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An upper bound on the adaptable choosability of graphs.

Introduction

Suppose G is a multigraph and let F : E(G) → N be a (possibly improper) colouring of the edges of G. A k-colouring c : V (G) → {1, . . . , k} of the vertices of G is adapted to F if for every uv ∈ E(G), c(u) = c(v) or c(v) = F (uv). In other words, there is no monochromatic edge i.e. an edge whose two ends are coloured with the same colour as the edge itself. If there is an integer k such that for any edge colouring F of G, there exists a vertex k-colouring of G adapted to F , we say that G is adaptably k-colourable.

The smallest k such that G is adaptably k-colourable is called the adaptable chromatic number of G and is denoted by χ ad (G). The concept of adapted colouring of a graph was introduced by Hell and Zhu in [START_REF] Hell | Adaptable chromatic number of graphs[END_REF], and has connections with matrix partitions of graphs, graph homomorphisms, and full constraint satisfaction problems [START_REF] Feder | Full constraint satisfaction problems[END_REF][START_REF] Feder | Complexity of list partitions[END_REF][START_REF] Feder | Two algorithms for list matrix partition[END_REF].

Let L : V (G) → 2 N be a list assignment that assigns to each vertex v of G a set L(v) of permissible colours. Let F be a (possibly improper) edge colouring of G. A vertex colouring c of G adapted to F is an L-colouring adapted to F if for any vertex v ∈ V (G), we have c(v) ∈ L(v).
If for any edge colouring F of G and any list assignment L with |L(v)| ≥ k for all v ∈ V (G) there exists an L-colouring of G adapted to F , we say that G is adaptably k-choosable. The smallest k such that G is adaptably k-choosable is called the adaptable choice number (or the adaptable choosability) of G and is denoted by ch ad (G). The concept of adapted list colouring of graphs and hypergraphs was introduced by Kostochka and Zhu in [START_REF] Kostochka | Adapted list coloring of graphs and hypergraphs[END_REF].

Adapted list colouring can be used as a model for scheduling problems. Compared to the original list colouring model, the adapted list colouring allows different constraints for different colours. For example, suppose there is a set of basketball games that need to be scheduled into a set of time slots. The time slots are the colours. The constraints are [START_REF] Achlioptas | The chromatic number of random regular graphs[END_REF]: each game has a list of permissible time slots, and (2): some pairs of games cannot be assigned to the same time slot. This problem is modeled as a list colouring problem. It may happen that two games a, b cannot be both assigned to time slot i, however, they can be both assigned to time slot j. The adapted list colouring of graphs provides a model for this problem.

Since a proper vertex k-colouring of a graph G is adapted to any edge colouring of G, we have χ ad (G) ≤ χ(G) and ch ad (G) ≤ ch(G) for any graph G, where χ(G) is the usual chromatic number of G, and ch(G) is the usual choice number of G.

The adaptable choosability of planar graphs was studied in [START_REF] Esperet | Adapted list colouring of planar graphs, manuscript[END_REF][START_REF] Guan | Adaptable choosability of planar graphs with sparse short cycles[END_REF]. It is known that planar graphs are adaptably 4-choosable. Moreover, a planar graph G is adaptably 3-choosable if one of the following holds:

1. G is triangle-free.

2. No two triangles intersect, and no triangle is adjacent to a 5-cycle, and each 6-cycle is adjacent to at most two triangles.

3. Any two triangles have distance at least 2 and no triangle is adjacent to a 4-cycle.

On the other hand, there are C 4 -free planar graphs that are not adaptably 3colourable; and for any integer k ≥ 5, there are planar graphs that are C t -free for all 5 ≤ t ≤ k and not adaptably 3-colourable; and for any integer k, there are planar graphs G in which any two triangles have distance at least k and G is not adaptably 3-choosable.

In this note we give a new upper bound for the adaptable choice number of graphs. Given a graph G, the maximum average degree of G, denoted by M ad(G), is the maximum average degree of the subgraphs of G, i.e.,

M ad(G) = max{2|E(H)|/|V (H)| : H is a subgraph of G}.
We shall prove that for any graph G, its adaptable choice number is at most ⌈M ad(G)/2⌉ + 1.

We denote by S h the orientable surface of genus h, i.e., the surface obtained from the sphere by adding h handles, and denote by N h the non-orientable surface of genus h, i.e., the surface obtained from the sphere by adding h crosscaps. The Euler characteristic χ(S) of a surface S is defined as

χ(S) = 2 -2h, if S = S h , 2 -h, if S = N h .
Two cycles C 1 and C 2 in a graph G are said to be adjacent if they have at least one edge in common. As a consequence of the above upper bound for ch ad (G), we shall show that if G is a simple graph which can be embedded in a surface S of non-negative Euler characteristic, then G is adaptably 4-choosable. Moreover, if G is simple, embedded in a surface of non-negative Euler characteristic and no triangle of G is adjacent to a triangle or a C 4 , and each C 5 is adjacent to at most three triangles, then G is adaptably 3-choosable. Since two adjacent triangles will contain a 4-cycle, the above corollary implies that if a simple graph G has no 4-cycle and no 5-cycle, and can be embedded in a surface of non-negative Euler characteristic, then G is adaptably 3-choosable.

In 1976, Steinberg [START_REF] Steinberg | The state of the three color problem in. Quo Vadis[END_REF] conjectured that planar graphs without cycles of length 4 and 5 are 3-colourable. The corresponding question for adaptable choosability and adaptable colourability was asked in [START_REF] Esperet | Adapted list colouring of planar graphs, manuscript[END_REF]: Are simple planar graphs without 4-cycles and 5-cycles adaptably 3-colourable (or even adaptably 3-choosable)? By the above result we have that simple planar graphs without 4-cycles and 5-cycles are adaptably 3-choosable, answering the mentioned question in positive.

Finally we give a new proof of the fact that every K 5 -minor free graph is adaptably 4-choosable [START_REF] Esperet | Adapted list colouring of planar graphs, manuscript[END_REF] based on the relationship between adaptable choice number and maximum average degree.

2 Upper bounds for ch ad (G) Theorem 2.1 For any graph G (parallel edges are allowed),

ch ad (G) ≤ ⌈M ad(G)/2⌉ + 1.
Proof. To prove this Theorem we will use the following result of Hakimi [START_REF] Hakimi | On the degree of the vertices of a directed graph[END_REF]. A graph G on vertices x 1 , x 2 , • • • , x n has an orientation in which x i has out-degree d + (x i ) = k i if and only if the following hold:

1. For each subset X of V (G), x i ∈X k i ≥ |E(G[X])|. 2. n i=1 k i = |E(G)|.
An easy consequence of this result is that if for each subset X of V (G),

x i ∈X k i ≥ |E(G[X]
)|, then G has an orientation in which d + (x i ) ≤ k i for each x i (see also [START_REF] Frank | How to orient the edges of a graph? Combinatorics[END_REF]).

If M ad(G) ≤ k for an integer k, then for any subgraph H of G, |E(H)| ≤ k 2 |V (H)|.
It follows from the above result that G has an orientation in which each vertex x i has d + (x i ) ≤ ⌈ k 2 ⌉. Assume each vertex x i is given a list L(x i ) of k 2 + 1 colours and F is an edge colouring of G. Let c(x i ) be any colour in L(x i ) which does not appear in any outgoing edges of x i . Then it is obvious that c is an L-colouring of G adapted to F . This completes the proof of Theorem 2.1.

Corollary 2.1

If G is a simple graph which can be embedded in a surface S of nonnegative Euler characteristic, then G is adaptably 4-choosable. If, moreover, no triangle of G is adjacent to a triangle or a C 4 , and each C 5 is adjacent to at most three triangles, then G is adaptably 3-choosable.

Proof. Assume G is a simple graph embedded in a surface S of Euler characteristic χ(S) ≥ 0. Let H be a subgraph of G. Then H is also a simple graph embedded in S. Let V, F, E be the sets of vertices, faces and edges of H, respectively. By Euler's formula,

|V | + |F | -|E| = χ(S) ≥ 0.
Let f i be the number of i-faces, i.e., faces whose boundary is a walk of length i. Since H is simple, each face is an i-face for some i ≥ 3. Therefore

3|F | ≤ i≥3 i • f i = 2|E|. It follows that |E| ≤ 3|V |.
Hence M ad(G) ≤ 6, and by Theorem 2.1, G is adaptably 4-choosable.

Assume moreover that no triangle in G is adjacent to a triangle or a C 4 , and each C 5 is adjacent to at most three triangles. Then each 3-face of H is adjacent to three faces of degree at least 5. Each 5-face is adjacent to at most three 3-faces, and for i ≥ 6, each i-face is adjacent to at most i 3-faces. Therefore The following result was proved in [START_REF] Esperet | Adapted list colouring of planar graphs, manuscript[END_REF].

3f 3 ≤ 3f 5 + i≥6 i • f i . It follows that 4|F | = 3f 3 + 4f 4 + 5f 5 + (f 3 -f 5 ) + 4 i≥6 f i ≤ 3f 3 + 4f 4 + 5f 5 + i≥6 ( i 3 + 4)f i ≤ 2|E|.
Corollary 2.2 Every K 5 -minor free simple graph is adaptably 4-choosable.

Proof. It suffices to prove that any maximal K 5 -minor free graph G has |E(G)| ≤ 3|V (G)| -6. It is known that a maximal K 5 -minor free graph is constructed recursively, by pasting along K 2 's and K 3 's, from plane triangulations and copies of the Wagner's graph (the graph obtained from C 8 by adding four diagonal edges). Assume G is obtained from the union of G 1 , G 2 by pasting along a K 2 or K 3 , and Corollaries 2.1 and 2.2 show that the upper bound for ch ad (G) in Theorem 2.1 is very useful. In fact for graphs embedded in surface of non-negative Euler characteristic, the upper bounds for ch ad (G) in Corollary 2.1 are sharp. Theorem 2.1 is also sharp in the sense that for any integer g, d, there are d-regular graphs G of girth at least g for which ch ad (G) = χ ad (G) = d + 1 [START_REF] Kostochka | Adapted list coloring of graphs and hypergraphs[END_REF]. However, for random graphs, the upper bound given in Theorem 2.1 is usually far from sharp. As an example, we consider random d-regular graphs G, which have M ad(G) = d. Let k d be the smallest integer k such that d < 2k log k. It is known that with high probability, χ(G) = k d or k d + 1 or k d + 2 [START_REF] Achlioptas | The chromatic number of random regular graphs[END_REF], and that ch ad (G) ≤ √ 8d [START_REF] Kostochka | Adapted list coloring of graphs and hypergraphs[END_REF]. It is likely that for most graphs, ch ad (G) is much less than ch(G) and M ad(G)/2. Question 2.1 below concerns the adaptable chromatic number of graphs. It was asked in [START_REF] Hell | Adaptable chromatic number of graphs[END_REF] and remains open. 

|E(G i )| ≤ 3|V (G i )| -6. Then |E(G)| = |E(G 1 )| + |E(G 2 )| -t,

By

  Euler formula, |V | + |F | -|E| = χ(S) ≥ 0. By replacing |F | with |E|/2, we obtain the inequality that |E| ≤ 2|V |. So M ad(G) ≤ 4. By Theorem 2.1, ch ad (G) ≤ 3.

  where t = 1 or 3, respectively, and |V (G)| = |V (G 1 )| + |V (G 2 )| -s, where s = 2 or 3, respectively. Now a straightforward calculation shows that |E(G)| ≤ 3|V (G)| -6.

Question 2 . 1

 21 Let f (n) = min{χ ad (G) : χ(G) = n}. Is it true that f (n) = χ ad (K n )? Is it true that lim n→∞ f (n) = ∞? If so, what is the order of f (n)?Similar questions can be asked for adaptable choosability of graphs.Question 2.2 Let g(n) = min{ch ad (G) : ch(G) = n}. Is it true that lim n→∞ g(n) = ∞? If so, what is the order of g(n)?It follows from a result of Alon[START_REF] Alon | Restricted colorings of graphs[END_REF] that there is a function h(d) goes to infinity with d such that if M ad(G) ≥ d then ch(G) ≥ h(d).

Question 2 . 3

 23 Let φ(t) = min{ch ad (G) : M ad(G) = t}. Is it true that lim t→∞ φ(t) = ∞?
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