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Abstract

We study the ergodic theory of non-conservative C1-generic diffeomorphisms. First, we
show that homoclinic classes of arbitrary diffeomorphisms exhibit ergodic measures whose
supports coincide with the homoclinic class. Second, we show that generic (for the weak
topology) ergodic measures of C1-generic diffeomorphisms are nonuniformly hyperbolic: they
exhibit no zero Lyapunov exponents. Third, we extend a theorem by Sigmund on hyperbolic
basic sets: every isolated transitive set Λ of any C1-generic diffeomorphism f exhibits many
ergodic hyperbolic measures whose supports coincide with the whole set Λ.

In addition, confirming a claim made by R. Mañé in 1982, we show that hyperbolic
measures whose Oseledets splittings are dominated satisfy Pesin’s Stable Manifold Theorem,
even if the diffeomorphism is only C1.
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1 Introduction

In his address to the 1982 ICM, R. Mañé [M2] speculated on the ergodic properties of C1-generic
diffeomorphisms. He divided his discussion into two parts, the first dealing with non-conservative
(i.e. “dissipative”) diffeomorphisms, the second with conservative diffeomorphisms.

In the first part, drawing inspiration from the work of K. Sigmund [Si] on generic measures
supported on basic sets of Axiom A diffeomorphisms, Mañé first used his Ergodic Closing Lemma
[M1] to show that ergodic measures of generic diffeomorphisms are approached in the weak
topology by measures associated to periodic orbits (this is item (i) of Theorem 3.8 of this
paper; we include a detailed proof, since Mañé did not). He then went on to prove that the
Oseledets splittings of generic ergodic measures1 of generic diffeomorphisms are in fact uniformly
dominated, and to claim that such conditions – uniformly dominated Oseledets splittings –
together with nonuniform hyperbolicity are sufficient to guarantee the existence of smooth local
stable manifolds at µ-a.e. point, as in Pesin’s Stable Manifold Theorem [Pe].

In the second part, discussing the case of conservative diffeomorphisms, he stated a C1-
generic dichotomy between (some form of) hyperbolicity and an abundance of orbits with zero
Lyapunov exponents. In the two-dimensional setting this reduced to a dichotomy between
Anosov diffeomorphisms and those having zero exponents at almost every orbit. Mañé never
published a proof of this dichotomy.

For conservative diffeomorphisms much progress has been made. The generic dichotomy
between hyperbolicity and zero Lyapunov exponents for surface diffeomorphisms, in particular,

∗Partially supported by a CNPq/Brazil research grant.
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f (M) of ergodic measures of a diffeomorphism f is a Baire space when endowed with the weak
topology, so that its residual subsets are dense; see Subsection 5.1.
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was proven by Bochi [Boc1] in 2000, later extended to higher dimensions by Bochi and Viana
[BocV], and finally settled in the original (symplectic, in arbitrary dimension) statement of
Mañé by Bochi [Boc2] in 2007. Many other important results have been obtained for C1-generic
conservative diffeomorphisms, see for instance [ABC, DW, HT].

By contrast, there was for a long time after Mañé’s address little progress towards the
development of the ergodic theory for C1-generic dissipative diffeomorphisms. This is in our
view due to the two following obstacles:

• Obstacle 1: The Absence of Natural Invariant Measures. Conservative diffeomor-
phisms are endowed with a natural invariant measure, namely the volume that is preserved.
In the dissipative context, hyperbolic basic sets are endowed with some very interesting
invariant measures, such as the measure of maximal entropy (see [Bow]), or, in the case of
hyperbolic attractors, the Sinai-Ruelle-Bowen measure (see for instance [R]). In the case of
C1-generic dissipative diffeomorphisms, however, it is difficult to guarantee the existence
of measures describing most of the underlying dynamics. For instance, Avila-Bochi [AB]
have recently shown that C1-generic maps do not admit absolutely continuous invariant
measures.

• Obstacle 2: The C1-Generic Lack of C2-Regularity. For much of differentiable
ergodic theory the hypothesis of C1 differentiability is insufficient; higher regularity, usually
C2 but at least C1+Hölder, is required. This is the case for instance of Pesin’s Stable
Manifold Theorem [Pe] for nonuniformly hyperbolic dynamics 2.

The aim of this paper is to realize some of Mañé’s vision of an ergodic theory for non-
conservative C1-generic diffeomorphisms. Some of our results confirm claims made without
proof by Mañé; others extend Sigmund’s work to the nonhyperbolic C1-generic setting; and still
others go beyond the scope of both of these previous works. In any case, our results begin to
tackle both of the aforementioned obstacles to a generic ergodic theory. We hope that this work
will help the development of a rich ergodic theory for C1-generic dissipative diffeomorphisms.

Our starting point is the generic geometric theory for dissipative diffeomorphisms, that is,
the study from the C1-generic viewpoint of non-statistical properties: transitivity, existence of
dominated splittings, Newhouse phenomenon (coexistence of an infinite number of periodic sinks
or sources). . . There has been, especially since the mid-90’s, an explosion of important generic
geometric results, thanks largely to Hayashi’s Connecting Lemma [H]. It turns out, however,
that many of these tools – especially from [ABCDW], [BDP], and [BDPR] – are also useful for
the study of generic ergodic problems. Our results on generic ergodic theory follow largely from
the combined use of these geometric tools with techniques by Sigmund and Mañé.

Some of our results hold for every diffeomorphism, some require a C1-generic assumption.
We can group them into three types:

a) Approximations by Periodic Measures. A classical consequence of Mañé ergodic
closing lemma [M1] is that, for C1-generic diffeomorphisms, every invariant measure is the
weak limit of a convex sum of dirac measures along periodic orbits. We propose some
variation on this statement, for instance:

If f is a C1-generic diffeomorphism then

– any ergodic measure µ is the weak and Hausdorff limit of periodic measures whose
Lyapunov exponents converge to those of µ (Theorem 3.8);

2Obstacle 2, unlike Obstacle 1, is of course also a problem in the conservative setting.
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– any (non necessarily ergodic) measure supported on an isolated transitive set Λ is the
weak limit of periodic measures supported on Λ (Theorem 3.5 part (a)).

The idea is to show that, analogously with what occurs from the “geometric” viewpoint
with Pugh’s General Density Theorem [Pu1], generically hyperbolic periodic measures
are abundant (e.g., dense) among ergodic measures, and so provide a robust skeleton for
studying the space of invariant measures.

b) Geometric Properties of Invariant Measures. Some of our results deal with the
geometric and topological aspects of the invariant measures, such as the sizes of their
supports, their Lyapunov exponents and corresponding Lyapunov spaces, and the structure
of their stable and unstable sets. For instance:

– Let Λ be an isolated transitive set of a C1-generic diffeomorphism f . Then every
generic measure with support contained in Λ is ergodic, has no zero Lyapunov expo-
nents (i.e. is nonuniformly hyperbolic) and its support is equal to Λ (Theorem 3.5
part ( b)).

– Let µ be an ergodic measure without zero Lyapunov exponent, and whose support
admits a dominated splitting corresponding to the stable/unstable spaces of µ. Then
there exists stable and unstable manifolds a µ-almost every point (Theorem 3.11).

c) Ergodic Properties of Invariant Measures. Finally, many of our results deal with
“statistical” properties such as ergodicity and entropy of the invariant measures. For
instance:

– Any homoclinic class coincides with the support of an ergodic measure with zero en-
tropy (Theorem 3.1).

Some of our results may admit extensions to or analogues in the conservative setting, but
we have not explored this direction.

2 Preliminaries

2.1 General definitions

Given a compact boundaryless d-dimensional manifold M , denote by Diff1(M) the space of C1

diffeomorphisms of M endowed with the usual C1 topology.

Given a diffeomorphism f ∈ Diff1(M), a point x ∈M , and a constant ε > 0, then the stable
set of x is

W s(x) := {y ∈M : d(fk(x), fk(y)) → 0 as k → +∞}
and the ε-local stable set of x is

W s
ε (x) := {y ∈W s(x) : d(fk(x), fk(y)) ≤ ε for every k ∈ N}.

The unstable set W u(x) and the ε-local unstable set W s
ε (x) are defined analogously.

Given f ∈ Diff1(M), a compact f -invariant set Λ is isolated if there is some neighborhood
U of Λ in M such that

Λ =
⋂

k∈Z

fk(U).

A compact f -invariant set Λ is transitive if there is some x ∈ Λ whose forward orbit is dense
in Λ. A transitive set Λ is trivial if it consists of a periodic orbit.

We denote by O(p) the orbit of a periodic point p and by Π(p) its period.
For A ∈ GL(R, d) we denote by m(A) = ‖A−1‖−1 its minimal dilatation.
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2.2 Homoclinic classes

The Spectral Decomposition Theorem splits the nonwandering set of any Axiom A diffeomor-
phism into basic sets which are pairwise disjoint isolated transitive sets. They are the homoclinic
classes of periodic orbits. This notion of homoclinic class can be defined in a more general setting:

Definition 2.1. Let O(p) be a hyperbolic periodic orbit of f ∈ Diff1(M). Then

• the homoclinic class of O(p) is the set

H(O(p)) := W s(O(p)) |∩ W u(O(p));

• given an open set V containing O(p), the homoclinic class of O(p) relative to V is the set

HV (O(p)) := {x ∈W s(O(p)) |∩ W u(O(p)) : O(x) ⊂ V }.

Although the homoclinic class is associated to the periodic orbit O(p) of p, we write some-
times H(p) instead of H(O(p)).

Relative homoclinic classes like full homoclinic classes are compact transitive sets with dense
subsets of periodic orbits. There is another characterization of homoclinic classes:

Definition 2.2. Two hyperbolic periodic points p and q having the same stable dimension are
homoclinically related if

W s(O(p)) |∩ W u(O(q)) 6= ∅ and W u(O(p)) |∩ W s(O(q)) 6= ∅

If we define Σp as the set of hyperbolic periodic points that are homocliically related to p,
then Σp is f -invariant and its closure coincides with H(p).

In the relative case in an open set V we denote by ΣV,p the set of hyperbolic periodic points
whose orbit is contained in V and which are homoclinically related with p by orbits contained
in V . Once more HV (p) is the closure of ΣV,p.

2.3 Invariant measures and nonuniform hyperbolicity

The statements of many of our results involve two different types of weak hyperbolicity: nonuni-
form hyperbolicity and dominated splittings. We now recall the first of these two notions.

– The support of a measure µ is denoted by Supp(µ). Given Λ a compact f -invariant set of
some f ∈ Diff1(M), set

Mf (Λ) := {µ : µ is an f -invariant Borel probability on M such that Supp(µ) ⊂ Λ},

endowed with the weak topology. Then, Mf (Λ) is a compact metric space hence a Baire space.

– We denote by Merg
f (Λ) the set of ergodic measures µ ∈ Mf (Λ). This set is a Gδ subset of

Mf (Λ) (see Proposition 5.1), and hence is a Baire space.

– Given γ a periodic orbit of f ∈ Diff1(M), its associated periodic measure µγ is defined by

µγ :=
1

#γ

∑

p∈γ

δp.

Given Λ a compact f -invariant set of some f ∈ Diff1(M), set

Pf (Λ) := {µγ : γ is a periodic orbit in Λ} ⊂ Mf (M),
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Perf (Λ) := {p : p is a periodic point in Λ} ⊂M.

– Given any ergodic invariant probability µ of a diffeomorphism of a compact manifold of
dimension d the Lyapunov vector of µ denoted by L(µ) ∈ Rd is the d-uple of the Lyapunov
exponents of µ, with multiplicity, endowed with an increasing order.

An ergodic measure µ ∈ Merg
f (M) is nonuniformly hyperbolic if the Lyapunov exponents of

µ-a.e. x ∈M are all non-zero. The index of a nonuniformly hyperbolic measure µ is the sum of
the dimensions of Lyapunov spaces corresponding to its negative exponents.

A measure µ ∈ Mf (M) is uniformly hyperbolic if Supp(µ) is a hyperbolic set.

– Given a nonuniformly hyperbolic measure µ then its hyperbolic Oseledets splitting, defined at
µ-a.e. x, is the Df -invariant splitting given by

Ẽs(x) :=
⊕

λx<0

Ẽ(λx) and Ẽu(x) :=
⊕

λx>0

Ẽ(λx),

where Ẽ(λx) is the Lyapunov space corresponding to the Lyapunov exponent λx at x.

– A point x ∈ M is called irregular for positive iterations (or shortly irregular+) if there is a
continuous function ψ : M → R such that the sequence 1

n

∑n−1
t=0 ψ(f t(x)) is not convergent. A

point x is Lyapunov irregular+ if the Lyapunov exponents of x are not well-defined for posi-
tive iteration. Irregular− and Lyapunov irregular− points are defined analogously, considering
negative iterates instead.

A point is regular if it is regular+ and regular− and if furthermore the positive and negative
average of any given continuous function converge to the same limit.

2.4 Dominated splitting

We recall the definition and some properties of dominated splittings (see [BDV, Appendix B]).

A Df -invariant splitting TΛM = E ⊕ F of the tangent bundle over an f -invariant set Λ is
dominated if there exists N ≥ 1 such that given any x ∈ Λ, any unitary vectors v ∈ E(x) and
w ∈ F (x), then

‖Dxf
N(v)‖ ≤ 1

2
‖Dxf

N(w)‖.

This will be denoted by E ⊕< F .
More generally, a Df -invariant splitting E1 ⊕< . . . ⊕< Et of the tangent bundle TΛM is a

dominated splitting if given any ℓ ∈ {1, . . . , t− 1} then the splitting

(E1 ⊕ . . . ⊕Eℓ) ⊕ (Eℓ+1 ⊕ . . .⊕ Et)

is dominated. A dominated splitting is non-trivial if contains at least two non-empty bundles.

If an invariant set Λ admits a dominated splitting E1 ⊕< . . .⊕< Et, then:

a) the splitting E1(x) ⊕< . . .⊕< Et(x) varies continuously with the point x ∈ Λ;

b) the splitting E1⊕. . .⊕Et extends to a dominated splitting (also denoted by E1⊕<. . .⊕<Et)
over the closure Λ of Λ;

c) there is a neighborhood V of Λ such that every f -invariant subset Υ of V admits a
dominated splitting E′

1 ⊕< . . . ⊕< E
′
t with dim(E′

i) = dim(Ei) for each i ∈ {1, . . . , t}.
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There always exists a (unique) finest dominated splitting F1 ⊕< . . . ⊕< Fk over TΛM , char-
acterized by the following property: given any dominated splitting E′ ⊕< F

′ over Λ then there
is some ℓ ∈ {1, . . . , k − 1} such that

E′ = F1 ⊕< . . .⊕< Fℓ and F ′ = Fℓ+1 ⊕< . . .⊕< Fk.

That is, the finest dominated splitting F1 ⊕< . . . ⊕< Fk is minimal in the sense that every
dominated splitting over Λ can be obtained by bunching together bundles of the finest dominated
splitting. Equivalently, each of the bundles Fi of the finest dominated splitting is indecomposable,
in the sense that there exist no subbundles F 1

i and F 2
i such that Fi = F 1

i ⊕ F 2
i and

F1 ⊕ . . .⊕ Fi−1 ⊕ F 1
i ⊕ F 2

i ⊕ Fi+1 ⊕ . . .⊕ Fk

is a dominated splitting. Roughly speaking: “there is no domination within each Fi”.
The finest dominated splitting “separates Lyapunov exponents”. That is, given µ ∈ Mf (Γ)

an ergodic measure with Oseledets splitting Ẽ1⊕. . .⊕Ẽs and corresponding Lyapunov exponents
λ1 < λ2 < . . . < λs defined at µ-a.e. x, then there are numbers 0 = j0 < j1 < j2 < . . . jk = s
such that for each i ∈ {1, . . . , k}

⊕

ji−1<m ≤ji

Ẽm(x) = Fi(x)

at µ-a.e. x, where the Fi are the bundles of the finest dominated splitting. In other words, the
bundles of the finest dominated splitting can be written as sums of the Lyapunov spaces of the
increasing Lyapunov exponents of µ. So we speak of the Lyapunov spaces and of the Lyapunov
exponents “inside” each bundle Fi. We denote by L|F (µ) the set of Lyapunov exponents of µ
inside the bundle F ; likewise, given a Lyapunov-regular point x ∈ Λ, we denote by L|F (x) the
set of Lyapunov exponents of x inside F .

2.5 Semicontinuity and genericity

Given Y a compact metric space, we denote by K(Y ) the space of compact subsets of Y endowed
with the Hausdorff distance: given two non-empty sets K1,K2 ∈ K(Y ), set

dH(K1,K2) := inf{ε > 0 : Bε(K1) ⊃ K2 and Bε(K2) ⊃ K1},

where Bε(K) denotes the ε-ball centered on the set K. (The distance from the empty set to any
non-empty set is by convention equal to Diam(Y ).)

Then the space (K(Y ), dH) is itself a compact (and hence a Baire) metric space.

Definition 2.3. Given a topological space X and a compact metric space Y , a map Φ : X →
K(Y ) is

• lower-semicontinuous at x ∈ X if for any open V ⊂ Y with V ∩ Φ(x) 6= ∅, there is a
neighborhood U of x in X such that V ∩ Φ(x′) 6= ∅ for every x′ ∈ U ;

• upper-semicontinuous at x ∈ X if for any open V ⊂ Y containing Φ(x), there is a neigh-
borhood U of x in X such that V contains Φ(x′) for every x′ ∈ U ;

• lower-semicontinuous (resp, upper-semicontinuous) if it is lower-semicontinuous (resp,
upper-semicontinuous) at every x ∈ X.

Now, we can state a result from general topology (see for instance [K]) which is one of the
keys to most of the genericity arguments in this paper:

6



Semicontinuity Lemma. Given X a Baire space, Y a compact metric space, and Φ : X →
K(Y ) a lower-semicontinuous (resp, upper-semicontinuous) map, then there is a residual subset
R of X which consists of continuity points of Φ.

Remark 2.4. In this paper X is usually either Diff1(M) (with the C1 topology) or else Mf (M)
(with the weak topology), while Y is usually M or else M(M).

In a Baire space, a set is residual if it contains a countable intersection of dense open sets.
We establish a convention: the phrases “generic diffeomorphisms f (resp., measures µ) satisfy...”
and “every generic diffeomorphism f (resp., measure µ) satisfies...” should be read as “there
exists a residual subset R of Diff1(M) (resp., of Mf (Λ)) such that every f ∈ R (resp., every
µ ∈ R) satisfies...”

3 The Main Results

3.1 Homoclinic classes admit ergodic measures with full support

Theorem 3.1. Let H(p) be a relative homoclinic class of a diffeomorphism f ∈ Diff1(M). Then
there is a measure µ ∈ Mf (H(p)) which

i) is ergodic;

ii) has “full support”: Supp(µ) = H(p);

iii) has zero entropy: hµ(f) = 0.

So any homoclinic class of any diffeomorphism exhibits at least one ergodic measure with
full support. Theorem 3.1 is in fact a corollary of Theorem 3.1’ stated in Section 5.4.

Remark 3.2. • One intriguing consequence of Theorem 3.1 is this: given f a C1-generic
conservative diffeomorphism, then f admits at least one ergodic measure µ whose support
coincides with all of M . This follows from Theorem 3.1 and the fact that for C1-generic
conservative diffeomorphisms the manifold M is a homoclinic class (see [BC]).

• We think furthermore that the (f -invariant) volume m is approached in the weak topology
by ergodic measures with full support µ; we have not checked this completely, the missing
ingredient is a conservative version of the Transition Property Lemma in Subsection 4.2.

3.2 Generic ergodic measure of C1-generic diffeomorphisms

Methods similar to those used in the proof of Theorem 3.1’ yield an analogous result in the
wider space of ergodic measures:

Theorem 3.3. Given a C1-generic diffeomorphism f then every generic measure µ in Merg
f (M)

i) has zero entropy: hµ(f) = 0;

ii) is nonuniformly hyperbolic and its Oseledets splitting Ẽ1 ⊕ . . .⊕ Ẽk is dominated.

In Theorem 3.3 the domination of the Oseledets splitting is due to Mañé [M2].

Remark 3.4. The splitting above is trivial when µ is supported on a periodic sink or source.

7



3.3 Isolated transitive sets of C1-generic diffeomorphisms

Isolated transitive sets are natural generalizations of hyperbolic basic sets. Bonatti-Diaz [BD]
used Hayashi’s Connecting Lemma [H] to show that every isolated transitive set of a C1-generic
diffeomorphisms is a relative homoclinic class (see also [Ab]). Though at this point it is not
known whether every generic diffeomorphism exhibits some isolated transitive set, there are sev-
eral examples of locally generic diffeomorphisms having some non-hyperbolic isolated transitive
sets, for instance nonhyperbolic robustly transitive sets and diffeomorphisms.

Theorem 3.5 below presents a overview of C1-generic properties satisfied by measures con-
tained in an isolated transitive set.

Theorem 3.5. Let Λ be an isolated non-trivial transitive set of a C1-generic diffeomorphism
f ∈ Diff1(M) and let F1 ⊕ . . .⊕ Fk be the finest dominated splitting over Λ. Then

a) The set Pf (Λ) of periodic measures supported in Λ is a dense subset of the set Mf (Λ) of
invariant measures supported in Λ.

b) For every generic measure µ ∈ Mf (Λ),

b.i) µ is ergodic;

b.ii) µ has full support: Supp(µ) = Λ;

b.iii) µ has zero entropy: hµ(f) = 0;

b.iv) for µ-a.e. point x the Oseledets splitting coincides with F1(x) ⊕ . . .⊕ Fk(x);

b.v) µ is nonuniformly hyperbolic.

c) There exists a dense subset D of Mf (Λ) such that every ν ∈ D,

c.i) is ergodic;

c.ii) has positive entropy: hν(f) > 0;

c.iii) is uniformly hyperbolic.

Remark 3.6. 1. The conclusion of Theorem 3.5 does not apply to isolated transitive sets of
arbitrary diffeomorphisms: consider for example a normally hyperbolic irrational rotation
of the circle inside a two-dimensional manifold.

2. Recently D́ıaz and Gorodetski [DG] have shown that non-hyperbolic homoclinic classes
of C1-generic diffeomorphisms always support at least one ergodic measure which is not
nonuniformly hyperbolic.

Theorem 3.5 parts (a) and (b) is a nonhyperbolic, C1-generic version of the following theorem
by Sigmund on hyperbolic basic sets:

Theorem (Sigmund, 1970). Given Λ a hyperbolic isolated transitive set of a diffeomorphism
f ∈ Diff1(M), then the set Pf (Λ) of periodic measures in Λ is a dense subset of the set Mf (Λ) of
invariant measures in Λ. Moreover every generic measure µ ∈ Mf (Λ) is ergodic, Supp(µ) = Λ,
and hµ(f) = 0.

Remark 3.7. Although this was not stated by Sigmund, the statement of Theorem 3.5 part (c)
applies also to the space of measures over any non-trivial hyperbolic basic set.
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3.4 Approximation by periodic measures

Many of our results rely in a fundamental way on the approximation of invariant measures by
periodic measures. The following theorem is at the heart of the proofs of both Theorem 3.3 and
Theorem 3.5.

Theorem 3.8. Given an ergodic measure µ of a C1-generic diffeomorphism f , there is a se-
quence γn of periodic orbits such that

i) the measures µγn converge to µ in the weak topology;

ii) the periodic orbits γn converge to Supp(µ) in the Hausdorff topology;

iii) the Lyapunov vectors L(µγn) converge to the Lyapunov vector L(µ).

As already said, the main novelty here is that, at the same time, the Lyapunov exponents of
the periodic measures converge to those of the measure µ. Theorem 3.8 is a generic consequence
of the perturbative result Proposition 6.1 which refines Mañé’s Ergodic Closing Lemma.

Consider now the finest dominated splitting supported by the ergodic measure µ. Then
[BGV] produces perturbations of the derivative of Df along the orbits of the periodic orbits γn
which make all of the exponents inside a given subbundle coincide. One deduces:

Corollary 3.9. Given an ergodic measure µ of a C1-generic diffeomorphism f , let F1⊕ . . .⊕Fk
be the finest dominated splitting over Supp(µ). Then there is a sequence of periodic orbits γk
which converges to µ in the weak topology, to Supp(µ) in the Hausdorff topology, and such that
for each i ∈ {1, . . . , k} the Lyapunov exponents of γk inside Fi converge to the mean value λEi

of the Lyapunov exponents of µ inside the Fi.

We state another result which allows to approximate measures by periodic measures con-
tained in a homoclinic class.

Theorem 3.10. For any C1-generic diffeomorphism f ∈ Diff1(M), any open set V ⊂ M and
any relative homoclinic class Λ = HV (O) of f in V , the closure (for the weak topology) of the
set Pf (Λ) of periodic measures supported in Λ ∩ V is convex.

In other words, every convex sum of periodic measures in Λ∩V is the weak limit of periodic
orbits in Λ ∩ V .

3.5 C1-Pesin theory for dominated splittings

Theorems 3.1, 3.3, and 3.5 constitute as a group an assault on Obstacle 1. Our next result
deals with Obstacle 2. Pugh has built a C1-diffeomorphism which is a counter-example [Pu2] to
Pesin’s Stable Manifold Theorem. It turns out however that Pesin’s Stable Manifold Theorem
does hold for maps which are only C1, as long as the C1+Hölder hypothesis is replaced by
a uniform domination hypothesis on the measure’s Oseledets splitting. This has been already
done by Pliss [Pl] in the case when all the exponents are strictly negative. The difficulty for
applying Pliss argument when the measure has positive and negative exponents is that we have
no control on the geometry of iterated disks tangent to the stable/unstable directions. The
dominated splitting provides us this control solving this difficulty.

Theorem 3.11 below is a simpler statement of our complete result stated in Section 8, where
we show that Pesin’s Stable Manifold Theorem applies to ergodic nonuniformly hyperbolic mea-
sures with dominated hyperbolic Oseledets splitting .

9



Theorem 3.11. Let µ ∈ Mf (M) be an ergodic nonuniformly hyperbolic measure of a diffeo-
morphism f ∈ Diff1(M). Assume that its hyperbolic Oseledets splitting Ẽs ⊕ Ẽu is dominated.

Then, for µ-a.e. x, there is ε(x) > 0 such that the local stable set W s
ε(x)(x) is an embedded

C1 disc, tangent at x to Ẽs(x) and contained in the stable set W s(x). Furthermore, one can
choose ε(x) in such a way that x 7→ ε(x) is a measurable map and such that the family W s

ε(x)(x)
is a measurable family of discs.

In other words:
(Nonuniform hyperbolicity) + (Uniform domination) ⇒ (Pesin Stable Manifold Theorem).

We note that its statement includes no genericity assumption on f or on µ. It has already been
used, in a C1-generic context, to obtain results on ergodic measures of diffeomorphisms far from
homoclinic tangencies [Y1].

Theorem 3.11 seems to be a folklore result. Indeed, R. Mañé [M2] announced this result
without proof3 in his ICM address. Although no one seems to have written a full proof under
our very general hypotheses, some authors have used the conclusion implicitly in their work.
Gan [G], for instance, uses this kind of idea to extend Katok’s celebrated result on entropy and
horseshoes of C1+α surface diffeomorphisms to a C1-diffeomorphisms.

Theorems 3.3 and 3.5 show that dominated hyperbolic Oseledets splittings occur quite nat-
urally in the C1-generic context. We thus obtain:

Corollary 3.12. Let f be a C1-generic diffeomorphism. Then for any generic ergodic measure
µ, µ-a.e. x exhibits a C1 stable local manifold W s

loc(x) tangent to E(x) at x as in Theorem 3.11.

Corollary 3.13. Let Λ be an isolated transitive set of a C1-generic diffeomorphism f . Then
for any generic ergodic measure µ, µ-a.e. x exhibits a C1 stable local manifold W s

loc(x) tangent
to E(x) at x as in Theorem 3.11.

3.6 Genericity of irregular points

Our final two results make precise some informal statements of Mañé4 regarding the irregularity
of generic points of C1-generic diffeomorphisms.

Theorem 3.14. Given any C1-generic diffeomorphism f ∈ Diff1(M) there is a residual subset
R ⊂M such that every x ∈ R is irregular.

This result does not hold if we replace regular points by regular+ points: every point in
the basin of a (periodic) sink is regular+. We conjecture that if one excludes the basins of
sinks, generic points of C1-generic diffeomorphisms are irregular+. Our next result is that this
conjecture is true in the setting of tame diffeomorphisms5.

Recall that a diffeomorphism is called tame if all its chain recurrence classes are robustly
isolated (see [BC]). The set of tame diffeomorphisms is a C1-open set which strictly contains
the set of Axiom A+no cycle diffeomorphisms. The chain recurrent set of C1-generic tame
diffeomorphisms consist of finitely many pairwise disjoint homoclinic classes. Our result is :

Theorem 3.15. If f is a C1-generic tame diffeomorphism then there is a residual subset R ⊂M
such that if x ∈M and ω(x) is not a sink, then x is both irregular+ and Lyapunov- irregular+.

3He did provide the following one-line proof: “This follows from the results of Hirsch, Pugh, and Shub.” Since
the ingredients for the proof we provide in Section 8 are all classical and were available in 1982, we believe that
Mañé did indeed know how to prove it, but never wrote the proof (possibly because at the time there was little
motivation for obtaining a Pesin theory for maps which are C1 but not C1+Hölder).

4“In general, regular points are few from the topological point of view – they form a set of first category”.
[M3, Page 264]

5Indeed a recent result by J. Yang [Y2] allows us to extend Theorem 3.15 to C1-generic diffeomorphisms far
from tangencies: Yang announced that, in this setting, generic points belongs to the stable set of homoclinic
classes.
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3.7 Layout of the Paper

The remainder of this paper is organized as follows:

• In Section 4 we prove an ergodic analogue of Pugh’s General Density Theorem which we call
Mañé’s Ergodic General Density Theorem. It implies items (i) and (ii) of Theorem 3.8. We
also prove a “generalized specification property” satisfied by C1-generic diffeomorphisms
inside homoclinic classes: this gives Theorem 3.10. One deduces from these results the
parts (a) and (c) of Theorem 3.5.

• In Section 5 we state and prove some abstract results on ergodicity, support, and entropy
of generic measures. We show then how these abstract results yield Theorem 3.1, item (i)
of Theorem 3.3 and items (b.i), (b.ii), and (b.iii) of Theorem 3.5.

• In Section 6 we control the Lyapunov exponents of the periodic measures provided by
Mañé’s ergodic closing lemma. This implies the item (iii) of Theorem 3.8.

• In Section 7 we prove Corollary 3.9 and we combine most of the previous machinery with
some new ingredients in order to obtain our results on nonuniform hyperbolicity of generic
measures: item (ii) of Theorem 3.3 and items (b.iv) and (b.v) of Theorem 3.5.

• In Section 8 we construct an adapted metric for the Oseledets splittings and then use it
to prove Theorem 3.11.

• Finally, in Section 9 we prove Theorems 3.14 and 3.15.

Acknowledgements. The authors would like to thank the following people for useful sug-
gestions and comments: A. Avila, A. Baraviera, J. Bochi, F. Béguin, L. J. Diaz, F. Le Roux,
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the Université de Bourgogne and at IMPA, which were financed by the Brazil-France Cooperation
Agreement on Mathematics. The text has been finished during the Workshop on Dynamical
Systems at the ICTP in july 2008. We thank these institutions for their kind hospitality.

4 Approximation of invariant measures by periodic orbits

4.1 Mañé’s Ergodic General Density Theorem

In [M3] Mañé states without proof the following fact (called Mañé’s Ergodic General Density
Theorem):

Theorem 4.1. For any C1-generic diffeomorphism f , the convex hull of periodic measures is
dense in Mf (M).

More precisely, every measure µ ∈ Mf (M) is approached in the weak topology by a measure
ν which is the convex sum of finitely many periodic measures and whose support Supp(ν) is
arbitrarily close to Supp(µ).

We now prove a more precise result which corresponds to items (i) and (ii) of Theorem 3.8:
the ergodic measures are approached by periodic measures in the weak and Hausdorff senses.
In Section 6 we shall modify the proof in order to include also the approximation of the mean
Lyapunov exponents in each bundle of the finest dominated splitting (item (iii)).

Theorem 4.2. Given µ ∈ Mf (M) an ergodic measure of a C1-generic diffeomorphism f , then
for every neighborhood V of µ in Mf (M) and every neighborhood W of Supp(µ) in K(M) there
is some periodic measure µγ of f such that µγ ∈ V and Supp(µγ) ∈ W.
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Just as the C1-generic density of Perf (M) in Ω(f) follows from Pugh’s Closing Lemma
[Pu1], Theorem 4.2 follows from Mañé’s Ergodic Closing Lemma [M1] (discussed below).

Definition 4.3. A (recurrent) point x of f ∈ Diff1(M) is well-closable if given any ε > 0 and
any neighborhood U of f in Diff1(M) there is some g ∈ U such that x ∈ Perg(M) and moreover

d(fk(x), gk(x)) < ε

for all k ≥ 0 smaller than the period of x by g.

That is, a point x is well-closable if its orbit can be closed via a small C1-perturbation in such
a way that the resulting periodic point “shadows” the original orbit along the periodic point’s
entire orbit. Mañé proved that almost every point of any invariant measure is well-closable:

Ergodic Closing Lemma. Given f ∈ Diff1(M) and µ ∈ Mf (M), µ-a.e. x is well-closable.

Birkhoff’s ergodic theorem and Mañé’s ergodic closing lemma implies:

Corollary 4.4. Given f ∈ Diff1(M) and an ergodic measure µ ∈ Mf (M), then for any neigh-
borhoods U of f in Diff1(M) and W of µ in M(M) and any ε > 0 there is g ∈ U having a
periodic orbit γ such that µγ ∈ W and the Hausdorff distance between Supp(µ) and γ is less
than ε.

Proof of Theorem 4.2. We consider X := M(M)×K(M) endowed with the product metric. The
space K(M(M)×K(M)) of compact subsets of M(M)×K(M) is a compact metric space when
endowed with the Hausdorff distance. Consider the map Φ : Diff1(M) −→ K(M(M) ×K(M)),
which associates to each diffeomorphism f the closure of the set of pairs (µγ , γ) where γ is a
periodic orbit of f .

Kupka-Smale Theorem asserts that there is a residual set R of Diff1(M) such that every
periodic orbit of g ∈ R is hyperbolic. Then the robustness of hyperbolic periodic orbits implies
that the map Φ is lower-semicontinuous at g ∈ R. Applying the Semicontinuity Lemma (see
Section 2.5) to Φ|R, we obtain a residual subset S of R (and hence of Diff1(M)) such that every
g ∈ S is a continuity point of Φ|R. We shall now show that each such continuity point satisfies
the conclusion of Lemma 4.2:

Consider g ∈ S and µ an ergodic measure of g. Fix an open neighborhood Z0 of (µ,Supp(µ))
in K(M(M) × K(M)). We need to prove that there exists a pair (µγ , γ) in Z0, where γ is a
periodic orbit of g. Fix now a compact neighborhood Z ⊂ Z0 of (µ,Supp(µ)); it is enough to
prove that Φ(g) ∩ Z 6= ∅.

Applying the Corollary 4.4 to g, we obtain an arbitrarily small C1-perturbation g′ of g
having a periodic orbit γ such that simultaneously µγ is weak-close to µ and γ is Hausdorff-
close to Supp(µ). With another arbitrarily small C1-perturbation g′′ we make γ hyperbolic and
hence robust, while keeping µγ close to µ and γ close to Supp(µ). With yet another small C1-
perturbation g′′′, using the robustness of γ, we guarantee that g′′′ ∈ R and (µγ , γ) ∈ Z ∩Φ(g′′′).

By letting g′′′ tends to g, using the continuity of Φ|R at g and the compactnes of Z one gets
that Z ∩ Φ(g) 6= ∅ as announced.

Theorem 4.1 now follows by combining Theorem 4.2 with the the following “approximative”
version of the Ergodic Decomposition Theorem, which is easily deduced from the standard
statement:

Ergodic Decomposition Theorem. Given a homeomorphisms f of a compact metric space
M and µ ∈ Mf (M), then for any neighborhood V of µ in Mf (M) there are a finite set of
ergodic measures µ1, . . . , µk ∈ Mf (M) and positive numbers λ1, . . . , λk with λ1 + . . . + λk = 1
such that

λ1µ1 + . . .+ λkµk ∈ V.
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That is, any invariant measure may be approached by finite combinations of its ergodic
components.

Proof of Theorem 4.1. Let µ be an invariant measure of a C1-generic diffeomorphism f as in
the statement of Lemma 4.2. Fix a neighborhood V of µ in Mf (M) and a number ε > 0.

Let Ṽ denote V ∩Mf (Supp(µ)): it is a neighborhood of µ in Mf (Supp(µ)). By the Ergodic
Decomposition Theorem applied to f |Supp(µ) and Ṽ there is a convex combination

λ1µ1 + . . . + λkµk

of ergodic measures which belongs to V and supported in Supp(µ). Now, by Theorem 4.2, each
ergodic component µi is weak-approached by periodic measures µγi

of f whose support γi is
contained in the ε-neighborhood of Supp(µi) and hence of Supp(µ).

Now the convex sum ν = λ1µγ1 + . . . + λkµγk
is close to µ for the weak topology and its

support is contained in the ε-neigborhood of Supp(µ). As the support of a measure varies lower-
semicontinuously with the measure in the weak topology, we get that Supp(µ) and Supp(ν) are
close in the Hausdorff distance.

4.2 Periodic measures in homoclinic classes of C1-generic diffeomorphisms

Through the use of Markov partitions, Bowen [Bow] showed that every hyperbolic basic set Λ
contains periodic orbits with an arbitrarily prescribed itinerary (this is known as the specification
property). So the invariant probabilities supported in Λ are approached in the weak topology by
periodic orbits in Λ. An intermediary step for this result consists in proving that every convex
sum of periodic measures in Λ is approached by periodic orbits in Λ. One thus defines:

Definition 4.5. A set of periodic points Σ ⊂ Perf (M) has the barycenter property if, for any
two points p, q ∈ Σ, any λ ∈ [0, 1], and ε > 0, there exists x ∈ Σ and pairwise disjoint sets
I, J ⊂ N ∩ [0,Π(x)) such that

1. λ− ε < Card(I)
Π(p) < λ+ ε and (1 − λ) − ε < Card(J)

Π(q) < (1 − λ) + ε,

2. d(fm(x), fm(p)) < ε for every m ∈ I and d(fm(x), fm(q)) < ε for every m ∈ J .

The barycenter property implies that for any two periodic points p, q in Σ and λ ∈ (0, 1)
there is some periodic point x ∈ Σ, of very high period, which spends a portion approximately
equal to λ of its period shadowing the orbit of p and a portion equal to 1 − λ shadowing the
orbit of q. As a consequence we get:

Remark 4.6. If a set Σ ⊂ Pf (M) has the barycenter property then the closure of {mO(p), p ∈
Σ} ⊂ Mf (M) is convex.

Consider now the set Σp of periodic points homoclinically related to a hyperbolic periodic
point p of an arbitrary diffeomorphism f . Then Σp is contained in an increasing sequence of
basic sets contained in the homoclinic class H(p). For this reason, it remains true that every
convex sum of periodic measure µγi

with γi ∈ Σ(p) is approached by a periodic orbit in the basic
set. From the transition property in [BDP], we thus have:

Proposition 4.7. For any open set V ⊂ M and any hyperbolic periodic point p whose orbit is
contained in V , the set ΣV,p of periodic points related to p in V satisfies the barycenter property.

Proposition 4.7 does not hold a priori for the set of periodic orbits in an homoclinic classH(O)
in particular in the case where H(O) contains periodic points of different indices (which thus
are not homoclinically related). However when two hyperbolic periodic orbits γ1, γ2 of different
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indices are related by a heterodimensional cycle, [ABCDW] shows that one can produce, by
arbitrarily small C1-perturbations, periodic orbits which spend a prescribed proportion of time
shadowing the orbit of γi, i = 1, 2. Furthermore, if γ1 and γ2 are robustly in the same chain
recurrence class, then the new orbits also belongs to the same class. This allows one to prove
that the barycenter property holds generically:

Proposition 4.8. Let f be a C1-generic diffeomorphism and O a hyperbolic periodic orbit and
V ⊂ M be an open set. Then the set of periodic orbits contained in V ∩ HV (O) satisfies the
barycenter property.

Notice that this proposition together with Remark 4.6 implies Theorem 3.10.

Proof. We first give the proof for whole homoclinic classes (i.e. when V = M). According to
[BD], for every C1-generic diffeomorphism f and every periodic point p, q of f the homoclinic
classes are either equal or disjoint; furthermore, if H(p) = H(q) then there is an open neighbor-
hood U of f such that for every generic g ∈ U the homoclinic classes of the continuations of p
and q for g are equal; moreover if H(p) = H(q) and if p and q have the same index, then they
are homoclinically related. Hence the barycenter property is satisfied for pairs of point of the
same index in an homoclinic class.

Hence we now assume that H(O) contains periodic points p and q with different indices,
and we fix some number λ ∈ (0, 1). We want to prove the barycenter property for p, q and λ.
Notice that the homoclinic classes of p and q are not trivial and from [BC], one may assume
that they coincide with H(O). The next lemma will allow us to assume that p and q have all
their eigenvalues real, of different modulus, and of multiplicity equal to 1.

Lemma 4.9. Let f be a C1-generic diffeomorphism and p be a periodic point of f whose ho-
moclinic class is non-trivial. Then for every t ∈ (0, 1) and ε > 0 there is a periodic point pε
homoclinically related with p, and a segment I = {i, i + 1, . . . , i + j} ⊂ [0,Π(pε) − 1] ∩ N with
1 − j

Π(p) < ε such that:

• for every k ∈ {0, . . . , j} one has d(f i+k(pε), f
k(p)) < ε,

• the eigenvalues of DfΠ(pε)(pε) are real; have different modulus, and multiplicity equal to
1;

• p and pε have the same index of p.

Proof. The proof consists in considering periodic orbits of very large period shadowing the orbit
of an homoclinic intersection associated to p. An arbitrarily small perturbation of the derivative
of such orbits produces eigenvalues that are real, have different modulus and multiplicity 1. As
this property is an open property, the genericity assumption implies that f already exhibits the
announced periodic orbits, without needing perturbations.

Notice that if, for every ε > 0, the barycenter property is satisfied for pε, q and λ, then it
also holds for p, q and λ. Hence we may assume that the points p and q have different indices
and have all their eigenvalues real, of different modulus, and of multiplicity equal to 1. For
fixing the idea one assume dimW s(p) < dimW s(q). Furthermore H(p) = H(q) from [BD] and
this property persists for any C1-generic diffeomorphism close to f .

The end of the proof now follows from [ABCDW]; however there is no precise statement in
this paper of the result we need. For this reason we recall here the steps of the proof. First by
using Hayashi connecting lemma, one creates an heterodimensional cycle associated to the points
p and q: one has W u(O(p)) |∩ W s(O(q)) 6= ∅ and W s(O(p)) ∩W u(O(q)) 6= ∅. Then [ABCDW,
Lemma 3.4] linearizes the heterodimensional cycle producing an affine heterodimensional cycle.
This heterodimensional cycle [ABCDW, Section 3.2] produces, for every large ℓ,m, a periodic
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point rℓ,m whose orbit spends exactly ℓ.Π(p) times shadowing the orbit of p and m.Π(q) times
shadowing the orbit of q and an bounded time outside a small neighborhood of these two orbits.
So, we can choose ℓ and m such that the orbit of rℓ,m spends a proportion of time close to the
orbit of p which is almost λ and a proportion of time close to the orbit of q which is almost
1 − λ. Furthermore, one has W u(O(p)) |∩ W s(rℓ,m) 6= ∅ and- W u(rℓ,m) |∩ W s(O(q)) 6= ∅. One
deduces that, for any C1-generic diffeomorphism in an open set close to f , H(rℓ,m) = H(p) =
H(q) = H(O). Since f is generic, the class H(O) for f already contained periodic orbits that
satisfy the barycenter property.

In the proof for relative homoclinic classes, there are several new difficulties: the relative
homoclinic class of O in an open set V is the closure of periodic orbits in V related to O by
orbits in V , but some periodic orbit may also be contained in the closure of V . Furthermore the
set of open sets is not countable: hence the set of relative homoclinic classes is not countable,
leading to some difficulty for performing an argument of genericity. We solved these difficulties
by considering the set Perf (HV (O)∩ V ) of periodic orbits of HV (O) which are contained in V .
Then, if V is an increasing union of open subsets · · · ⊂ Vn ⊂ Vn+1 ⊂ · · · then

Perf (HV (O) ∩ V ) =
⋃

n

Perf (HVn(O) ∩ Vn).

This argument allows us to deal with a countable family of open sets Vi, i ∈ N. One now argues
in a very similar way as before (just taking care that all the orbits we use are contained in the
open set V ).

4.3 Approximation of measures in isolated transitive sets

One of the main remaining open question for C1-generic diffeomorphisms is

Question 1. Given a C1-generic diffeomorphism f ∈ Diff1(M) and a homoclinic class H(p)
of f , is Pf (H(p)) dense in Mf (H(p))? In other words, is every measure supported on H(p)
approached by periodic orbits inside the class?

The fact that we are not able to answer to this question is the main reason for which we will
restrict the study to isolated transitive set classes, in this section.

An argument by Bonatti-Diaz [BD], based on Hayashi Connecting Lemma, shows that iso-
lated transitive sets Λ of C1-generic diffeomorphisms are relative homoclinic classes:

Theorem 4.10. [BD] Given Λ an isolated transitive set of a C1-generic diffeomorphism f and
let V be an isolating open neighborhood of Λ, then

Λ = HV (O)

for some periodic orbit O ⊂ Λ of f .

Proof of Theorem 3.5 part (a). Let Λ be an isolated transitive set of a C1-generic diffeomor-
phism f and µ be an invariant measure supported on Λ. According to Theorem 4.1, the measure
µ ∈ Mf (M) is approached in the weak topology by a measure ν which is the convex sum of
finitely many periodic measures and whose support Supp(ν) is arbitrarily close to Supp(µ).

On the other hand Λ is the relative homoclinic class HV (p) of some periodic point p ∈ Λ in
some isolating open neighborhood V ; as the support of ν is close to the support of µ one gets
that Supp(ν) is contained in V . As V is an isolated neighborhood of Λ the measure ν is in fact
supported in Λ: hence it is the convex sum of finitely many periodic measures in Pf (Λ).

As Λ is compact and contained in V it does not contain periodic orbits on the boundary of
V . Hence Theorem 3.10 implies that the closure of the set Pf (Λ) is convex; this implies that ν
belongs to the closure of Pf (Λ), ending the proof.
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Proof of Theorem 3.5 part (c). Let Λ be a (non-trivial) isolated transitive set of a C1-generic
diffeomorphism f . By Theorem 4.10, every periodic point p in Λ has homoclinic class equal to
Λ, and hence exhibits some transverse homoclinic orbit. This implies that there are hyperbolic
horseshoes Γ arbitrarily close to this homoclinic orbit. The points in Γ spend arbitrarily large
fractions of their orbits shadowing the orbit O(p) of p as closely as we want.

Every horseshoe Γ supports ergodic measures ν which have positive entropy. Since each such
ν is supported in a hyperbolic horseshoe, it follows that ν is also uniformly hyperbolic. Now,
because the periodic horseshoe Γ shadows O(p) along most of its orbit, it follows that ν is close
in the weak topology to the periodic measure µO(p) associated to the orbit of p.

Since by the Theorem 3.5 part (a) the set of periodic measures Pf (Λ) is dense in Mf (Λ),
then it follows that the set of ergodic, positive-entropy, and uniformly hyperbolic measures ν as
above is also dense in Mf (Λ).

5 Ergodicity, Support, Entropy

In this section we prove three “abstract” results on generic measures, dealing respectively with
their ergodicity, support, and entropy. These results, together with the Theorem 3.5 part (a),
respectively imply items (b.i), (b.ii), and (b.iii) of Theorem 3.5. We also use these general results
to obtain Theorem 3.1 and item (i) of Theorem 3.3.

5.1 Ergodicity

Let Λ be an isolated transitive set of a C1-generic diffeomorphism f . By Theorem 3.5 (a),
ergodicity is a dense property in Mf (Λ), since periodic measures are ergodic.

Since dense Gδ sets are residual, we need only prove that ergodicity is Gδ in the weak
topology in order to conclude that ergodicity is generic in Mf (Λ). And indeed we have the
following general result (which implies in particular item (b.i) of Theorem 3.5):

Proposition 5.1. Let X be a compact metric space, A : X → X be a continuous map, and
MA(X) denote the space of A-invariant Borel probabilities on X, endowed with the weak topol-
ogy. Then ergodicity is a Gδ property in MA(X). In particular, if there exists a dense subset D
of MA(X) which consists of ergodic measures, then every generic measure in MA(X) is ergodic.

Proof. Let ψ ∈ C0(X) be a continuous real-valued function on X. The set

Merg
A,ψ(X) :=



µ ∈ MA(X) :

∫
ψ dµ = lim

k→+∞

1

k

k∑

j=1

ψ(Aj(x)) for µ-a.e. x





of measures which are “ergodic with respect to ψ” is given by

Merg
A,ψ(X) =

⋂

ℓ∈N

⋃

n∈N



µ ∈ MA(X) :

∫
‖ 1

n

n∑

j=1

ψ(fAj(x)) −
∫
ψ dµ‖ dµ(x) <

1

ℓ



 .

In particular Merg
A,ψ(X) is a Gδ set: the integral in the right-hand side of the bracket varies

continuously with the measure µ, and so the set defined within the brackets is open in MA(X);
this shows that Merg

A,ψ(X) is a countable intersection of open sets.

Now let {ψk}k∈N be a countable dense subset of C0(X). By the argument above, for each
k ∈ N there is some Gδ subset Sk of MA(X) consisting of measures which are ergodic with
respect to ψk. The measures µ which belong to the residual subset S of MA(X) obtained by
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intersecting the Sk’s are precisely the measures which are simultaneously ergodic with respect
to every ψk. Using standard approximation arguments one can show that such µ are ergodic
with respect to any ψ ∈ C0(X), and hence are ergodic.

Remark 5.2. Proposition 5.1 implies in particular that the space Merg
f (Λ) of ergodic measures

of a diffeomorphism f is a Baire space when endowed with the weak topology. Indeed, any Gδ
subset A of a compact metric space is Baire, since A is residual in A.

5.2 Full Support

Given Λ an isolated transitive set of a C1-generic diffeomorphism f , then Λ is a homoclinic class,
and hence has a dense subset Perf (Λ) of periodic points. This last fact suffices to prove that
generic measures on Λ have full support (item (b.ii) of Theorem 3.5), as the following general
result shows:

Proposition 5.3. Let X be a compact metric space, A : X → X be a continuous map, and
MA(X) denote the space of A-invariant Borel probabilities on X, endowed with the weak topol-
ogy. Then every generic measure µ in MA(X) satisfies

Supp(µ) =
⋃

ν∈MA(X)

Supp(ν).

In particular, if the set of periodic points of A is dense in X, then every generic µ satisfies
Supp(µ) = X.

Proof. Consider the map
Φ : MA(X) → K(X)

µ 7→ Supp(µ).
It is easy to see that Φ is lower-semicontinuous. By the Semicontinuity Lemma, there is a

residual subset S of MA(X) which consists of continuity points of Φ. The following claim then
concludes the proof:

Claim. Given µ ∈ MA(X) a continuity point of Φ, then Supp(µ) =
⋃
ν∈MA(X) Supp(ν).

Let us now prove the claim. One considers any measure ν ∈ MA(X). The measures (1−λ)µ+
λ ν converge to µ as λ goes to zero, and hence their supports, which equal Supp(µ) ∪ Supp(ν),
converge to Supp(µ). This implies that Supp(ν) is contained in Supp(µ) and concludes the proof
of the claim.

5.3 Zero Entropy

The next abstract result shall allow us to prove item (b.iii) of Theorem 3.5, that is, that generic
measures of an isolated transitive set have zero entropy:

Proposition 5.4. Let X be a compact metric space, A : X → X be a continuous map, and
MA(X) denote the space of A-invariant Borel probabilities on X, endowed with the weak topol-
ogy. Assume that there exists a sequence of measurable finite partitions {Pk}k∈N of X such
that

1) the partition Pk+1 is finer than Pk for every k ∈ N;

2) the product
∨
k∈N

Pk is the Borel σ-algebra of X.

Assume also that there is a dense subset D of MA(X) such that every µ ∈ D satisfies
µ(∂Pk) = 0 and h(µ,Pk) = 0, for every k ∈ N. Then there is a residual subset S of MA(X)
such that every µ ∈ S satisfies h(µ) = 0.
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Proof. By the Kolmogorov-Sinai theorem given any µ ∈ MA(X) then the entropy h(µ) of µ is
equal to sup k∈N {h(µ,P ′

k)}.
By assumption, given k ∈ N and ν ∈ D then ν(∂Pk) = 0. Thus ν is a point of upper-

semicontinuity for the map
Θk : MA(X) → R

µ 7→ h(µ,Pk).
Since Θk(ν) = 0 at every ν ∈ D, it follows that every ν is in fact a continuity point of Θk.

Since D is dense in MA(X), these conditions imply that there exists a residual subset Sk of
MA(X) consisting of measures µ such that h(µ,Pk) = 0.

Setting S :=
⋂
k∈N

Sk we obtain a residual subset of MA(X) which consists of measures µ
such that h(µ,Pk) = 0 for every k ∈ N, and hence which by the Kolmogorov-Sinai theorem
satisfy h(µ) = 0.

We may now prove item (b.iii) of Theorem 3.5:

Corollary 5.5. Given Λ an isolated transitive set of a C1-generic diffeomorphism f , then there
is a residual subset S of Mf (Λ) such that every µ ∈ S has zero entropy.

Proof. From Theorem 3.5, part (a), there is a dense subset D of Mf (Λ) which consists of periodic
measures.

Let now {Pk}k∈N be a sequence of finite partitions of M into zero-codimension submanifolds
of M and their boundaries such that:

1) ∂Pk ∩ Perf (Λ) = ∅ for all k ∈ N;

2) the partition Pk+1 is finer than Pk for every k ∈ N;

3) the product
∨
k∈N

Pk is the Borel σ-algebra of M .

Then the intersection of each of the partitions Pk with Λ yields a sequence of partitions
{P ′

k}k∈N of Λ which satisfy conditions (1)-(3) above (replacing M by Λ in condition (3)).
Clearly this sequence of partitions {P ′

k}k∈N satisfies the hypotheses of Proposition 5.4 above,
with X = Λ and D the set of periodic measures supported in Λ. So there is a residual subset of
Mf (Λ) consisting of measures with zero entropy.

We can also use Proposition 5.4 to prove that generic measures of C1-generic diffeomorphisms
have zero entropy. Indeed, by Theorem 4.1, given a C1-generic diffeomorphism f then the set
of finite convex combinations of periodic measures of f is dense in Mf (Λ). Moreover, given a
sequence of partition {Pk}k∈N ofM as in the proof of Proposition 5.4, then each such combination
satisfies the hypotheses of Proposition 5.4 above. So we obtain the item (i) of Theorem 3.3.

Corollary 5.6. For any C1-generic diffeomorphism f , every generic measure µ of f satisfies
h(µ) = 0.

5.4 Ergodic measures whose support fills a homoclinic class

Given an open set V ⊂ M and a hyperbolic periodic point p with orbit contained in V , recall
that ΣV,p denotes the set of periodic orbits heteroclinically related to (the orbit of) p by orbits
contained in V . Let M(ΣV,p) denote the set of periodic measures associated to orbits in ΣV,p

and let CM(ΣV,p) denote the closure (in the weak topology) of the convex hull of M(ΣV,p). We
may now state:
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Theorem 3.1’. Let HV (p) be a homoclinic class of some f ∈ Diff1(M). Then there is a residual
subset S of CM(ΣV,p) such that every µ ∈ S is ergodic, satisfies Supp(µ) = HV (p), and has zero
entropy.

In particular, at least one such measure exists, implying Theorem 3.1. So it turns out that
the proof of Theorem 3.1 – whose statement includes no genericity conditions at all – ultimately
relies on generic arguments on the space of measures supported in ΣV,p; this is a good illustration
of the capacity of genericity arguments to yield non-generic results.

Proof of Theorem 3.1’. By Proposition 4.7, the set M(ΣV,p) of periodic measures associated to

orbits in ΣV,p constitutes a dense subset of CM(Σp). That is, we have that CM(Σp) = M(ΣV,p).
Now, each element of M(ΣV,p) is ergodic and so it follows by Lemma 5.1 that there is some

residual subset S1 of CM(Σp) such that every µ ∈ S1 is ergodic. Lemma 5.3 implies that there
is some residual subset S2 of CM(Σp) such that the support of every µ ∈ S2 coincides with
ΣV,p = HV (p). And by Lemma 5.4 there is some residual subset S3 of CM(Σp) such that every
µ ∈ S3 has zero entropy. Set S := S1 ∩ S2 ∩ S3 and we are done.

6 Approximation of Lyapunov Exponents by Periodic Orbits

One deduces Theorem 3.8 from the following perturbative result:

Proposition 6.1. Let µ be an ergodic invariant probability measure of a diffeomorphism f of
a compact manifold M . Fix a C1-neighborhood U of f , a neighborhood V of µ in the space of
probability measures with the weak topology, a Hausdorff-neighborhood K of the support of µ,
and a neighborhood O of L(µ) in Rd. Then there is g ∈ U and a periodic orbit γ of g such that
the Dirac measure µγ associated to γ belongs to V, its support belongs to K, and its Lyapunov
vector L(µγ) belongs to O.

Proof of Theorem 3.8. The proof is similar to the proof of Theorem 4.2. Note first that it is
enough to prove the Theorem restricted to a small C1-neighborhood U of an arbitrary diffeo-
morphism f0 ∈ Diff1(M). In particular, one may assume that log ‖Df‖ and log ‖Df−1‖ are
bounded by some constant S > 0 for any f ∈ U .

Let X be the space of triples (µ,K,L) where µ is a probability measure on M , K ⊂ M is
a compact set, and L ∈ [−S, S]d, endowed with the product topology of the weak topology on
the probability measures, the Hausdorff topology on the compact subspaces of M , and the usual
topology on Rd.

To any periodic orbit γ of a diffeomorphism f we associate a triple xγ = (µγ , γ, L(µγ)). We
denote by Xf the closure of the set {xγ , γ ∈ Per(f)}. This is a compact subset of X, and hence
an element of the space K(X) of compact subsets of X endowed with the Hausdorff topology.

One easily verifies that the map f 7→ Xf is lower semi-continuous on the set of Kupka-Smale
diffeomorphisms, which is residual in U . As a consequence, this map is continuous on a residual
subset R∩ U of the set of Kupka-Smale diffeomorphisms, hence of U .

Consider f ∈ R ∩ U and µ an ergodic probability measure of f . Proposition 6.1 allows
us to create a periodic orbit γ such that xγ is arbitrarily close to (µ,Supp(µ), L(µ)); a small
perturbation makes this periodic orbit hyperbolic, and hence persistent by perturbations; a
new small perturbation yields a Kupka-Smale diffeomorphism. Since f is a continuity point
of g 7→ Xg in the set of Kupka-Smale diffeomorphisms, one has shown that (µ,Supp(µ), L(µ))
belongs to Xf , which implies the theorem.

19



6.1 Approximation by perturbation: proof of Proposition 6.1

We fix an ergodic measure µ of a diffeomorphism f . Let λ1 < · · · < λk be the Lyapunov
exponents of µ and for every i let di be the multiplicity of the Lyapunov exponent λi.

We consider a regular point x for µ in the following sense:

• The probability measures 1
n

∑n−1
0 δf i(x) and 1

n

∑n−1
0 δf−i(x) converge to µ as n→ +∞.

• x has well-defined Lyapunov exponents and its exponents are those of µ. Moreover there
is a splitting TxM = E1 ⊕ · · · ⊕ Ek, such that:

– dim(Ei) = di;

– the number 1
n

log(‖Dfn(u)‖) converges uniformly to λi on the set of unit vectors u
of Ei as n tends to +∞;

– the angle between between the Lyapunov spaces Dfn(Ei) and Dfn(Ej) decreases at
most subexponentially:

lim
n→+∞

1

n
log sin(∠EiEj) = 0.

• x is well closable: for any C1-neighborhood U of f , any ε > 0 any N > 0 there is n > N
and g ∈ U such that x is periodic of period n for g and d(gi(x), f i(x)) < ε for i ∈ {1, . . . , n}.

The set of regular points for µ has full measure for µ, according to the Birkhoff ergodic
theorem, the Oseledets subadditive theorem, and Mañé’s ergodic closing lemma. In particular,
such a point x exists. Fix a local chart at x such that Ei coincides with the space

Ei = {0}
∑i−1

1
dℓ × R

di × {0}
∑k

i+1
dℓ

and a Riemannian metric on M which coincides with the Euclidian metrics on this local chart.
For i ≤ j we denote Ei,j = Ei ⊕ · · · ⊕ Ej .

Given a number C > 0 and two linear subspaces E,F ⊂ TxM having the same dimension,
we will say that the inclination of F with respect to E is less than C if F is transverse to the
orthogonal space E⊥ and if F is the graph of a linear map ϕ : E → E⊥ of norm bounded by C.

We divide the proof of Proposition 6.1 into two main steps stated now. In the first step we
build the perturbation, and in the second step we verify the announced properties.

Lemma 6.2. For every C1-neighborhood U of f , and any ε > 0 there are:

• a number C > 0,

• a sequence (εn) of positive numbers with limn→∞ εn = 0,

• a sequence of integers tn → +∞,

• a sequence of linear isometries Pn ∈ O(R, d) such that ‖Pn − Id‖ < ε,

• a sequence of diffeomorphisms fn ∈ U ,

with the following properties:

a) The point x is periodic of period tn for fn.

b) The distance d(f t(x), f tn(x)) remains bounded by εn for t ∈ {0, . . . , tn}. In particular the
point f tn(x) belongs to the local chart we fixed at x = f tnn (x). This allows us to consider
the derivative Df tn(x) as an element of GL(R, d).
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c) The expression of Df tnn (x) in the local coordinates at x coincides with Pn ◦Df tn(x).

d) For every i ≤ j ∈ {1, . . . , k} the inclination of Df tnn (x).Ei,j with respect to Ei,j is less than
C.

As x is a regular point of µ one gets that the Dirac measures along the (periodic) orbits of
x for fn converge weakly to µ, and that the orbits themselves converge to the support of µ in
the Hausdorff topology as n→ ∞. Then we conclude the proof of Proposition 6.1 by proving:

Lemma 6.3. The Lyapunov vectors of the orbits of x by fn converge to the Lyapunov vector of
µ for f when n→ +∞.

6.2 Building the perturbations: Proof of Lemma 6.2

We cover M by finitely many local charts ϕi : Vi → Rd and we choose open subsets Wi ⊂ Vi,
relatively compact in Vi, such that the Wi cover M . For every t ∈ Z we fix i(t) such that
f t(x) ∈Wi(t).

Shrinking ε if necessary we may assume that:

• every 10ε perturbation of f in Diff1(M) is contained in U ,

• ε is smaller than the infima of the distances between Wi and the complement of Vi.

We fix ε0 ∈ (0, ε) such that for any y ∈Wi and any point z such that d(y, z) < ε0 then:

• The distance d(f(y), f(z)) is smaller than ε. In particular given any j with f(y) ∈Wj one
has z ∈ Vi and f(z) ∈ Vj .

• There is a linear map A : TzM → Tf(z)M such that ‖A −Df(z)‖ < ε and such that the
expressions of A and of Df(y) in the charts Vi and Vj coincide.

• If g is a ε0-C
1-perturbation of f then d(g(y), f(y)) < ε, so that g(y) ∈ Vj. Furthermore,

there is a linear map B : TyM → Tg(y)M such that ‖B − Dg(y)‖ < ε and such that the
expressions of B and of Df(y) in the charts Vi and Vj coincide.

We fix now a sequence 0 < εi < ε0 decreasing to 0. As the point x is well closable, there is a
sequence of εn-perturbations hn of f and integers tn ∈ N with tn → +∞ such that:

• the point x is periodic of period tn for hn;

• the distance d(f t(x), htn(x)) remains bounded by εn for t ∈ {0, . . . , tn}.

The diffeomorphism fn built below will preserve the orbit of x by hn, and hence items a) and
b) of the lemma will be satisfied.

As hn is εn-close to f , for every t ∈ {0, tn − 1} the map Bt : Tht
n(x)M → T

ht+1
n (x)M whose

expression in the coordinates Vi(t), Vi(t+1) is Df(htn(x)) satisfies ‖Bt − Dhn(h
t
n(x))‖ < ε. As

d(f t(x), htn(x)) < εn, the linear map At : Tht
n(x)M → Tf(ht

n(x))M whose expression in the coor-
dinates Vi(t), Vi(t+1) is Df(f t(x)) satisfies ‖At −Df(htn(x))‖ < ε. One deduces

‖Dhn(htn(x)) −Df (f t(x))‖ < 2ε.

By Franks Lemma, there is a diffeomorphism gn such that gn = hn on the periodic orbit of x,
gn is 3ε-C1-close to hn, gn = hn out of an arbitrarily small neighborhood of the orbit of x and
such that the expression of Dg at the point gtn(x) = htn(x) in the coordinates Vi(t), Vi(t+1) is At,
i.e. the same as Df(f t(x)).

As a consequence gn is a 4ε-perturbation of f satisfying:

21



• gn preserves the orbit of x by hn,

• the expression of Dgtnn (x) in the local coordinates Vi(0) is the same as Df tn(x).

In order to conclude the proof of Lemma 6.2 we need only to control the inclinations. For
that we will prove

Claim 6.4. Given any η > 0 and given an integer l > 0 there is C > 0 such that, given any pair
of l-uples (F1, . . . , Fl), (G1, . . . , Gl) of vector subspaces of Rd such that dim Fj = dim Gj for all
j ∈ {1, . . . , l}, there is an orthogonal matrix P such that ‖P − id‖ < η, and the inclination of
P (Gj) with respect to Fi is less that C.

Proof. The proof is done by induction on l. Assuming the result obtained for l − 1 and η/2,
we perform a very small perturbation of the matrix P to control the inclination of P (Gl) with
respect to Fl while keeping the other inclinations smaller than 2C.

Let K > 0 be a bound on ‖Dg‖ for any g ∈ U and fix η ∈ (0, εK−1). There exists C > 0 such
that the claim is satisfied for any ℓ = d2. Hence, there exists Pn ∈ O(R, d) with ‖Pn−id‖ < η ≤ ε
such that PnDgn(g

tn−1
n (x)) is an ε-perturbation of Dgn(g

tn−1
n (x)). Now, applying once more

Franks Lemma, we obtain a sequence fn satisfying:

• fn is a 6ε-perturbation of f , and hence belongs to U ,

• fn preserves the orbit of x by hn, and hence satisfies items a) and b) of the lemma,

• the expression of Df tnn (x) in the local coordinates Vi(0) is Pn ◦Df tn(x),

• for i ≤ j ∈ {1, . . . , k} the inclination of Df tnn (x).Ei,j with respect to Ei,j is less than C.

This ends the proof of Lemma 6.2

6.3 Lyapunov exponents: Proof of Lemma 6.3

We consider the Lyapunov spaces E1, . . . , Ek of x and for every j ∈ {1, . . . , k − 1} we denote
Fj = E1 ⊕ · · · ⊕ Ej = E1,j and Gj = Ej+1 ⊕ · · · ⊕ Ek = Ej+1,k. Recall that m(A) denotes the
minimal expansion of a linear automorphism A ∈ GL(R, d).

Lemma 6.5. For any ν > 0 there is nν ≥ 1 such that for any n ≥ nν and j ∈ {1, . . . , k − 1}
one has:

1
n

log(‖Dfn|Fi
‖) ≤ λj + 1

2ν and 1
n

log(m(Dfn|Gi
)) ≥ λj+1 − ν, (1)

1
n

log(m(Df−n|Fi
)) ≥ −λj − 1

2ν and 1
n

log(‖(Df−n|Gi
‖) ≤ −λj+1 + ν. (2)

Proof. This is an easy consequence of Oseledets theorem: the rate of expansion on the Lyapunov
space Ei converges uniformly to the Lyapunov exponents by positive and negative iterations,
together with the fact that the angles between the images of the Lyapunov spaces decrease
subexponentially with the number of iterations.

For K > 0, let Cuj,K be the cone of vectors whose inclination with respect to Gj is smaller
than K:

Cuj,K = {v = vs + vu ∈ TxM : vs ∈ F j, vu ∈ Gj , ‖vs‖ ≤ K‖vu‖}.
We denote by Csj,K the closure of TxM\ Cuj,K.Note that, one hasDf tnn (Gj) ⊂ Cuj,C ⊂ Cuj,2C ⊂ Cuj,4C .
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Lemma 6.6. For every ν > 0 there is n′ν > 0 such that for any n ≥ n′ν and j ∈ {1, . . . , k} one
has:

• The cone Cuj,4C is strictly invariant; more precisely:

Df tnn (Cuj,4C) ⊂ Cuj,2C ⊂ Cuj,4C .

As a consequence, the cone Csj,4C is strictly invariant by Df−tnn .

• For every unit vector v ∈ Cuj,4C one has

1

tn
log ‖Df tnn (v)‖ ≥ λj+1 − ν.

• For every unit vector w ∈ Csj,4C one has

−1

tn
log ‖Df−tnn (w)‖ ≤ λj + ν.

Proof. Consider v = vs+vu ∈ Cuj,4C , vs ∈ Fj and vu ∈ Gj . By definition we have ‖vs‖ ≤ 4C‖vu‖.
For n ≥ nν we get from equation (1) that:

‖Dfn(vs)‖ ≤ en(λj+
1

2
ν)‖vs‖

≤ 4Cen(λj+
1

2
ν)‖vu‖

≤ 4Cen(λj−λj+1+ν)‖Dfn(vu)‖.
Hence,

‖Dfn(v)‖
‖v‖ ≥ ‖vu‖

‖v‖
‖Dfn(vu)‖ − ‖Dfn(vs)‖

‖vu‖ ≥ 1√
1 + 16C2

(1 − 4Cen(λj−λj+1+ν))en(λj+1−
ν
2
).

Notice that 4Cen(λj−λj+1+ν) tends to 0 when n→ +∞. In particular for n large one has:

inf

{
1

n
log

‖Dfn(v)‖
‖v‖ , v ∈ Cuj,4C

}
≥ λj+1 −

3

4
ν.

Recall that the expression in the chart at x of Df tnn is the same as Pn ◦Df tn , where Pn is an
isometry. It follows that for n large enough one has

inf

{
1

n
log

‖Df tnn (v)‖
‖v‖ , v ∈ Cuj,4C

}
≥ λj+1 − ν.

Furthermore, Pn has been chosen in such a way that Df tnn (vu) belongs to the cone Cuj,C . As

a consequence, for 4Cetn(λj−λj+1+ν) small enough the vectors Df tnn (v) = Df tnn (vu) +Df tnn (vs)
belong to Cuj,2C , for all v ∈ Cuj,4C . This proves the two first items of the Lemma 6.6.

Consider now w = ws + wu ∈ Csj,4C with ws ∈ Fj and wu ∈ Gj . By hypothesis one has

‖wu‖ ≤ 1
4C ‖ws‖. Let us decompose w̃ := P−1(w) as w̃ = w̃s + w̃u with w̃s ∈ Fj ,w̃

u ∈ Gi. Since
‖P−1

n − id‖ = ‖Pn − id‖ < ε, one deduces that

‖w̃u‖ ≤
1

4C + ε

1 − ε
‖ws‖.

We denote by w̄s and w̄u the vectors of Tftn (x)M whose expressions in the local coordinates
at x are equal to those of w̃s and w̃u, respectively. Note that, by construction, Df−tnn (w) =
Df−tn(w̄u)+Df−tn(w̄s). The proof of the third item consists now in estimating and comparing
the norms ‖Df tn(w̄u)‖ and ‖Df tn(w̄s)‖ using equation (2) instead of equation (1), in a similar
way as above.
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Let us now end the proof of Lemma 6.3.

Proof of Lemma 6.3. Fix ν smaller than 1
10 infi6=j{|λi − λj |} and consider n > n′ν. Then

Lemma 6.6 implies:

• Df tnn (x) admits a (unique) invariant vector space Gni of dimension dim(Gi) in Cui,4C .

• The restriction of Df tnn (x) to Gni has a minimal dilatation larger than λi+1 − ν.

• Df tnn (x) admits a (unique) invariant vector space Fni of dimension dim(Fi) in Csi,4C .

• The restriction of Df tnn (x) to Fni has norm smaller than λi + ν.

Set Eni := Fni ∩ Gni−1. It is a vector space of dimension at least dim(Fni ) + dim(Gni−1) − d =
dim(Ei). Furthermore, one has

λi − ν ≤ m(Df tnn (x)|En
i
) ≤ ‖Df tnn (x)|En

i
‖ ≤ λi + ν.

As λi + ν < λi+1 − ν, one deduces that the sum En1 + · · · + Enk is a direct sum. It follows
that dim(Eni ) ≤ dim(Ei), and hence dim(Eni ) = dim(Ei). Hence x has dim(Ei) Lyapunov
exponents contained in [λi − ν, λi + ν]. This proves that for n large the Lyapunov vector of the
measure associated to the fn-orbit of x is ν-close to the Lyapunov vector of µ, ending the proof
of Lemma 6.3.

7 Generic Nonuniform Hyperbolicity

In this section we obtain the nonuniform hyperbolicity of the generic measures over an isolated
transitive set (items (b.iv) and (b.v) of Theorem 3.5), and also of the generic ergodic measures
of C1-generic diffeomorphisms (item (ii) of Theorem 3.3). We also give the proof of Corollary
3.9 which approximates an ergodic measure by period measures whose Lyapunov exponents are
almost constant on the bundles of the finest dominated splitting.

7.1 Approximation by periodic orbits with mean Lyapunov exponents

Since it is very similar to the proofs of Lemma 4.2 and Theorem 3.8, we now only sketch out
the proof of Corollary 3.9. This uses [BGV], which constructs perturbations on sets of periodic
orbits which exhibit a lack of domination. In our context we may state this tool in the following
way:

Theorem 7.1 ([BGV]). Let {γk} be a family of hyperbolic periodic orbits of f ∈ Diff1(M)
and F1 ⊕< · · · ⊕< Fk be the finest dominated splitting over ∪k∈N γk. Assume that there is no
infinite subset Γ of ∪k∈N γk such that the finest dominated splitting over Γ is strictly finer than
F1 ⊕< · · · ⊕< Fk. Then given any ε > 0 there is an ε-perturbation g of f such that g exhibits a
periodic orbit, coinciding with one of the original orbits, and whose Lyapunov exponents inside
each bundle Fi all coincide.

Proof of Corollary 3.9. Consider X the space of triples (µ,K,L) where µ is a probability mea-
sure on M , K ⊂ M is a compact set, and L is a vector in Rd, endowed with the usual product
topology. If γ is a periodic orbit, we denote by xγ the triple (µγ , γ, L(µγ)) (the measure associ-
ated to γ, its support γ, and its Lyapunov vector L(µγ)). As in the proof of Theorem 3.8, the map
f 7→ Xf , which to each diffeomorphism f associates the closure Xf of the set {xγ , γ ∈ Per(f)},
is continuous on a residual subset G of Diff1(M).
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Consider now, for such a C1-generic f , a triple of the form (µ, supp(µ), v), where µ is a
generic (and hence ergodic) measure supported in Supp(µ) and v is the vector given by

v =
{∫

log ‖detDf |F1
‖ dµ

dim(F1)

}dim(F1)
×
{∫

log ‖detDf |F2
‖ dµ

dim(F2)

}dim(F2)
× . . .

. . . ×
{∫

log ‖detDf |Fk
‖ dµ

dim(Fk)

}dim(Fk)

,

where the Fi are the bundles of the finest dominated splitting on Supp(µ).
We claim that (µ,Supp(µ), v) ∈ Xf , which proves Proposition 3.9. By Theorem 3.8, there

is a sequence of periodic orbits γk such that (µγk
, γk, L(γk)) accumulate on (µ,Supp(µ), L(µ)).

Since these orbits Hausdorff-accumulate on Supp(µ), it follows that for large enough K the
set {γk}k≥K admits as its finest dominated splitting a continuation of the dominated splitting
F1 ⊕< . . . ⊕< Fk over Supp(µ), so that no subsequence of {γk}k≥K admits a finer dominated
splitting. Now an application of Theorem 7.1 yields after a small perturbation a periodic orbit
γ′ whose Lyapunov exponents inside each Fi all coincide. Up to performing a new perturbation
we obtain a triple (µγ′′ , γ

′′, L(µγ′′)) close to (µ,Supp(µ), v) for some C1-generic g ∈ G arbitrarily
close to f . Since f is a continuity point of f 7→ Xf , one gets that (µ,Supp(µ), v) ∈ Xf , ending
the proof.

7.2 Proof of Theorem 3.5, items (b.iv) and (b.v)

In [BocV] arguments involving flags are used to obtain semicontinuity properties of the Lya-
punov exponents and Lyapunov spaces when the diffeomorphism f varies and keeping constant
a volume measure µ on M . An application of the Semicontinuity Lemma then shows that C1-
generic (conservative) diffeomorphisms are continuity points for the set of Lyapunov exponents
and their corresponding Lyapunov spaces.

In our dissipative setting, identical arguments yield semicontinuous variation of the exponents
when the measure µ varies and keeping the diffeomorphism f fixed. The Semicontinuity Lemma
then yields that generic measures are continuity points for the Lyapunov exponents. That is,
we have:

Proposition 7.2. Given Λ a compact invariant set of a diffeomorphism f , then there is a
residual subset S∗ of Merg

f (Λ) which consists of ergodic measures µ which are continuity points
for the map

Φ : Merg
f (Λ) → R

d

µ 7→ L(µ),
where L(µ) = (λµ1 , . . . , λ

µ
d ) denotes the Lyapunov vector of µ.

Remark 7.3. Here we state the continuity restricted to the ergodic measures simply because that
makes it easier to state the continuity; furthermore, we shall only use the continuity on the set
of ergodic measures.

We are now ready to prove the hyperbolicity of generic measures over isolated transitive sets
of generic diffeomorphisms. In fact, we will prove something stronger:

Proposition 7.4. Let Λ be an isolated transitive set of a C1-generic diffeomorphism f , with
finest dominated splitting F1⊕< . . .⊕<Fk over TΛM . Then there is a residual subset S of Mf (Λ)
such that for any measure µ ∈ S and any i ∈ {1, . . . , k} there is only one Lyapunov exponent λi
of µ in Fi, which furthermore is non-zero.

Remark 7.5. The Proposition above shows that even if Λ is nonhyperbolic, and thus contains
periodic orbits of distinct indices (see [BDPR]), the generic hyperbolic measures it supports may
all have the same index. Indeed, by the Proposition the indices of the generic µ’s are restricted
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by the (dimensions of the) bundles of the finest dominated splitting over Λ. There are examples
of nonhyperbolic robustly transitive sets – and hence of isolated transitive sets of C1-generic
diffeomorphisms – whose finest dominated splitting has only two bundles E and F , see [BonV].
Thus in such examples all of the generic measures provided by Proposition 7.4 above must have
the same index (namely, the dimension of E), even though the set Λ is nonhyperbolic and thus
contains periodic orbits of distinct indices.

Proof of Proposition 7.4. Let Λ be a non-trivial isolated transitive set of a C1-generic diffeomor-
phism f . Let us fix any bundle F = Fi of the finest dominated splitting. Given any µ ∈ Mf (Λ),
we set

I(µ) :=

∫
log ‖detDf |F ‖ dµ. (3)

Note that since F is a continuous bundle, I(µ) varies continuously with µ in the weak topology.
On the other hand, if µ ∈ Merg

f (Λ) then

I(µ) =
∑

F̃ (λi)⊂F

λi dim(F̃ (λi)),

where λi and F (λi) are respectively the Lyapunov exponents and the Lyapunov spaces inside
F .

For any periodic measure µγ , Franks lemma allows one to perturb the diffeomorphism in
Diff1(M) so that each sum λi + · · · + λj for 1 ≤ i ≤ j ≤ d is different from zero. An easy
genericity argument hence implies that under a C1-genericity assumption on f , the quantity
I(µ) never vanishes on the periodic measures of f .

Now, by Theorem 4.2, there exists a dense set D ⊂ Mf (Λ), consisting of hyperbolic periodic
measures such that I(ν) 6= 0 for every ν ∈ D. Since the integral I(µ) varies continuously with
µ, we conclude that I(µ) 6= 0 in an open and dense subset of Mf (Λ).

If µ ∈ Mf (Λ) is a generic measure, we know that it is ergodic, that Supp(µ) = Λ, that
I(µ) 6= 0, and that (by proposition 7.2) it is a continuity point for the map ν → L(ν) defined
on Merg

f (Λ). Using Corollary 3.9 there is a sequence of periodic orbits γℓ such that L|F (µγℓ
)

converges to some single value λF . Since µ is a continuity point for ν → L|F (ν) it follows that
λF is the only Lyapunov exponent of µ in F : this proves that the finest dominated splitting on
Supp(µ) coincides with the Oseledets splitting of µ. Moreover we must have

λF =
I(µ)

dim(F )
6= 0,

implying that µ is nonuniformly hyperbolic.

7.3 Proof of Theorem 3.3

The argument is very similar to the proof of Proposition 7.4. Since f is C1-generic, then for
each periodic orbit γ, the sum λi + · · · + λj for 1 ≤ i ≤ j ≤ d is different from zero, where
λ1, . . . , λd denote the Lyapunov exponents of γ with multiplicities.

Any generic ergodic measure µ is a continuity point of the map µ 7→ Supp(µ) on Merg
f (Λ).

As a consequence the finest dominated splitting F1 ⊕< · · · ⊕< Fk on Supp(µ) extends to the
support of any ergodic measure ν close to µ in the weak topology. In particular any bundle
F = Fi of the finest splitting extends to Supp(ν) and the map ν 7→ I(ν), giving the sum of
the Lyapunov exponents of ν inside F , varies continuously with ν on a neighborhood of µ. By
Theorem 4.2, there exists a sequence of periodic measures µγ which converges to µ and such
that I(µγ) 6= 0. Since µ is generic, one thus gets I(µ) 6= 0.
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By Proposition 7.2, µ it a continuity point for the map ν → L(ν) defined on Merg
f (Λ). Using

Corollary 3.9 the periodic measures may be chosen so that the Lyapunov exponents in L|F (µγℓ
)

converge to some single value λF . It follows that λF is the only Lyapunov exponent of µ in F :
this proves that the finest dominated splitting on Supp(µ) coincides with the Oseledets splitting
of µ. The argument proves that λF is non-zero, and hence that µ is nonuniformly hyperbolic.

8 Invariant Manifolds for Dominated Hyperbolic Measures

In this section we will prove a stronger version of Theorem 3.11 stated in Proposition 8.9. Fix
a C1-diffeomorphism f of the manifold M and an ergodic measure µ whose support admits a
dominated splitting E ⊕< F . One assumes that E is non-uniformly contracted for µ (i.e. the
Lyapunov exponents of µ in E are all negative); notice that we do not assume that vectors in
F are (non-uniformly) expanded. We will prove the existence of stable manifolds tangent to
E for µ-almost every point, and control the rate of approximation of the points in these stable
manifolds.

8.1 Adapted metrics

We first build an Euclidian metric on the tangent space at µ-almost every point, depending in
a measurable way on the point, and which is adapted to the tangent dynamics.

Definition 8.1. We say that a sequence (An) of positive numbers varies sub-exponentially if
for any η > 0, there exists a constant C > 0 such that

C−1.e−η.n < An < C.eη.n

for every n ∈ N.

Proposition 8.2. Let f be a C1-diffeomorphism and µ be an ergodic invariant probability mea-
sure. Assume that there is a Df − invariant continuous subbundle E ⊂ TSupp(µ)M defined over

the support of µ. Let λ+
E be the maximal Lyapunov exponent of the measure µ in E.

Then for any ε > 0 there exists an integer N ≥ 1 and a measurable function A from M to
(0,+∞) such that :

• the sequences (A(fn(x)))n∈N
and (A(f−n(x)))n∈N

vary sub-exponentially for each x ∈M ;

• if ‖.‖′x denotes the metric on Ex defined by

‖v‖′x =
∑

0≤k<N

e−k.(λ
+

E
+ε).A(fk(x)).‖Dxf

k.v‖,

then for µ-almost every point x, for every v ∈ Ex one has

‖Dxf.v‖′f(x) ≤ eλ
+

E
+ε.‖v‖′x.

Remark 8.3. Since the integer N is uniformly bounded, the (measurable) metric ‖.‖′ is quasi-
conformally equivalent to the initial metric ‖.‖.

Before proving Proposition 8.2, let us first explain how the Lyapunov exponents may be
computed as a limit of Birkhoff sums given by the derivative of f .

Lemma 8.4. Let f be a C1-diffeomorphism, µ be an ergodic invariant probability measure, and
E ⊂ TSupp(µ)M be a Df -invariant continuous subbundle defined over Supp(µ). Let λ+

E be the
upper Lyapunov exponent in E of the measure µ.
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Then, for any ε > 0, there exists an integer Nε such that, for µ-almost every point x ∈ M
and any N ≥ Nε, the Birkhoff averages

1

k.N

k−1∑

ℓ=0

log ‖DfN|E(f ℓ.N(x))‖

converge towards a number contained in [λ+
E , λ

+
E + ε), when k goes to +∞.

Proof. The exponent λ+
E is given by:

λ+
E = lim

n→+∞

1

n

∫
log ‖Dfn|E‖dµ.

One fixes an integer n0 ≥ 1 large enough so that for any n ≥ n0 we have:
∣∣∣∣
1

n

∫
log ‖Dfn|E‖dµ− λ+

E

∣∣∣∣ ≤
ε

2
. (4)

The measure µ is ergodic for the dynamics of f , but it may happen that µ is not ergodic for
fn0. Hence, it decomposes as

µ =
1

m
(µ1 + · · · + µm) ,

where m ∈ N \ {0} divides n0 and each µi is an ergodic fn0-invariant measure such that µi+1 =
f∗µi for each i (mod m). Let A1 ∪ · · · ∪ Am be a measurable partition of (M,µ) such that
f(Ai) = Ai+1 for each i (mod m) and µi(Ai) = 1.

Note that by (4), there exists i0 ∈ {1, . . . ,m}, such that

1

n0

∫
log ‖Dfn0

|E ‖dµi0 ≤ λ+
E +

ε

2
. (5)

For N ≥ 1, and µ-a.e. point x, one decomposes the segment of f -orbit of length N of x as
(x, f(x), . . . , f j−1(x)), (f j(x), . . . , f j+(r−1).n0−1(x)) and (f j+(r−1).n0(x), . . . , fN−1(x)) such that
j < n0, j + r.n0 ≥ N and all the points f j(x), f j+n0(x), . . . , f j+r.n0 belong to Ai0 . One deduces
that

‖DfN|E(x)‖ ≤ ‖Df j|E(x)‖.
(
‖Dfn0

|E (f j(x))‖ . . .
. . . ‖Dfn0

|E (f j+(r−2).n0(x))‖
)
.‖DfN−(j+(r−1).n0)

|E (f j+(r−1).n0(x))‖.

Hence, for µ-almost every point one has:

log ‖DfN|E(x)‖ ≤ 2n0.Cf +

r−2∑

s=0

log ‖Dfn0

|E (f j+s.n0(x))‖,

where Cf is an upper bound for both log ‖Df‖ and log ‖Df−1‖.
The point f j(x) is regular for the dynamics (µi0 , f

n0). One deduces that the average
1

k.n0

∑k−1
ℓ=0 log ‖Dfn0

|E (f j+ℓ.n0(x))‖ converges to 1
n0

∫
log ‖Dfn0

|E ‖dµi0 . Hence

lim
k→+∞

1

k.N

k−1∑

ℓ=0

log ‖DfN|E(f ℓ.N (x))‖ ≤ 2n0.Cf
N

+ lim
k→+∞

1

k.n0

k−1∑

ℓ=0

log ‖Dfn0(f j+ℓ.n0(x))‖.

Hence, choosing N >
4n0.Cf

ε
and using the inequality (5), one gets
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lim
k→+∞

1

k.N

k−1∑

ℓ=0

log ‖DfN|E(f ℓ.N(x))‖ < λ+
E + ε.

One the other hand, using that the norms are sub-multiplicative, one gets

lim
k→+∞

1

k.N

k−1∑

ℓ=0

log ‖DfN|E(f ℓ.N (x))‖ ≥ lim
n→+∞

1

n
log ‖Dfn(x)‖ = λ+

E .

One now comes to the proof of Proposition 8.2: one considers a constant ε > 0 and an
integer N ≥ 0 given by Lemma 8.4 such that at µ-almost every point, the Birkhoff averages for
fN of the functions x 7→ 1

N
log ‖DfN|E(x)‖ converge towards some numbers in [λ+

E , λ
+
E + ε). In

particular the sequence
∑k−1

ℓ=0 log ‖DfN|E(f ℓ.N (x))‖ is bounded by k.N.(λ+
E + ε) when k is large.

This allows us to define the quantity

A(x) = max
k≥0

(
e−k.N.(λ

+

E
+ε).

k−1∏

ℓ=0

‖DfN|E(f ℓ.N(x))‖
)
, (6)

with the convention
∏k−1
ℓ=0 ‖DfN|E(f ℓ.N(x))‖ = 1 for k = 0. Note that A(x) ≥ 1, by definition.

The Proposition 8.2 now follows from the next two lemmas.

Lemma 8.5. At µ-almost every point x, the metric

‖v‖′x =
∑

0≤j<N

e−j.(λ
+

E
+ε).A(f j(x)).‖Dxf

j

|E.v‖,

on Ex satisfies

‖Dxf.v‖′f(x) ≤ eλ
+

E
+ε.‖v‖′x.

Proof. We write :

‖Dxf.v‖′f(x) =
N−2∑

j=0

e−j.(λ
+

E
+ε).A(f j+1(x)).‖Dxf

j+1.v‖ + e−(N−1).(λ+

E
+ε).A(fN (x)).‖DfN (v)‖

≤ eλ
+

E
+ε.

N−1∑

j=1

e−j.(λ
+

E
+ε).A(f j(x)).‖Dxf

j.v‖ + e−(N−1).(λ+

E
+ε).A(fN (x)).‖DfN|E‖.‖v‖.

Hence one obtains the required estimate from the following:

Claim 8.6.
A(fN (x)).‖DfN|E(x)‖ ≤ eN.(λ

+

E
+ε).A(x).

The proof of the claim is the following computation:

A(fN (x)) = maxk≥0

(
e−k.N.(λ

+

E
+ε).

∏k−1
ℓ=0 ‖DfN|E(f (ℓ+1).N (x))‖

)

= eN.(λ
+

E
+ε).maxk≥0

(
e−(k+1).N.(λ+

E
+ε).

∏k
ℓ=1 ‖DfN|E(f ℓ.N (x))‖

)

= eN.(λ
+

E
+ε).maxk≥1

(
e−k.N.(λ

+

E
+ε).

∏k−1
ℓ=1 ‖DfN|E(f ℓ.N(x))‖

)
.

Hence

A(fN (x)).‖DfN|E(x)‖ = eN.(λ
+

E
+ε).maxk≥1

(
e−k.N.(λ

+

E
+ε).

∏k−1
ℓ=0 ‖DfN|E(f ℓ.N(x))‖

)

≤ eN.(λ
+

E
+ε).maxk≥0

(
e−k.N.(λ

+

E
+ε).

∏k−1
ℓ=0 ‖DfN|E(f ℓ.N(x))‖

)

= eN.(λ
+

E
+ε) · A(x).

This ends the proofs of the claim and of Lemma 8.5.
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Lemma 8.7. At µ-almost every point x, the sequences (A(fn(x)))n∈N
and (A(f−n(x)))n∈N

vary
sub-exponentially.

Proof. For k ∈ N we consider the Birkhoff sum Sk of the function x 7→ −N(λ+
E + ε) +

log ‖DfN|E(x)‖ relative to the dynamics of fN . For µ-a.e. point x, the Birkhoff average Sk(x)
k

converges when k tends to +∞ towards a number λ < 0. One deduces that for any small η > 0,
there exists C > 0 such that we have for any k ∈ N:

(λ− η).k − C ≤ Sk(x) ≤ (λ+ η).k + C.

For any integer n ≥ 0, one has Sk(f
n.N (x)) = Sk+n(x) − Sn(x) so that:

(λ− η)k − 2ηn − 2C ≤ Sk(f
n.N(x)) ≤ (λ+ η)k + 2ηn + 2C.

In particular, using that λ is negative and η < |λ|, we get

0 ≤ max
k≥0

Sk(f
n.N(x)) ≤ 2ηn + 2C. (7)

This implies the subexponentiality of the sequence
(
A(fn.N(x))

)
n∈N

since

logA(fn.N(x)) = max
k≥0

Sk(f
n.N (x)).

The subexponentiality of the sequence (A(fn(x)))n∈N
follows from the subexponentiality of the

sequence
(
A(fn.N (x))

)
n∈N

.

We now show the subexponentiality of the sequence
(
A(f−n.N(x))

)
n∈N

for µ-almost every

point. We first notice that, for k > n, one can decompose Sk(f
−n.N(x)) in Sn(f

−n.N(x)) +
Sk−n(x). Hence we have

max
k≥0

Sk(f
−n.N(x)) ≤ max

0≤k≤n
Sk(f

−n.N (x)) + max
k≥0

Sk(x)

The subexponentiality of the sequence
(
A(f−n.N(x))

)
n∈N

thus follows from the following claim:

Claim 8.8. For any η > 0, there is a contant C > 0 such that for any n ≥ 0,

0 ≤ max0≤k≤nSk(f
−n.N(x)) ≤ 2ηn + 2C.

For proving the claim, we consider the Birkhoff sum S̃k of the function x 7→ −N(λ+
E + ε) +

log ‖DfN|E(x)‖ for the dynamics of f−N . For µ-a.e. point x, the Birkhoff averages S̃k(x)
k

and
Sk(x)
k

converges (when k tends to +∞) towards the same number λ < 0. Applying to f−N the
same argument we applied to fN for proving the inequality (7), this gives that for any η > 0,
there exists C > 0 such that for any k, n ≥ 0 the following inequality holds:

S̃k(f
−n.N(x)) ≤ (λ+ η)k + 2ηn + 2C. (8)

One concludes the claim (and hence the lemma) by noticing that, for every 0 ≤ k ≤ n, one has

Sk(f
−n.N(x)) = S̃k(f

−(n−k).N(x)),

which implies
0 ≤ max0≤k≤nSk(f

−n.N(x)) ≤ 2ηn + 2C.
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8.2 Building the invariant manifolds

In this section we build the local stable manifolds at the regular points of an ergodic measure
µ, associated to a dominated splitting E ⊕< F on the support of the measure µ, under the
assumption that the largest Lyapunov exponent λ+

E of µ in E is negative.
We introduce a cone field on a neighborhood of Supp(µ): for any K > 0, there exists a

continuous splitting E′ ⊕ F ′ on a neighborhood of Supp(µ) which allows us to define the cones

CEx = {v = v1 + v2 ∈ TxM = E′
x ⊕ F ′

x, ‖v2‖ ≤ K‖v1‖}.

Moreover, at any point x ∈ Supp(µ), we have Ex ⊂ CEx .
Theorem 3.11 is a direct consequence of the next proposition:

Proposition 8.9. Let f be a C1-diffeomorphism and µ be an ergodic invariant probability mea-
sure whose support admits a dominated splitting E⊕<F . Let λ+

E < λ−F be the maximal Lyapunov
exponent in E and the minimal Lyapunov exponent in F of the measure µ.

If λ+
E is strictly negative, then at µ-almost every point x ∈ M , there exists an injectively

immersed C1-manifold WE(x) with dimWE(x) = dimE, tangent to Ex, and which is a stable
manifold: for any λ ≤ 0 contained in (λ+

E , λ
−
F ) and µ-a.e. point x, we have

WE(x) =

{
y ∈M, d(fn(x), fn(y)).e−λ.n −→

n→+∞
0

}
.

Moreover, at µ-a.e. point x there exists a local manifold WE
loc

(x) ⊂WE(x) satisfying:

1. WE
loc

(x) is an embedded C1-disk centered at x, of radius LE(x) and tangent to CE;

2. the sequence
(
LE(fn(x))

)
n∈Z

varies sub-exponentially;

3. WE(x) =
⋃
n≥0 f

−n(WE
loc

(fn(x))).

The aim of Sections 8.2 and 8.3 is the proof of Proposition 8.9. In this section (Section 8.2) we
build the local stable manifolds WE

loc(x) and we prove the exponential decay of d(fn(x), fn(y))
for y ∈WE

loc(x). Section 8.3 ends the proof by showing that this exponential decay characterizes
the points in the stable manifold. In fact the proof does not use the adapted metric built in the
previous section, but the function A provided by Proposition 8.2.

Our main tool is the plaque family theorem [HPS, theorem 5.5] of Hirsch-Pugh-Shub:

Theorem (Plaque family theorem, Hirsch-Pugh-Shub). Let f be a C1-diffeomorphism
and K be an f -invariant compact set admiting a dominated splitting E⊕<F . Then, there exists

a continuous family (D̂E
x )x∈K of embedded C1-disks such that:

• for every x ∈ K, the disk D̂E
x is centered at x and tangent to Ex;

• the family (D̂E
x ) is locally invariant: there exists δ0 > 0 such that for each x ∈ K, the disk

centered at x of radius δ0 and contained in D̂E
x is mapped by f into D̂E

f(x).

In order to prove Proposition 8.9, we fix a small positive constant ε < −λ+

E

3 . In the previous
section we obtained an integer N and a measurable map A ≥ 1 associated to the bundle E and
to ε, which is well-defined on the set of µ-regular points. Let Cf > 1 be a bound on the norm
of the derivative Df .

One also chooses a small constant δ1 ∈ (0, δ0), so that for any point x ∈ Supp(µ), any point

y ∈ D̂E
x with d(x, y) < δ1 and any vector v ∈ TyD̂E

x , we have

‖Dyf
N .v‖ ≤ eN.ε‖DfNE (x)‖.‖v‖. (9)
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Consider now δ > 0. For every µ-regular point x we denote by Dx ⊂ D̂E
x the disk centered at x

of radius LE(x) = δ/A(x). By choosing δ small enough, the disk Dx is tangent to the cone field
CE .

The next lemma shows that, choosing δ > 0 small enough, the disk Dx is contained in the
stable manifold at x.

Lemma 8.10. For δ smaller than C−N
f .δ1, and µ-a.e. point x ∈M , each forward iterate fn(Dx)

of the disk Dx is contained in the corresponding disk D̂E
fn(x) and has a diameter bounded by δ1.

Moreover, the diameter Diam(fn(Dx)) tend exponentially fast to 0 when n → +∞; more

precisely, the sequence
(
Diam(fn(Dx)).e

−n(λ+

E
+3ε)

)
n≥0

goes to 0 when n tends to +∞.

Proof. One proves the first part of the lemma inductively on n. Let us assume that all the
forward iterates fm(Dx) up to an integer n − 1 ≥ 0 are contained in the corresponding disk

D̂E
fn(x) and have diameters bounded by δ1. Since δ1 < δ0 one first concludes that the iterate

fn(Dx) also is contained in the disk D̂E
fn(x). We will prove that its diameter also is bounded by

δ1. Let k ≥ 0 denote the largest integer such that k.N ≤ n. By the estimate (9), one deduces
the following upper bound

Diam (fn(Dx)) ≤ CNf . ek.N.ε
∏

0≤ℓ<k

∥∥∥DfN|E(f ℓN(x))
∥∥∥ . Diam(Dx),

Now by definition (6) of A one deduces

Diam (fn(Dx)) ≤ CNf . ek.N.(λ
+

E
+2ε)A(x) .

δ

A(x)
. (10)

By our choice of ε and δ, this gives as required:

Diam (fn(Dx)) < ek.N.(λ
+

E
+2ε)δ1 ≤ δ1. (11)

In order to get the second part of the lemma, one considers again the estimate (11) which
has been now established for all the forward iterates of Dx. It implies:

Diam(fn(Dx)).e
−n(λ+

E
+3ε) ≤ e−(n−kN).(λ+

E
+2ε).e−nεδ1 ≤ e−N.(λ

+

E
+2ε).e−nεδ1,

which goes to 0 as n→ +∞.

Corollary 8.11. There is δ2 > 0 such that, for every λ > λ+
E, for µ-almost every point x ∈M ,

for any point y ∈ D̂E
x one has

supn≥0 d(f
n(x), fn(y)) ≤ δ2 =⇒

{
fn(y) ∈ D̂E

fn(x) for all n ≥ 0,

limn→+∞ e−λ.nd(fn(x), fn(y)) = 0.

Proof. We choose δ2 ∈ (0, δ1) such that µ{x ∈ M,LE(x) > δ2} > 0 Note that such a δ2 exists
because LE is a positive measurable map which is strictly positive at µ-almost every point.

By definition of δ0, if y ∈ D̂E
x satisfies d(x, y) ≤ δ0 then f(y) ∈ D̂E

f(x). As δ2 < δ0 a simple

inductive argument shows that, for every x ∈ Supp(µ) and every y ∈ D̂E
x one has

supn≥0 d(f
n(x), fn(y)) ≤ δ2 =⇒ fn(y) ∈ D̂E

fn(x) for all n ≥ 0.

Now, the ergodicity of µ implies that, for µ-almost every point x, there are infinitely many
n > 0 for which LE(fn(x)) > δ2, implying that fn(y) ∈ Dfn(x). Now Lemma 8.10 implies that
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(
d(fn(x), fn(y)).e−n(λ+

E
+3ε)

)
n≥0

goes to 0 when n tends to +∞. In particular d(fn(x), fn(y))

tends to 0.

For ending the proof, we fix now λ > λ+
E . We choose ε1 ∈ (0,

λ+

E

3 ) such that λ+
E+3ε1 < λ. This

gives us a new function A1 and a new function LE1 and thus a new family of disks Dx,1 ⊂ D̂E
x ,

and finally a new number δ2,1 such that µ{x ∈ M,LE1 (x) > δ2,1} > 0. Notice that one may
apply Lemma 8.10 to ε1. Thus, the same argument as above proves that, for µ-almost every x

and every y ∈ D̂E
x one has

supn≥0 d(f
n(x), fn(y)) ≤ δ2 =⇒ lim

n→+∞
e−λ.nd(fn(x), fn(y)) = 0.

As a countable intersection of sets with µ-measure equal to 1 has measure equal to 1, by
choosing a sequence of λ decreasing to λ+

E one gets that for µ-almost every x, every λ > λ+
E and

every y ∈ D̂E
x one has

supn≥0 d(f
n(x), fn(y)) ≤ δ2 =⇒ lim

n→+∞
e−λ.nd(fn(x), fn(y)) = 0.

As a direct corollary of Lemma 8.10 and Corollary 8.11 one gets:

Corollary 8.12. For µ-almost every point x ∈M , for any point y ∈ Dx, for every λ > λ+
E one

has
lim

n→+∞
e−λ.nd(fn(x), fn(y)) = 0.

8.3 Characterization of the invariant manifolds WE(x) by the speed of ap-
proximation

Lemma 8.13 below will end the proof of Proposition 8.9 (and therefore of Theorem 3.11) by
showing that the speed of approximation of y ∈ Dx given by Corollary 8.12 provides a charac-
terization of the points in the stable manifold WE(x).

Lemma 8.13. For µ-almost every point x, for every point y ∈M such that

lim
n→+∞

d(fn(x), fn(y)) = 0,

we have the following dichotomy:

• either there is n > 0 such that fn(y) ∈ Dfn(x) (and so we have exponential convergence);

• or for every λ ∈ (λ+
E , λ

−
F ) one has

lim
n→+∞

e−λ.nd(fn(x), fn(y)) = +∞.

One now finishes the proof of Proposition 8.9.

End of the proof of Proposition 8.9. By corollary 8.12, for any λ > λ+
E, for µ-a.e. point x and

any y ∈ Dx, we have shown

d(fn(x), fn(y)).e−λ.n −→
n→+∞

0. (12)

With Lemma 8.7 above, one obtains the properties (1) and (2) of Proposition 8.9 by defining
WE

loc(x) = Dx.
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For some λ ≤ 0 contained in (λ+
E , λ

−
F ) and at µ-a.e. point x ∈ M , one now considers any

point y ∈ M which satisfies (12). In particular d(fn(x), fn(y)) goes to 0 as n goes to +∞.
We are not in the second case of Lemma 8.13, hence, there is a forward iterate fn(y) of y that
belongs to WE

loc(f
n(x)). One deduces that the two following sets coincide:

{
y ∈M, d(fn(x), fn(y)).e−λ.n −→

n→+∞
0

}
=
⋃

n≥0

f−n
(
WE

loc(f
n(x))

)
.

This set does not depend on the choice of λ ≤ 0 in (λ+
E , λ

−
F ) and will be denoted by WE(x).

Let us now remark that the forward iterates of any local manifold WE
loc(f

m(x)) have a
diameter which goes to 0. Since the local manifolds at infinitely many iterates of x have a radius
uniformly bounded away from zero, one deduces that any finite union

⋃
0≤k≤m f

−k
(
WE

loc(f
k(x))

)

is contained in an embedded manifold f−n
(
WE

loc(f
n(x))

)
for some large n. This implies that

WE(x) =
⋃
n≥0 f

−n
(
WE

loc(f
n(x))

)
is an injectively immersed submanifold.

The end of the section will be devoted to the proof of Lemma 8.13. We choose δ2 such
that µ{x ∈ M,LE(x) > δ2} > 0. Hence for µ-almost every point x, there exist infinitely many
forward iterates fn(x) such that LE(fn(x)) > δ.

We first consider some λ ∈ (λ+
E , λ

−
F ). The proof uses an invariant cone-field defined in a

neighborhood of Suppµ. More precisely we will use the following classical result:

Lemma 8.14. Consider any λ′ ∈ (λ, λ−F ). Then there are

• an integer n0 > 0,

• a neighborhood U0 of Supp(µ)

• two continuous bundles TxM = E0(x) ⊕ F0(x) for x ∈ U0 such that E0(x) = E(x) and
F0(x) = F (x) for x ∈ Supp(µ); for every K > 0 we denote by CFK the cone field defined
for x ∈ U0 by

CFK(x) = {v = v1 + v2 ∈ TxM = E0(x) ⊕ F0(x), ‖v1‖ ≤ K‖v2‖},

• two positive numbers 0 < b < a (hence, for every x ∈ U0, one has CFb (x) ⊂ CFa (x)),

such that one has the following properties:

• for every x ∈ U0 and every v ∈ CFa (x) one has ‖Dfn0(v)‖ ≥ eλ
′.n0‖v‖;

• for every x ∈ U0 such that fn0(x) ∈ U0 one has Dfn0(CFa (x)) ⊂ CFb (fn0(x)).

We consider r0 > 0 such that any two points x, y ∈ M with d(x, y) ≤ r0 are joined by a
unique geodesic segment of length bounded by r0, which we denote by [x, y]geo. Notice that the
length ℓ([x, y]geo) is precisely d(x, y).

Lemma 8.15. Given any r ∈ (0, r0), there is a neighborhood U1 ⊂ U0 of Supp(µ), and δ3 ∈ (0, r)
with the following property.

Consider y, z ∈ U1 with d(y, z) < δ3, such that the segment [y, z]geo is contained in U0 and
is tangent to CFa . Then:

fn0(y) ∈ U1 =⇒





d(fn0(y), fn0(z)) < r,
[fn0(y), fn0(z)]geo ⊂ U1 and is tangent to CFa ,
d(fn0(y), fn0(z)) ≥ eλ.n0d(y, z).

34



Idea of the proof. The proof of Lemma 8.15 follows from the invariance of the conefield CFa
and from the fact that, for δ3 small enough, the segment fn0([y, z]geo) is very close (in the

C1-topology) to the geodesic segment [fn0(y), fn0(z)]geo; in particular the ratio d(fn0 (y),fn0 (z))
ℓ(fn0 ([y,z]geo) ,

where ℓ(fn0([y, z]geo) is the length of the segment fn0([y, z]geo), is almost 1.

Finally, the next lemma defines a kind of projection on D̂E
x of the points close enough to x:

Lemma 8.16. For r > 0 small enough, there is C1 > 0 and δ4 ∈ (0, δ3) such that, for every
x ∈ Supp(µ), for every y ∈M with d(x, y) ≤ δ4, one has:

• there is z ∈ D̂E
x such that [y, z]geo is tangent to CFa and d(y, z) < r;

• for every z ∈ D̂E
x such that [y, z]geo is tangent to CFa and d(y, z) < r, one has:

d(y, z) < C1d(x, y).

Idea of the proof. The proof follows from the compactness of Supp(µ) and from the fact that

the familly {D̂E
x }x∈Supp(µ) is a continuous family for the C1 topology, hence is a compact family

of C1-disks.

One can choose the constant δ4 > 0 small enough so that eλ.n0 .C1.δ4 < r. In particular, from
Lemma 8.15, the segment [y, z]geo in Lemma 8.16 also satisfies d(fn0(y), fn0(z)) < r. One also
can always assume that δ3 + δ4 < λ2.

Proof of Lemma 8.13. Let us assume that the first case of the lemma does not occur and
fix some λ ∈ (λ+

E , λ
−
F ). One may choose an iterate fn(x) such that LE(fn(x)) > δ2 and

d(fn+k(x), fn+k(y)) < δ4 for every k ≥ 0. By Lemma 8.16, there is z ∈ D̂E
x such that the

segment [fn(y), z]geo is tangent to CFa and has length bounded by δ3. The distance d(fn(x), z)
is thus less than λ2 and z belongs to Dfn(x). Since we are not in the first case of the lemma,
one has fn(y) 6= z. Hence, by Corollary 8.12 one has

lim
k→+∞

e−λ.kd(fk(z), fn+k(x)) = 0.

One verifies by induction that, for every k > 0, the segment [fn+k(y), fk(z)]geo is tangent to
CFa and has length bounded by δ3. All the iterates fn+k(y) are contained in U1, so Lemma 8.15
implies that

lim
k→+∞

e−λ.kd(fn+k(y), fk(z)) = +∞.

So limk→+∞ e−λ.kd(fn+k(y), fn+k(x)) = +∞, which gives the second case of the lemma as
required.

9 Irregular Points

9.1 Irregular+ points of generic diffeomorphisms

Theorem 3.15 is a direct consequence of the two following results:

Proposition 9.1. Let p be a hyperbolic periodic saddle of a diffeomorphism f , whose homoclinic
class H(p) is not reduced to the orbit of p (i.e., p has transverse homoclinic points). Let K =
W s(O(p)) be the closure of the stable manifold of the orbit of p. Then generic points in K are
irregular+.
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Proposition 9.2. Let p and q be hyperbolic periodic saddles of a diffeomorphism f which are
homoclinically related, and hence whose homoclinic classes H(p) and H(q) coincide. Assume
that the largest Lyapunov exponents of p and q are different. Let K = W s(O(p)) be the closure
of the stable manifold of the orbit of p. Then generic points in K are Lyapunov-irregular+.

Proof of Theorem 3.15. Let f be a C1-generic tame diffeomorphism and x be a generic point of
M . Assume that ω(x) is not a sink. Then, according to [MP, BC], ω(x) is a non-trivial attracting
homoclinic class H(p), and hence x belongs to the basin of this attracting class. Furthermore
W s(p) is dense in the open set W s(H(p)). So x belongs to the interior of closure W s(p). As a
consequence, a generic point x of M which belongs to W s(H(p)) is a generic point in W s(p). As
H(p) is non-trivial and f is generic, there is a hyperbolic periodic point q /∈ O(p) homoclinically
related to p such that the largest Lyapunov exponents of p and q are distinct.

Now, Propositions 9.1 and 9.2 imply that x is irregular+ and Lyapunov irregular+, respec-
tively.

We now need only prove Propositions 9.1 and 9.2.

9.2 Proofs of Propositions 9.1 and 9.2

The two propositions are consequences of three lemmas, the first two of which are classical
results from hyperbolic theory:

Lemma 9.3. If K is a hyperbolic basic set there is k ∈ N and a compact subset K0 ⊂ K such
that K is the disjoint union K0 ∪ f(K0) ∪ · · · ∪ fk−1(K0) and K0 is invariant by fk and is a
topologically mixing basic set of fk.

Lemma 9.4. Let K be a topologically mixing hyperbolic basic set. Then for any point z ∈ K
one has

W s(z) = W s(K).

The third lemma requires a proof:

Lemma 9.5. Let K be a non-trivial hyperbolic basic set. Then generic points in K are irregu-
lar+.

Proof. Consider a continuous map φ : M → R which equals 0 on a periodic orbit γ0 ⊂ K and 3
on a periodic orbit γ1 ⊂ K.

One denotes

On = {x ∈ K|∃m1 > n,
1

m1

m1−1∑

i=0

φ(f i(x)) < 1 and ∃m2 > n,
1

m2

m2−1∑

i=0

φ(f i(x)) > 2}.

On is open in K and one easily verifies that On is dense. For that one considers a fine Markov
partition of K and given any point z ∈ K one considers a point x whose itinerary coincides with
that of z an arbitrarily large number of periods (so that the point x is arbitrarily close to z),
then with the itinerary of γ1 an arbitrarily large number of periods (larger that n)(so that the
average 1

m1

∑m1−1
i=0 φ(f i(x)) will be as close to 0 as we want), and next with the itinerary of γ2

an arbitrarily large number (so that the average 1
m2

∑m2−1
i=0 φ(f i(x)) will be close to 3).

Any point in the intersection R0 =
⋂∞

0 On is irregular+.

Proof of Proposition 9.1. Let p be a periodic saddle point whose homoclinic class H(p) is not
trivial and consider two periodic orbits γ0 6= γ1 homoclinically related to p. We fix a continuous
function φ : M → R such that φ(γ0) = 0 and φ(γ1) = 3.
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We define

Wn = {x ∈W s(O((p))|∃m1 > n,
1

m1

m1−1∑

i=0

φ(f i(x)) < 1 and ∃m2 > n,
1

m2

m2−1∑

i=0

φ(f i(x)) > 2}.

Again, this is an open set of W s(O(p)) and any point in G0 =
⋂∞

0 Wn is irregular+. It remains
to prove that Wn is dense.

We consider a hyperbolic basic set K ⊂ H(p) containing γ0 and γ1. Let x be a point in the
residual subset R0 built in the proof of Lemma 9.5. Notice that the stable manifold W s(f i(x))
is contained in Wn for every n > 0 and every i ∈ Z. By lemmas 9.3 and 9.4, the stable manifold
of the orbit of x is dense in W s(O(p)). So the open sets Wn are dense and G0 is residual,
concluding the proof of Proposition 9.1.

The proof of Proposition 9.2 is more delicate because, a priori, points in the stable manifold
of a Lyapunov irregular+ point may be Lyapunov regular. For this reason we will follow a more
subtle strategy.

Proof of Proposition 9.2. Let p be a periodic saddle point point whose homoclinic class H(p) is
not trivial and consider a periodic point q homoclinically related to p. We assume that p and q
have distinct largest Lyapunov exponents 0 < λp < α < β < λq, for some positive numbers α, β.

We define

Un = {x ∈W s(O(p))|∃m1,m2 > n,
1

m1
log ‖D(fm1(x)‖ < α and

1

m2
log ‖D(fm2(x)‖ > β}.

The set Un is open and any point in G1 =
⋂∞

0 Un is Lyapunov irregular+. In order to prove

Proposition 9.2 it suffices to prove that the Un are dense in W s(O(p)). For that we consider a
basic set K containing the orbits of p and q and we will prove

Claim 9.6. There is a point x ∈ K whose stable manifold W s(x) is contained in Un.

Now Lemmas 9.3 and 9.4 implies that Un is dense in W s(O(p)), concluding the proof of
Proposition 9.2. It remains to prove the claim.

Proof of the claim. We fix a Markov partition generating K and we denote by a and b the
itineraries of p and q in terms of this partition. We denote by Tpq (resp. Tqp) some itinerary
from the rectangle containing p (resp. q) to the rectangle containing q (resp. p). We denote by
ℓ(m) the length of a word m.

We consider the positively infinite word

at0Tpqb
t1Tqpa

t2 . . . atiTpqb
ti+1Tqpa

ti+2 . . . ,

with

lim
i→+∞

ti∑i−1
j=0 tj

= +∞.

Let y be a point of K having this itinerary and z ∈W s(y). We will show that z ∈ Un. After
some time, the point z has the same itinerary as the point y. We look at the successive stays of
the orbit of z close to p and q.

We fix a non-decreasing sequence of positive integers kn → +∞ satisfying limn→∞
kn

n
= 0.

We consider the point zi = f ri(z) with

r2i = k2i.ℓ(a) + ℓ(a).
i−1∑

0

t2j + ℓ(b).
i−1∑

0

t2j+1 + i. (ℓ(Tpq) + ℓ(Tqp))
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and

r2i+1 = k2i+1.ℓ(b) + ℓ(a).
i∑

0

t2j + ℓ(b).
i−1∑

0

t2j+1 + Tpq + i. (ℓ(Tpq) + ℓ(Tqp)) .

One easily verifies that for any neighborhoods Up of the orbit of p and Uq of the orbit of q,
there is i0 such that for i ≥ i0 one has :

z2i, f(z2i), . . . , f
(t2i−k2i)·ℓ(a)(z2i) ∈ Up,

and
z2i+1, f(z2i+1), . . . , f

(t2i+1−k2i+1)·ℓ(b)(z2i+1) ∈ Uq.

We write s2i = (t2i − k2i) · ℓ(a) and s2i+1 = (t2i+1 − k2i+1) · ℓ(b).
One deduces that

lim
i→+∞

1

s2i
log ‖Df s2i(z2i)‖ = λp < α, and lim

i→+∞

1

s2i+1
log ‖Df s2i+1(z2i+1)‖ = λq > β.

Furthermore, limi→∞
si

ri
= +∞. As a consequence, one obtains that the norms ‖Df ri(z)‖

and ‖(Df ri(z))−1‖ are very small in comparison with ( α
λp

)si and (
λq

β
)si . One deduces that, for

i large enough, one has

1

r2i + s2i
log ‖Df r2i+s2i(z)‖ < α, and

1

r2i+1 + s2i+1
log ‖Df r2i+1+s2i+1(z)‖ > β.

We proved z ∈ Un for every n, concluding the proof of the claim.

9.3 Generic points of generic diffeomorphisms are irregular

Let f be a C1-generic diffeomorphism: by [BC] the chain-recurrent set coincides with the non-
wandering set of f ; moreover for each connected component U of IntΩ(f), there exists a periodic
orbit O whose homoclinic class is non-trivial and such that the closure K of W s(O) contains U .
Let us consider a generic point x ∈M . Two cases occurs.

• Either x belongs to M \ Ω(f) and in this case, it is non-recurrent. So Conley theory [C]
implies that the omega- and the alpha-limit sets of x are contained in different chain
recurrence classes of f which are disjoint compact sets. This implies that x is irregular:
the positive and the negative averages along the orbit of x of a continuous map ϕ with
ϕ(α(x)) = 0 and ϕ(ω(x)) = 1 will converge to 0 and 1 respectively.

• Or x belongs to Int(Ω(f)) and is generic in the closure K of W s(O) for a periodic orbit O
having a non-trivial homoclinic class. By proposition 9.1, such a point x is irregular+.
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(2004).

[BD] Ch. Bonatti and L.J. D́ıaz, Connexions hétéroclines et généricité d’une infinité de puits
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