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Abstract

Dispersion experiments are compared for two transparent model fractures with identical complementary rough walls
but with a relative shear displacement~δ parallel (~δ ‖ ~U) or perpendicular (~δ ⊥ ~U) to the flow velocity~U. The structure
of the mixing front is characterized by mapping the local normalized local transit timēt(x, y) and dispersivityα(x, y).
For ~δ ⊥ ~U, displacement fronts display large fingers: their geometryand the distribution of̄t(x, y)U/x are well
reproduced by assuming parallel channels of hydraulic conductance deduced from the aperture field. For~δ ‖ ~U, the
front is flatter andα(x, y) displays a narrow distribution and a Taylor-like variation with Pe.

Channelization is a key characteristic of flow and
transport in fractured rocks ([12]) and results frequently
from the occurence of relative shear displacements of
the two fracture surfaces during fracturation ([14, 8]).
Such displacements (named~δ thereafter) have been
shown both experimentally and numerically ([11, 1])
to create channels and ridges perpendicular to~δ. Their
length depends on the multiscale geometry of the frac-
ture walls and, even for small amplitudesδ, may be a
significant fraction of the fracture size. The permeabil-
ity is then anisotropic: both its value and the correlation
length of the velocity field are higher for a mean flow
parallel to these channels (i.e. perpendicular to~δ).

The objective of this communication is to demon-
strate experimentally that this type of channelization
also induces a strong anisotropy of the magnitude and
properties of tracer dispersion. This is achieved by com-
paring dispersion for mean flows parallel and perpendic-
ular to the direction of the channels, but with identical
flow parameters and geometry otherwise. A previous
work ([4]) studied dispersion in one similar model (with
a lower value ofδ) but with the different objective of an-
alyzing the influence of the fluid rheology. Here, the dy-
namics of the process,i.e. the variation with distance of
the geometry and thickness of the mixing front is more
specifically compared in the parallel and perpendicular
configurations.

Many experiments on solute spreading in fractures
have been reported: [13, 9, 10] observed dispersion co-
efficientsD increasing linearly with the mean flow ve-

locity U (i.e. the dispersivityα = D/U is constant).
However, these measurements were all realized at the
outlet of the sample with no information on the develop-
ment of the mixing front with distance. Measurements
by [15] used radioactive tracers, still with a resolution
too low to investigate local spreading. In all these pa-
pers, the anisotropy of dispersion is not investigated and
(except for [10]) little information is available on the
relative position of the fracture walls.

We use transparent model fractures allowing for high
resolution optical concentration measurements over
their full area. The models are mounted vertically be-
tween a light panel and a 16 bits Roper digital camera.
Fluid flow takes place between two self-affine rectangu-
lar rough walls of same characteristic exponentH = 0.8
as in many fractured rocks ([16]). The mean flow ve-
locity ~U is parallel to the lengthLx = 350 mm of the
walls (their width is Ly = 90 mm). The two walls
are complementary and identical in the two models and
they match perfectly when put in contact; then, they are
pulled away normal to their mean surface and a lateral
shear~δ, parallel or perpendicular to~U (i.e. to x) is in-
troduced. In these two configurations, referred to as
~δ ‖ ~U and~δ ⊥ ~U, the mean velocity~U is therefore
respectively perpendicular and parallel to the channels
created by the shear. Bothδ and the mean aperturea are
equal to 0.75 mm. The standard deviation of the aper-
tureσa = 0.144 mm is larger than for the similar models
of [4] (σa = 0.11mm): as a result, the flow field is found
to be more strongly channelized.
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The fluids are shear thinning 1000ppm solutions
of scleroglucan in water with a high constant viscos-
ity (µ0 ≈ 4500mPa.s) at low shear rates ˙γ ≤ γ̇0 pre-
venting the appearance of unwanted buoyancy driven
flows ([17]). One has ˙γ0 = 0.026 s−1: for a viscous
Newtonian flow between parallel plates at a distance
a, the corresponding mean velocity isU0 = aγ̇0/6 =
3× 10−3 mm/s. At shear rates ˙γ ≥ γ̇0, the viscosity de-
creases asµ ∝ γ̇n−1 with n = 0.26 (see [4]). One of the
fluids contains 0.2 g/l of blue dye and the densities are
matched by adding NaCl to the other. The flow velocity
U is constant during each experiment with: 0.0024 ≤
U ≤ 0.24 mm/s and tracer transport is characterized by
the dimensionless Péclet numberPe = Ua/Dm where
Dm = 6.5 10−10m2/s is the molecular diffusion coeffi-
cient of the dye. The experimental procedure and the
determination of dye concentration maps from images
recorded at constant time intervals are described by [4].

Fig. 1 shows maps obtained in the two model frac-
tures at two different velocitiesU. If ~δ ⊥ ~U, two fingers
soar upwards with a large trough in between (Figs. 1b
and 1d): they correspond to faster paths parallel to~U
(Fig. 1b) and their amplitude increases withU. For
~δ ‖ ~U, the front is smoother (Figs. 1a and 1c) while its
mean slope and the size of the indentations still increase
with the velocity.
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Figure 1: Maps of the relative concentrationc of the displaced fluid
(white c = 1, blackc = 0) in two transparent models. (a)-(c):~δ ‖ ~U;
(b)-(d): ~δ ⊥ ~U. Mean velocities: (a)-(b):U = 0.0125mm/s, Pe= 14;
(c)-(d): U = 0.25mm/s, Pe= 285. The injected volume of displacing
fluid is half the void space.

The large structures in Figs. 1b and 1d reflect ve-
locity contrasts between the channels created by the
shear. They are well reproduced by modelling the frac-
ture aperture field as a set of independent parallel chan-
nels of aperturea(y) =< a(x, y) >x ([1, 2]). A particle
starting at a transverse distancey at the inlet is assumed
to move at a velocity proportional toa(y)(n+1)/n where
n = 0.26 forU > U0 andn = 1 for U < U0.

The profilexf (y, t) of the front at a timet is then:

xf (y, t) =
x(t) a(y)(n+1)/n

< a(y)(n+1)/n >y
, (1)

wherex(t) =< xf (y, t) >y and< a(y)(n+1)/n >y are av-
erages calculated overy. The profiles computed using
Eq. (1) and the actual aperture fields appear in Figs. 1a-d
as dotted lines (from the above discussion, one assumes
thatn = 1 at the lowest velocity (Figs. 1a and 1b) and
n = 0.26 at the highest one (Figs. 1c and 1d)). Eq. (1)
predicts well the location and shape of the “fingers” and
“troughs” at both velocities for~δ ⊥ ~U although their
amplitude is slightly underestimated in Fig. 1b. In this
latter case, one hasU ∼ U0, corresponding to a transi-
tion regime between the power law and Newtonian rhe-
ologies.

These results demonstrate that, for~δ ⊥ ~U (i.e. if ~U is
parallel to the channels created by the shear), the large
scale features of solute transport are determined by the
contrasts between the velocities in these channels which
increase with their aperture. Then, front spreading is
purely convective and the total width∆x of the front
parallel to ~U (i.e. the distance between the tips of the
fingers and the bottom of the troughs) increases linearly
with distance asx ∆U/U (∆U/U = typical relative ve-
locity contrast between the different channels). These
curves also demonstrate that the difference between the
sizes of the fingers in the two cases are accounted for
by the different rheological behavior of the fluids: the
velocity contrasts (and therefore the size) are amplified
for Pe= 285 (shear-thinning power law domain) com-
pared to the vicinity of the Newtonian constant viscosity
regime (Pe= 14).

For~δ ‖ ~U, the features of the front are also visible at
the same transverse distancesy in Figs. 1a and 1c: they
reflect again a convective spreading of the front due to
velocity contrasts between the flow paths. However, in
contrast with the previous case~δ ⊥ ~U, these features
(except for the small global slope of the front) are not
reproduced by the theoretical model (dotted line): this
was to be expected since its underlying hypothesis are
not satisfied for~δ ‖ ~U. The time variations of the lo-
cal concentrationc(x, y, t) on individual pixels comple-
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Figure 2: Histograms of the experimental normalized local transit
time t(x, y)U/x (continuous lines) for the same models andPevalues
as in Figs. 1 (the letters corresponding to the different experiments are
the same in both graphs). The distribution oft(x, y)U/x has been com-
puted in the upper fifth of the length of the model to make meaningful
comparisons with the distribution of the theoretical transit times ((N)
symbols and dotted lines) determined from Eq. (1).

ment the above study by providing quantitative informa-
tion on the interplay of convective and diffusive mech-
anisms. For all the experiments,c(x, y, t) is found to
be well fitted by solutions of a classical 1D convection-
dispersion equation for a step-like initial variation ofc
at the inlet (x = 0):

c(x, y, t) =
1
2

(1+ er f
t − t(x, y)
√

4D(x, y)t
), (2)

Here, t(x, y) andD(x, y) are the mean transit time and
apparent dispersion coefficient deduced from the time
variation of the relative concentrationc(x, y, t) of the
displaced fluid at point (x, y) (transverse dispersion is
neglected here). It will be shown below that the two pa-
rameters provide complementary information:D(x, y)
(or rather the dispersivityα(x, y) = D(x, y)/U) char-
acterizes the local thickness of the mixing front while
t(x, y) is related to its global geometry.

For each experiment,t(x, y) and D(x, y) are deter-
mined for all pixels inside the field of view. Fig. 2 com-
pares experimental and theoretical probability distribu-
tions of the normalized timest(x, y)U/x for the same
experiments as Fig. 1. The theoretical distribution is
obtained by takingt(x, y)U/x = xf (y, t)/x(t), comput-

ing the ratioxf (y, t)/x(t) by means of Eq. (1) for ally
values and determining finally the distribution of the re-
sults. As expected, the distributions are much broader
for ~δ ⊥ ~U (Figs. 2b-d) than for~δ ‖ ~U (Figs. 2a-c). For
Pe= 285, the experimental distribution for flow parallel
to the channels coincides very well with the theoretical
one and displays two peaks reflecting the structuration
of the flow. At Pe= 14, the width and global shape of
the experimental and theoretical distributions are overall
similar and narrower than forPe= 285 due to the lower
velocity contrast in the Newtonian limit. For~δ ‖ ~U
(Figs. 2a-c), the distribution at both Péclet numbers is
much narrower than for~δ ⊥ ~U. The mean peak cor-
responds tot(x, y)U/x ≃ 1; its width increases with
Pe (again likely due to an increase of the velocity con-
trasts) and is similar to that of the theoretical distribu-
tions. The experimental distribution displays however
additional “aisles”: these reflect likely complex paths
deviating from straight trajectories parallel to~U.
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Figure 3: (a)-(b): Histograms (grey levels) of the values ofthe nor-
malized local dispersivityα(x, y)/a (vertical scale) as a function of
the distancex (horizontal scale) forPe = 285. White: maximum
probability, black : zero probability. (c), (d): Histograms obtained at
x = 240 mm forPe = 285 (continuous line) andPe = 14 (dashed
line). (a), (c):~δ ‖ ~U; (b), (d):~δ ⊥ ~U.

While, from the above results, the overall geometry
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of the mixing front seems to be determined mainly by
convective effects, we examine now the relative influ-
ence of convection and diffusion on the local width of
this front: this may be characterized by the variation of
the local dispersivityα(x, y) with Pe. Figs. 3a-b display,
for each value ofx (horizontal scale), the histogram
(coded in grey levels) of the corresponding values of
α(x, y)/a (vertical scale).

For ~δ ‖ ~U, the probability distribution ofα(x, y)/a
is narrow, particularly at high flow velocities (Figs. 3a
and c). Moreover, the mean value varies little with the
distancex and reaches a constant valueα(Pe)/a for x ≥
100mm (see inset of Fig. 4). The increase with time of
the local front thickness is therefore diffusive and can
be characterized by a single dispersivity valueα(Pe)/a.

For~δ ⊥ ~U (Figs. 3b and d), the distribution of the val-
ues ofα/a is much broader and displays a “tail” at large
values ofα/a. At the two highest velocities, the distri-
bution displays two peaks (solid curve in Fig. 3). While
the value ofα(x)/a corresponding to the peak(s) seems
to reach a limit at long distancesx, the global width of
the distribution keeps increasing withx. In contrast to
the case~δ ‖ ~U, the increase of the local thickness of the
mixing front with x is not simply diffusive and cannot
be characterized by a single dispersivity parameter.
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Figure 4: Variation of the normalized dispersivityα/a as a function of
Pe. (N) ~δ ‖ ~U: mean value ofα/a. (H) ~δ ⊥ ~U: value corresponding to
the first peak in the distribution ofα/a. Continuous and dashed lines:
Taylor dispersion between parallel plates respectively for a power law
fluid of exponentn = 0.26 and a Newtonian fluid (n = 1). Inset:
variation of the mean value< α(x, y) >y as a function of the distance

x for ~δ ‖ ~U; Pe= 285 (▽), Pe= 142 (△), Pe= 28.5 (�), Pe= 14 (◦).

The variation ofα(Pe) with Pe for ~δ ‖ ~U displayed

in Fig. 4 provides quantitative information on the lo-
cal dispersion mechanisms: the values are similar (al-
though slightly higher) to the predictions for Taylor dis-
persion with a power law fluid (continuous line). At
low Pe’s, the values obtained forn = 1 (dashed line)
and forn = 0.26 are similar and the transition towards
a Newtonian behaviour should not influence the varia-
tions. A dominant contribution of Taylor dispersion has
already been demonstrated in models with a randomly
distributed aperture of short correlation length ([7]);
however, at lowPe’s, an additional geometrical dis-
persion regime (α = cst(Pe)) was observed and is not
present here.

In the opposite case (~δ ⊥ ~U), no single value of
α characterizes dispersion in the whole model. How-
ever, the first peak in the distribution ofα likely reflects
dispersion in regions of low transverse gradient of the
mean front velocity in the plane of the model: there,
additional spreading due to transverse diffusion in the
velocity gradient should be reduced. The values ofα/a
corresponding to this first peak have therefore been plot-
ted in Fig 4 (H) as a function ofPe. At high velocities,
they are indeed close to those corresponding to Taylor
dispersion (and to the other model); at low velocities,
they remain higher.

Overall, the present experiments demonstrate that so-
lute dispersion in a channelized rough fracture depends
crucially of the orientation of the flow. Optical mea-
surements allowed us to characterize the dynamics of
dispersion at both the global and local scales from mean
transit times and local dispersivities deduced from local
concentration variations.

For ~δ ⊥ ~U ( ~U parallel to the channelization), the
large scale geometry of the displacement front is con-
trolled by the velocity contrasts between the channels.
At all Pe values (14≤ Pe ≤ 285) the geometries of
the large fingers and troughs in the front and the dis-
tribution of the local transit timest(x, y)U/x are well
predicted from a transverse effective permeability pro-
file computed using the aperture field. Moreover, dif-
ferences between the finger sizes at low and highPe’s
are explained by variations of the fluid rheology (shear-
thinning at high Pe’s and Newtonian at low ones). These
results confirm fully the convective origin of the large
scale structures of the front and the relevance of local
measurements all along the flow paths: measuring only
variations of the mean concentration at the outlet (as is
often done practically) and fitting it to a solution of a
convection-diffusion equation might indeed lead to an
incorrect identification of such processes as geometri-
cal dispersion.

For ~δ ‖ ~U ( ~U perpendicular to the channelization),
4



the front is flatter and the distribution of the transit times
is narrower than for~δ ⊥ ~U; this reflects a more effec-
tive sampling of the velocity heterogeneities by the so-
lute particles. As could be expected, the remaining geo-
metrical features of the front cannot be predicted by the
channel model: however they are still observed at the
same transverse locations at all velocities and remain
of similar amplitudes (taking into account the variations
of the rheology). This suggests that these features are
again of convective origin.

Still for ~δ ‖ ~U, the variation of the local front thick-
ness is diffusive and well characterized by a single mean
dispersivityα(Pe); its dependence onPe suggests a
dominant influence of Taylor dispersion. For~δ ⊥ ~U, in
contrast, the broad distribution ofα(x, y) does not allow
one to define a meaningful global dispersivity. In ad-
dition, even the lowest values ofα(x, y) (corresponding
to simple flow paths) are larger than those expected for
Taylor dispersion except at the highestPevalues; values
corresponding to Taylor dispersion are also expected at
smaller values ofδ leading to a reduced disorder of the
flow field [4]. This latter difference, as well as the tail in
the distribution, reflect the increasing influence of trans-
verse molecular diffusion inducing tracer exchange with
adjacent flow paths of different velocities and enhancing
dispersion.

This set of results is highly relevant to the interpreta-
tion of field observations ([3]). However, the influence
of the length of the samples is an important issue and
will need to be investigated before transposing these re-
sults. In particular, although the front geometries are
determined in both configurations by spatial variations
of the flow velocities, a geometrical dispersion regime
has never been observed, in contrast with experiments
on rough fractures with a small correlation length of
the aperture ([7]). For much longer fractures, trans-
verse diffusion might be large enough for solute parti-
cles to sample the whole distribution of local velocities
and reach such a global diffusive spreading regime. In
the case of a broad distribution of the hydraulic conduc-
tivities, one might also observe instead an anomalous
dispersion regime as suggested by [5] and [6]. Because
of the specific correlations of the flow velocity field for
self-affine wall geometries ([1]), the corresponding ex-
ponent would then likely depend on the characteristic
roughness exponent of the fracture walls.
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