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OPTIMAL EXPERIMENTAL DESIGN AND

QUADRATIC OPTIMIZATION

Rebecca Haycroft — Luc Pronzato — Henry P. Wynn —
— Anatoly A. Zhigljavsky

ABSTRACT. A well known gradient-type algorithm for solving quadratic opti-
mization problems is the method of Steepest Descent. Here the Steepest Descent
algorithm is generalized to a broader family of gradient algorithms, where the
step-length γk is chosen in accordance with a particular procedure. The asymp-

totic rate of convergence of this family is studied. To facilitate the investigation
we re-write the algorithms in a normalized form which enables us to exploit a link
with the theory of optimum experimental design.

Introduction

The steepest descent algorithm in R
d has been shown to be equivalent to

a special algorithm for updating measures on the real line, see, e.g., [4]. The
connection is that when the steepest descent algorithm is applied to the mini-
mization of the quadratic function

f(x) =
1
2
(Ax, x) − (x, y) , (1)

where (x, y) is the inner product, it can be translated to the updating of measures
in [m, M ] where

m = inf
‖x‖=1

(Ax, x) , M = sup
‖x‖=1

(Ax, x)

with 0 < m < M < ∞; m and M are the smallest and largest eigenvalues
of A, respectively. The research has developed from the well known result, due
to A k a i k e [1], that for standard steepest descent the renormalized iterates

xk√
‖xk‖

converge to the two-dimensional space spanned by the eigenvectors cor-

responding to the eigenvalues m and M .

2000 Mathemat i c s Sub j e c t C l a s s i f i c a t i on: Primary 62K05; Secondary 65K05, 37N40.
Keywords: gradient algorithms, steepest descent algorithm, rate of convergence, design of
experiments, optimality criteria.

115



R. HAYCROFT — L. PRONZATO — H. P. WYNN — A. A. ZHIGLJAVSKY

Let g(x) = Ax− y be the gradient of the objective function (1). The steepest
descent algorithm is xk+1 = xk − (gk,gk)

(Agk,gk)gk. Using the notation γk = (gk,gk)
(Agk,gk) ,

we write the algorithm as xk+1 = xk − γkgk. This can be rewritten in terms of
the gradients as

gk+1 = gk − γkAgk . (2)
The main objective of the paper is studying the family of algorithms (2)

where the step-length γk is chosen in a general way. To facilitate this study we
first rewrite the algorithm (2) in a different (normalized) form and then make
a connection with the theory of optimum experimental design.

Renormalized version of gradient algorithms

Let us convert (2) into a “renormalized” version. First note that

(gk+1, gk+1) = (gk, gk) − 2γk(Agk, gk) + γ2
k(A2gk, gk) . (3)

Letting rk = (gk+1,gk+1)
(gk,gk) and dividing (3) through by (gk, gk) gives

rk = 1 − 2γk
(Agk, gk)
(gk, gk)

+ γ2
k

(A2gk, gk)
(gk, gk)

. (4)

The value of rk can be considered as a rate of convergence of algorithm (2)
at iteration k. Other rates which are asymptotically equivalent to rk can be
considered as well, see [4] for a discussion. The asymptotic rate of convergence
of the gradient algorithm (2) can be defined as R = lim

k→∞
(r1 ·. . .·rk)1/k. Of course,

this rate may depend on the initial point x0 or, equivalently, on g0.
To simplify the notation, we need to convert to moments and measures. Since

we assume that A is a positive definite d-dimensional square matrix, we can as-
sume, without loss of generality, that A is a diagonal matrix Λ = diag(λ1, . . . , λd);
the elements λ1, . . . , λd are the eigenvalues of the original matrix such that
0 < m = λ1 ≤ . . . ≤ λd = M . Then for any vector g =

(
g(1), . . . , g(d)

)T we
can define

μα(g) =
(Aαg, g)

(g, g)
=

(Λαg, g)
(g, g)

=

∑
i

g2
(i)λ

α
i∑

i

g2
(i)

.

This can be considered as the αth moment of a distribution with mass pi =
g2
(i)∑

j
g2
(j)

at λi, i = 1, . . . , d. Using the notation μ
(k)
α = μα(gk), where gk are the iterates

in (2), we can rewrite (4) as

rk = 1 − 2γkμ
(k)
1 + γ2

kμ
(k)
2 . (5)
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For the steepest descent algorithm γk minimizes f(xk −γgk) over γ and we have

γk = 1

μ
(k)
1

and rk = μ
(k)
2

μ
(k)2
1

− 1. Write zk = gk√
(gk,gk)

for the normalized gradient

and recall that pi =
g2
(i)∑

j g2
(j)

is the ith probability corresponding to a vector g.

The corresponding probabilities for the vectors gk and gk+1 are

p
(k)
i =

(gk) 2
(i)

(gk, gk)
and p

(k+1)
i =

(gk+1)
2

(i)

(gk+1, gk+1)
for i = 1, . . . , d .

Now we are able to write down the re-normalized version of (2), which is the
updating formula for pi (i = 1, . . . , d) :

p
(k+1)
i =

(1 − γkλi)2

(gk, gk) − 2γk(Agk, gk) + γ2
k(A2gk, gk)

p
(k)
i

=
(1 − γkλi)2

1 − 2γkμ
(k)
1 + γ2

kμ
(k)
2

p
(k)
i . (6)

When two eigenvalues of A are equal, say λj = λj+1, the updating rules for
p
(k)
j and p

(k)
j+1 are identical so that the analysis of the behaviour of the algorithm

remains the same when p
(k)
j and p

(k)
j+1 are confounded. We may thus assume that

all eigenvalues of A are distinct.

A multiplicative algorithm for optimal design

Optimization in measure spaces covers a variety of areas and optimal exper-
imental design theory is one of them. These areas often introduce algorithms
which typically have two features: the measures are re-weighted in some way
and the moments play an important role. Both features arise, as we have seen,
in the above algorithms; see also [2], [3] and [5] for examples of other algorithms
of this type.

In classical optimal design theory for the linear regression model yj = α
+ βxj + εj, xj ∈ [m, M ], one is interested in functionals of the moment matrix
M (ξ) of a design measure ξ:

M(ξ) =
(

μ0 μ1

μ1 μ2

)
, (7)

where μα =μα(ξ)=
∫

xα dξ(x) are the αth moments of the measure ξ and μ0 =1.

117



R. HAYCROFT — L. PRONZATO — H. P. WYNN — A. A. ZHIGLJAVSKY

In the theory of optimum design the directional (Fréchet) derivative “towards”
a discrete measure ξx mass 1 at a point x is of importance. This is

∂

∂α
Φ
(
M
[
(1 − α)ξ + αξx

])∣∣∣
α=0

= tr
( ◦

Φ(ξ)M (ξx)
)
− tr

( ◦
Φ(ξ)M (ξ)

)
, (8)

where
◦
Φ(ξ) =

∂Φ
∂M

∣∣∣∣
M=M(ξ)

=

(
∂Φ
∂μ0

1
2

∂Φ
∂μ1

1
2

∂Φ
∂μ1

∂Φ
∂μ2

)
.

Here Φ is a functional on the space of 2 × 2 matrices usually considered as an
optimality criterion to be maximized with respect to ξ. The first term on the
right hand side of (8) is

ϕ(x, ξ) = tr
( ◦

Φ(ξ)M (ξx)
)

= ( 1, x )
◦
Φ(ξ)

(
1
x

)
=

∂Φ
∂μ0

+ x
∂Φ
∂μ1

+ x2 ∂Φ
∂μ2

.

A class of optimal design algorithms is based on the multiplicative updating of
the weights of the current design measure ξ(k) with some function of ϕ(x, ξ). We
show below how algorithms in this class are related to the gradient algorithms
(2) in their re-normalized form (6).

Assume that our measure is discrete and concentrated on [m, M ]. Assume
also that ∂Φ(M)

∂μ2
> 0; then ϕ(x, ξ) has a well-defined minimum

c(ξ) = min
x∈R

ϕ(x, ξ) =
∂Φ
∂μ0

− B(ξ) , where B(ξ) =
1
4

(
∂Φ
∂μ1

)2

(
∂Φ
∂μ2

) .

Let ξ(x) be the mass at a point x and define the re-weighting at x by

ξ
′
(x) =

ϕ(x, ξ) − c(ξ)
b(ξ)

ξ(x) , (9)

where b(ξ) is a normalizing constant

b(ξ) =

M∫
m

(
ϕ(x, ξ) − c(ξ)

)
ξ(dx) = tr

[
M (ξ)

◦
Φ(ξ)

]
− c(ξ) .

Let us define γ = γ(ξ) = γ(μ1, μ2) as

γ = γ(ξ) =
−2 ∂Φ

∂μ2

∂Φ
∂μ1

. (10)

Then
ϕ(x, ξ) − c(ξ) = B(ξ)

(
1 − γ(ξ)x

)2
.
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The normalization ensures that the measure ξ
′
is a probability distribution. We

obtain that the re-weighting formula (9) can be equivalently written as

ξ
′
(x) =

(1 − γx)2

1 − 2γμ1 + γ2μ2
ξ(x) . (11)

This is exactly the same as the general gradient algorithm in its renormalized
form (6). To see that, we simply write the updating formula (11) iteratively

ξ(k+1)(x) =
(1 − γkx)2

1 − 2γkμ
(k)
1 + γ2

kμ
(k)
2

ξ(k)(x) .

Optimum design gives the worst rate of convergence

Let Φ = Φ
(
M (ξ)

)
be an optimality criterion, where M (ξ) is as in (7). Asso-

ciate with it a gradient algorithm with step-length γ(μ1, μ2) as given by (10).
Let ξ∗ be the optimum design for Φ on [m, M ]; that is,

Φ
(
M (ξ∗)

)
= max

ξ
Φ
(
M (ξ)

)
where the maximum is taken over all probability measures supported on [m, M ].
Note that ξ∗ is invariant for one iteration of the algorithm (11); that is, if ξ = ξ∗

in (11) then ξ′(x) = ξ(x) for all x ∈ supp(ξ).
In accordance with (5), the rate associated with the design measure ξ is

defined by

r(ξ) = 1 − 2γμ1 + γ2μ2 =
b(ξ)
B(ξ)

.

Assume that the optimality criterion Φ is such that the optimum design ξ∗ is
non-degenerate (that is, ξ∗ is not just supported at a single point). Note that if
Φ(M ) = −∞ for any singular matrix M , then this condition is satisfied.

Since the design ξ∗ is optimum, all directional derivatives are non-positive:
∂

∂α
Φ
[
M
(
(1 − α)ξ∗ + αξ(x)

)]∣∣∣
α=0+

≤ 0 ,

for all x ∈ [m, M ]. Using (8), this implies

max
x∈[m,M ]

ϕ(x, ξ∗) ≤ t∗ = tr
[
M (ξ∗)

◦
Φ (ξ∗)

]
.

Since ϕ(x, ξ∗) is a quadratic convex function of x, this is equivalent to ϕ(m, ξ∗)
≤ t∗ and ϕ(M, ξ∗) ≤ t∗. As

M∫
m

ϕ(x, ξ∗)ξ∗(dx) = t∗
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this implies that ξ∗ is supported at m and M . Since ξ∗ is non-degenerate, ξ∗ has
positive masses at both points m and M and

ϕ(m, ξ∗) = ϕ(M, ξ∗) = t∗.

As ϕ(x, ξ∗) is quadratic in x with its minimum at 1
γ , this implies that

γ∗ = γ
(
μ1(ξ∗), μ2(ξ∗)

)
=

2
(m + M )

.

The rate v(ξ∗) is therefore

v(ξ∗) =
b(ξ∗)
B(ξ∗)

=
t∗ − c(ξ∗)

B(ξ∗)
= (1 − mγ∗)2 = (1 − Mγ∗)2 = Rmax ,

where

Rmax =
(M − m)2

(M + m)2
. (12)

Assume now that the optimum design ξ∗ is degenerate and is supported at
a single point x∗. Note that since ϕ(x, ξ∗) is both quadratic and convex, x∗ is
either m or M . Since the optimum design is invariant in one iteration of the
algorithm (11), γ∗ is constant and

max
ξ

r(ξ) = max
[
(1 − mγ∗)2, (1 − Mγ∗)2

] ≥ Rmax

with the inequality replaced by an equality if and only if γ∗ = 2
(M+m) .

Some special cases

A few examples of gradient algorithms (2) worthy of mention are given below.
The steepest descent algorithm corresponds to the case when Φ(ξ) is the

D-optimality criterion Φ
(
M (ξ)

)
= μ2−μ2

1 with a step length equal to γk = 1

μ
(k)
1

.

It is well-known that the asymptotic rate of the steepest descent algorithm is
always close to the value Rmax defined in (12). The asymptotic behaviour of the
steepest descent algorithm has already been extensively studied, see, e.g., [4].

The steepest descent algorithm with relaxation is also known in literature
on optimization. For this algorithm, γk = ε

μ
(k)
1

, where ε is some fixed positive

number. This algorithm can be associated with the optimality criterion

Φ
(
M (ξ)

)
= εμ2 − μ2

1 . (13)

It is known that for suitable values of the relaxation parameter ε this algorithm
has a faster convergence rate than the ordinary steepest descent algorithm. How-
ever, the reasons why this occurs were not previously known.
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It can be shown that if the relaxation coefficient ε is either small (ε < 4Mm
(M+m)2 )

or large (ε > 1), then for almost all starting points the algorithm asymptotically
behaves as if it has started at the worst possible initial point. Equivalently, for
these values of ε the sequence of designs converges to the optimal design for the
criterion (13).

Moreover, if the relaxation parameter is either too small (ε < 2m
m+M ) or too

large (ε > 2M
m+M

), then the rate of the steepest descent algorithm with relaxation
becomes worse than Rmax, the worst-case rate of the standard steepest descent
algorithm. This is related to the fact that for these values of ε the optimal design
for the criterion (13) is degenerate (that is, it is concentrated at a single point).
As a consequence, we also obtain a well-known result that if the value of the
relaxation coefficient is either ε < 0 or ε > 2, then the steepest descent algorithm
with relaxation diverges.

When 4Mm
(m+M)2

< ε ≤ 1 the relaxed steepest descent algorithm does not con-
verge to the optimum design and its renormalized version (6) asymptotically
exhibits either cyclic or chaotic behaviour. It is within this range of ε that im-
proved asymptotic rates of convergence are observed. The behaviour of the as-
ymptotic rate R is shown in Fig. 1, where we display the asymptotic rates in the

Figure 1. Asymptotic rate of convergence as a function of ε for the steep-

est descent algorithm with relaxation ε .

case M
m

= 10. In this figure we assume that d = 100 and all the eigenvalues are
equally spaced. We have established numerically that the dependence on the di-
mension d is insignificant as long as d ≥ 10. In addition, choosing equally spaced
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eigenvalues is effectively the same as choosing eigenvalues uniformly distributed
on [m, M ] and taking expected values of the asymptotic rates.

The convergence rates of all gradient-type algorithms depend on, amongst
other things, the condition number ρ = M

m . As one would expect, an increase
in ρ gives rise to a worsening rate of convergence. Fig. 2 shows the effect of

Figure 2. Asymptotic rate of convergence as a function of ρ for steepest
descent with relaxation coefficients ε = 0.9 and ε = 0.99 .

increasing the value of ρ on the rates of convergence for the steepest descent
algorithm with relaxation coefficients ε = 0.9 and 0.99.

Any optimization criterion Φ
(
M (ξ)

)
such that ∂Φ

∂μ2
> 0 creates an optimiza-

tion algorithm of the form (2). Some of these algorithms can be very efficient.

For example the family of Φp-optimality criteria Φp

(
M (ξ)

)
=
(
trM−p(ξ)

)1
p cre-

ates very efficient optimization algorithms. Another useful generalization of the
steepest descent algorithm is the family of so-called α-root algorithms related
to the criteria Φ

(
M (ξ)

)
= μα

2 − μ2α
1 . For values of α slightly larger than 1 the

resulting optimization algorithms have been found to be extremely efficient.
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