twenty eight-bladed-rotor 

 

 
(a)                                                                     (b) 

Figure 3 (a) Campbell diagram (b) Complex plane diagram for a two-bladed-rotor  

 

 
(a)                                                                   (b) 

Figure 4 (a) Stability map (b) instable frequencies of a two-bladed rotor function of its blade 
length and its rotation speed 



 
(a)                                                                     (b) 

Figure 5 (a) Stability map and  (b) instable frequencies of a two-rigid-bladed rotor function of 
its blade length and its rotation speed 

 
The differences between this case and the latter concerns mainly the first instability range. As 
a matter of fact, the instable frequencies corresponding to mode couplings between 2000 
tr/min and 4000 tr/min are lower than in the flexible case and the blade length range 
concerned is shorter (see Fig.5(b), in white round). Thus, in the case of a two-rigid-bladed 
rotor, the mass and inertia added by the two blades can, between 2000 tr/min and 4000 tr/min, 
lead to low frequency modes couplings between the horizontal and the vertical mode shape of 
the rotor, if its blade length is between 1.1m and 1.5m. In the case of flexible blades, if their 
eigen frequencies are close to those of the shaft (as in the latter example), mode couplings can 
occur in this same speed range from a blade length of 1.1m and concern mixed mode shapes. 
Another parameter, the stagger angle (see Fig.6) can influence the occurrence of instabilities. 
All the case studied so far have been made with 60 . Fig.7(a) and Fig.7(b) show the 
stability map and the instable frequencies’ evolution respectively function of the stagger angle 
of a two-flexible-bladed rotor of one meter in length. The two kinds of instabilities can also be 
seen here. It appears that the higher the stagger angle is, the shorter the instable speed ranges 
are, as it could be though intuitively. However, instable speed ranges can appear or disappear 
function of this stagger angle, showing the importance of this parameter. 
 
 
 
 
 
 
 
 
 

Figure 6 Up view of the bladed disk 
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(a)                                                                     (b) 

Figure 7 (a) Stability map (b) instable frequencies of a two-flexible-bladed rotor function of 
its stagger angle and its rotation speed 

Finally, tip-blade/carter contact can be introduced. Effectively, higher energy-efficiency of the 
engine is achieved by reducing the tip clearance between the rotor and the stator components, 
but as the clearance is reduced, the probability of rub taking place during small changes in the 
operating conditions also increases. The contact between the blade-tips of a six-flexible-
bladed rotor and a rigid stator has been modelled through a radial penalty stiffness. Thus, a 
potential associated to this stiffness is defined according to the energetic method and the 
effect of radial load on the dynamic behaviour of the rotor is investigated. In the rotating 
frame, this non linear problem is a static one. However, the radial displacement of the shaft at 
its connexion with the bladed disk has been calculated through a finite difference method and 
is plotted on Fig. 8(a). Fig. 8(b) shows the deformed static shape associated (where all the 
displacements have been multiplied by a factor in order to see the behaviour of the system) 
for a clearance between the blade tips and the stationary part of 100 m  , an unbalance mass 
of 100 cmg.  and a speed rotation of 5730 tr/min. In this configuration, the unbalance being 
located at 45° in the rotating frame, the rotor has two blades in steady state contact with the 
stator (see Fig. 8(b)). 

 
(a)                                                                        (b) 

Figure 8 (a) Dynamic behaviour (b) deformed shape of a six-flexible bladed rotor in contact 
with a stator in the rotating frame 



 
 
Conclusion  

A flexible fully bladed-rotor has been modelled in the rotating frame using an energetic 
approach. Then, loci veering phenomena have been brought to the fore and its stability has 
been investigated. It has been shown that without rotating damping, the system may 
experience instabilities if it is strongly dissymmetric, typically in the case of a two-bladed 
rotor. In this case, zero hertz instable speed ranges have been detected at the first critical 
speed as well as mode couplings at frequencies different from zero hertz whether the blades 
are flexible or not. The influence of the stagger angle of the blades in the occurrences of 
instabilities has also been underlined. 
It has been shown that this model of flexible bladed-rotor is sufficiently simple and complete 
from a phenomenological point of view to be used to study easily the contact between blade 
tips and stationary parts in the rotating frame 
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