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Abstract This paper presents SinguLab, a graphical user interface for the 
singularity analysis of parallel robots. The algorithm is based on 
Grassmann-Cayley algebra. The proposed tool is interactive and 
introduces the designer to the singularity analysis performed by 
this method, showing all the stages along the procedure and 
eventually showing the solution algebraically and graphically, 
allowing as well the singularity verification of different robot poses.  
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1.  Introduction  
Singularity of parallel manipulators has been thoroughly investigated 

using different methods, mainly including line geometry, screw theory, 
and Jacobian determinants analysis. Recently, Grassmann-Cayley 
algebra (GCA) has been used for singularity analysis too.  

SinguLab is the first version of a tool for singularity analysis of 
parallel robots. The aim of this user interface is to provide the designer 
an automatic tool for the analysis, geometric interpretation and 
visualization of singularities. It enables the user to determine the 
singularities of a large range of parallel robots and gives him some 
guidelines of GCA. 



SinguLab was developed within the framework of SIROPA1 – a French 
national project, the aim of which is to develop knowledge about the 
direct-kinematics singularities of parallel robots and to transmit this 
knowledge to the end-users – during a sojourn stay of the first author at 
IRCCyN. 

1.1  Grassmann-Cayley algebra  
The algorithm used in SinguLab is based on GCA. For space 

limitations we only introduce the basic concepts and the readers are 
referred to (Ben-Horin and Shoham, 2006a) and reference therein for 
further details on this topic. The basic elements of this algebra are 
called extensors, which in fact are symbolically denoted Plücker 
coordinates of vectors. Two basic operations that play an essential role in 
GCA involving extensors are the join and meet operators. The first is 
associated with the union of two vector spaces, and the latter has the 
same geometric meaning as the intersection of two vector spaces. 
Further, special determinants called brackets are also defined in GCA. 
The brackets, of which columns are vectors, satisfy special product 
relations called syzygies, which are useful to manipulate and compare 
bracket expressions. The Grassmann-Cayley algebra functions under the 
projective space Pd, in which points are represented by homogeneous 
coordinates and lines are represented by Plücker coordinates.  

As mentioned above, the extensors are vectors that represent 
geometric entities, and are characterized by their step. Extensors of step 
1, 2 and 3 stand for a point, a line and a plane, respectively. Assumming 
two extensors A and B, of step k and h, respectively, defined in the d-
projective space, the join and meet operations are written as follows:  
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where the sum in Eq.(2) is taken over all permutations σ of {1,2,..,k} such 
that σ(1)<σ(2)<…<σ(d-h) and σ(d-h+1)<σ(d-h+2)<…<σ(k). Incidences 
between geometric entities are obtained as extensors of step 0 (scalars). 
Some examples of incidences in 3D-space are the meet of four planes, the 
meet of two lines and the meet of a line with two planes. Three meet 
examples are written in GCA as follows: 

                                                 
1 https://wiki-sop.inria.fr/wiki/bin/view/Coprin/SIROPA 



Meet of four planes: 
• • •⎡ ⎤ ⎡ ⎤ ⎡ ⎤

∧ ∧ ∧ = ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
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abc def ghi jkl adef bghi c jkl  

Meet of two lines: [ ]∧ =ab cd abcd  

Meet of a line and two planes: 
• •⎡ ⎤ ⎡ ⎤
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gh abc def gabc hdef  

Let us consider a finite set of 1-extensors {a1,a2,.,ad} defined in the d-
dimensional vector space over the field ϒ, V, where ai=x1,i,x2,i,..,xd,i 
(1≤i≤d). The bracket of these extensors is the determinant of the matrix, 
of which columns are vectors ai (1≤i≤d) :  

[ ]
1,1 1,2 1,

1 2

,1 ,2 ,

, ,..., =
L

M M L M
L

d

d
d d d d

x x x
a a a

x x x
, (3) 

For example, the bracket of points a, b, c  and d defined in the 3D space 
is written as: 

[ ]
1 1 1 1

=
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a b c d
a b c dabcd  

From a geometrical point of view, the value of this bracket represents six 
times the volume of the tetrahedron of  vertices a,b, c and d.   

2.  Algorithm  
The procedure behind SinguLab follows the next steps: 

a. Determination of the robot structure. b. Writing the singularity 
equation in terms of GCA. c. Identification of the geometrical entities 
involved in the singularity condition according to the algebraic equation. 
d. Depending on the entities found, the algorithm finds the geometrical 
condition in terms of GCA. The singularity condition, if feasible, is shown 
to the user by means of a geometrical statement in algebraic form with a 
graphical visualization of the geometric entities comprising the 
singularity. 

2.1  Determination of the robot structure  
The available options in this version are all the possible Gough-

Stewart platforms (GSPs). There are 35 different GSPs if concurrent 
joints on the platform or on the base are considered (Faugere and Lazard, 
1995). In the next version of SinguLab, other types of parallel robots will 
be analyzed by means of the method explained in sections 2.5 and 3. 



The robot structure is determined by the user with six lines as 2-
extensors according to their endpoints on the platform and the base. Two 
concurrent joints have the same label. Once the structure is defined, a 
schematic of the robot appears. 

2.2  Singularity equation 
 The singularity analysis is performed using a coordinate-free 

invariant version of the Jacobian matrix determinant written in terms of 
GCA, which is suitable for robots of motion ruled by six pure forces, 
represented by six zero-pitch screws. This coordinate-free version of the 
Jacobian determinant was derived by McMillan and White (1991), after 
proposing a significantly larger expression by White (1983) eight years 
before. 

A paradigm of robots ruled by six pure forces is the general GSP. The 
moving platform of GSP is connected to the base through six spherical-
prismatic-universal chains, the spherical and universal joints being 
placed anywhere on both platforms. The coordinate-free version of the 
Jacobian determinant of this robot with legs ab, cd, ef, gh, ij, and kl (a,..,l 
denoting the endpoints of the lines) has 24 monomials as follows: 
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 (4) 
Each term (monomial) in Eq.(4) is a multiplication of three brackets. 

The singularity condition arises when the right-hand side of (4) is 
equal to zero. This is the basic equation used in the singularity analysis 
in this paper. It is to be noted that we use Eq.(4) instead of another 
shorter version having 16 monomials (Downing et al, 2002). The main 
advantage of Eq. (4) over the shorter version is the order of the points in 
each bracket, which is lexicographically in both rows and columns. This 
fact significantly facilitates the manipulation and comparison of 
monomials, operations needed for the derivation of the geometric 
condition of the singularity equation.  

For the remaining 34 GSP combinations, the singularity equation is 
significantly reduced since many monomials vanish due to the 
appearance of equal points in some brackets. For most of these 
structures, this equation enables the geometrical explanation of the 



singularity condition using GCA tools. The reduction of the original 
equation, however, may be differently obtained if different order of legs is 
taken to substitute the left-hand-side of Eq.(4). For example, for the 3-3 
GSP, the following leg definition leads to two and four monomials if the 
leg order is altered: 

 

[ ][ ][ ] [ ][ ][ ]= +[[ab,af,cb,cd,ed,ef]] abfc acde bdef abfd acbe cdef  (5) 
[ ][ ][ ] [ ][ ][ ]

[ ][ ][ ] [ ][ ][ ]
[[ab,cd,af,cb,ed,ef]]=- abcd afce bdef + abcd afbe cdef

+ abcf dcbe adef - abdc cafe bdef
 (6) 

 

Although Eqs.(5) and (6) are equivalent, the lowest number of 
monomials is recommended in order to avoid long calculations. 
Therefore, if the number of monomials obtained after the user definition 
is more than 4, then he is led to use the automatic function to find the 
shortest form. This function runs all the possible orders and returns the 
first shortest form. The next step is to find the interchangeable points 
within the monomials in order to identify the geometrical entities 
involved in the singularity condition. 

2.3  Identification of interchangeable points 
The objective of this stage is to automatically find the geometric 

entities involved in the singularity condition. These entities may be lines, 
planes or tetrahedrons. The method to find them is based on the first 
stage of the Cayley factorization performed by White (1991).  

White’s algorithm deals only with multilinear expressions, which are 
those containing each point in each monomial only once (Eq.(4) without 
any substitution is a multilinear example). According to his algorithm a 
pair of points is interchangeable if the expression after replacing all the 
appearances of both with each other, summed with the original 
expression is equal to zero: 

 

 ( ) ( )P Pa,b,... + b,a,.... =0  (7) 
 

where P is the expression containing all the monomials (for example, 
Eq.(4)). This process is performed for all possible pairs of points, using 
the straightening algorithm (White, 1991). 

Unfortunately, our expressions are never multilinear. Unlike the 
general GSP, of which singularity has no special geometrical explanation 
with this method, all other structures have at least one point appearing 
at least twice in each monomial. Until now, no algorithm of Cayley 
factorization for non-multilinear polynomials is known and it still 
remains an open problem. Our approach is as follows. 



First, we assume that if a point appears more than once in each 
monomial, then each appearance belongs to a different geometric entity. 
Each monomial has three brackets, each bracket containing four points, 
thus twelve points are part of geometric entities that have to be 
identified. From the definition of the meet operation (Eq.(2)), to obtain a 
monomial of brackets of four points the geometric entities involved may 
be 2- or 3-extensors (lines or planes). Otherwise, a meet including a 4-
extensor (tetrahedron) and another entity would lead to a 5-bracket. 
Still, a monomial of 4-brackets may result from a bracket containing a 
tetrahedron and two other brackets resulting from a meet of lines and 
planes. Accordingly, when the potential entities to be searched are lines, 
planes and tetrahedrons, the following groups can be found: a. Six lines; 
b. two planes and three lines; c. four planes; d. one tetrahedron, two 
planes and one line; e. one tetrahedron and four lines; f. two tetrahedrons 
and two lines; g. three tetrahedrons. To avoid the non-multilinearity 
problem, the order of searching is as follows: 

1. The first entities to be searched are the tetrahedrons. These are 
searched as common brackets (having the four points of the tetrahedron) 
in all the monomials. If the equation has more than one monomial, then 
it is searched if there is a common bracket appearing in all the 
monomials. If such a bracket exists, then the tetrahedron recognition is 
done, and the remaining equation continues the search procedure. To 
have three tetrahedrons there has to be only one monomial in the 
equation, where each bracket consists of the points of each tetrahedron. 
If this is the case, then the procedure is completed, resulting in three 
possible coplanar tetrahedrons, according to the points appearing in each 
bracket in the monomial.  

2. The second stage is to look for planes, which are represented as 
triplets of interchangeable points. These triplets are searched as points 
that appear together in one bracket in every monomial. Any pair within 
such a triplet is interchangeable since replacing them one by another 
means a permutation, leading to a general sign change in all the 
monomials, and thus satisfying Eq.(7). 

3. Once all the triplets in the previous stage were recognized, their 
labels acquire a star ( *a a→ ) to distinguish them from the other same 
labels appearing in other brackets in the monomials, due to the non-
multilinearity. The next stage consists in searching among the remaining 
points, pairs that satisfy Eq.(7). In many cases it is not necessary to use 
the straightening algorithm to verify this condition. For the cases in 
which it would be necessary, unfortunately we cannot use this algorithm 
because of the non-multilinearity of the expressions. Therefore in these 
cases the points that remain without being identified to any entity are 



left in parentheses and are treated as follows. If three planes were 
already identified then the residual letters will be treated as possible 
part of a fourth plane (case c). The same occurs with the residual letter if 
three planes and one line were found. If two planes and a line were 
identified, then the residual letters will be referred as possible pairs of 
lines to correspond to case b. 

2.4  Singularity solution and visualization 
This stage provides the singularity condition as a geometrical 

incidence between the entities that were already identified. The union 
and intersection of geometric entities in terms of GCA are obtained by 
means of the join and meet operators, respectively. 

Ben-Horin and Shoham (2006a, 2006b, 2007) found the geometrical 
conditions for 31 from the 34 regular GSPs. According to the number and 
types of entities identified in the previous section, this stage verifies if, 
algebraically, the respective condition is equal to a geometric incidence, 
some examples of which are shown in section 1. If both are equal, then 
the solution is written according to the points that were defined before, 
and the geometric entities involved are shown in the robot figure.  

Once the singularity condition is obtained, a new field appears in the 
window with a value standing for the singularity condition in the actual 
configuration. When this value, which changes depending on the robot 
pose, becomes smaller than a predefined ε, it means closeness to 
singularity and a warning message appears. In the robot figure the user 
is able to move the platform in 6 DOFs in order to visualize the poses 
that satisfy the singularity condition. The singularity test is performed 
using the simplest form according to the condition obtained. For example, 
the four intersecting planes condition is verified by calculating the 
condition number of the 4×4 matrix containing the coefficients of the 
planes. The condition for two planes to intersect simultaneously a line is 
verified by calculating the condition number of the matrix having the 
four homogeneous coordinates of four points: two of them lie on the line 
of intersection of the planes, and the remaining two lie on the other line.  

For the interested users, the identification of the interchangeable 
points and the verification of the singularity condition can be performed 
manually. By default, the automatic mode is applied. 

2.5 Applications 
The structures suitable to be analyzed by this method and used with 

this tool include a long list of robots in addition to all the GSP structures. 
Their analyses are performed knowing the equivalent lines of action 



applied to the platform by the legs. For six degree-of-freedom (DOF) 
robots these equivalent lines of action are the reciprocal screws to the 
passive joints of legs (McCarthy, 2000). The topology of the lines of action 
must be equal to one of the 34 combinations of legs arrangement 
presented in (Faugere and Lazard, 1995) since they are all the different 
combinations existing to define six legs connecting two platforms when 
two and three concurrent joints are taken into consideration. 

Manipulators with lower-DOF having a spherical joint in each leg can 
be also analyzed by this tool. For their analysis the 6×6 Jacobian matrix, 
which contains a Jacobian of actuations and a Jacobian of constraints as 
sub-matrices, is needed (Joshi and Tsai, 2002). Once the rows of both 
sub-matrices are identified, these rows actually being the wrench screws 
applied to the platform, the topologically equivalent GSP can be 
identified and the singularity condition can be found by means of 
SinguLab. 

In a future version of SinguLab, an automatic specification of other 
parallel robots than GSPs with graphical tools will be available. The use 
of SinguLab is performed according to the interactive instructions in the 
main window. These instructions follow the steps listed in Section 2. This 
guidance, showing each result algebraically, graphically and as a 
geometric statement, enables non-experts to obtain the singularity in an 
easy manner. 

3.  Example  
We exemplify the tool by means of the singularity analysis of a 4-DOF 

robot, first presented in (Gallardo-Alvarado J. et al, 2006). This robot 
consists of three different legs, having PS, UPS and PRPS (or CPS) 
kinematic chains, respectively, (the underlined labels stand for actuated 
joints) see Fig.1(a).   

The constraint screws of leg 1 are reciprocal to the spherical and 
prismatic joints. Thus they form a two-system perpendicular to the 
prismatic and passing through the spherical joint. Then the reciprocal 
screw to the passive joint of leg 1, $1, is a screw directed along the leg. In 
leg 2 the passive joints are the spherical and the universal joints thus 
their reciprocal screw, $2, is directed along the leg that connects them. 
The third leg has two prismatic actuators P3 and P4. The reciprocal 
screws to the passive joints form a two-system of zero pitch, being a 
planar pencil with center at the spherical joint and containing the axis of 
the revolute joint. Particularly, $3 and $4 pass through the spherical joint 
center and are directed along the leg and parallel to the revolute joint 
axis, respectively. With these screws known, the equivalent structure to 
be entered into SinguLab is as appears in Fig. 1(c). The interface 



analyzing this robot is shown in Fig.2, where the singularity condition is 
that at least one of the tetrahedrons composed by S1A1B1C1, S1S3A3B3 
and S1S3S2A2 (according to the labels in Fig.1(c)) is coplanar. 

Figure 1.  (a). Four-DOF robot from (Gallardo-Alvarado J. et al, 2006), 
(b). Reciprocal screws, (c). Equivalent structure.  
 

Figure 2.     SinguLab interface 

4.  Conclusion  
This paper presents SinguLab, a graphical user interface for the 

singularity analysis of parallel robots. The theoretical background behind 
this analysis is based on Grassmann-Cayley algebra, which provides a 
coordinate-free approach for treating geometric entities and their 
incidences. The identification of the geometric entities and the 
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singularity conditions are made automatically. The results are based on 
previous studies on certain classes of Gough-Stewart platforms. This 
interface is suitable for a broad range of parallel robots. The current 
version can be used only for robots actuated with SPS chains. For those 
with serial chains, an equivalent structure has to be predefined with 
their reciprocal screws Accordingly, the topological arrangement of the 
lines of action is the robot definition input. For lower-DOF parallel 
robots, the reciprocal screws standing for the actuation and for the 
constraints on the platform have to be identified first. Therefore, we 
come up with the 6×6 Jacobian matrix and the same GCA approach 
thereafter. In future versions, the analysis of these robots will be 
incorporated in the software to provide a fully automatic tool for robot 
designers. 
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