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Parallelizing the ACGT OncoSimulator

Dominique LAVENIER and Julien JACQUES

Abstract— Nowadays, clinician can take advantage of in-
silico technologies to get faster estimations on clinical treat-
ments without performing time-consuming and expansive in-
vivo experimentations. Among these techniques, tumor growth
simulators can estimate tumor volume and the quantity of
cells (stem, proliferating...) in function of the time and from
a set of parameters. Within the framework of the ACGT
European project [2], we are working on the development of the
ACGT Oncosimulator which is based on the mathematical model
from ICCS. In this paper, we relate the current computation
techniques for increasing the ACGT Oncosimulator efficiency.

I. MOTIVATIONS

To have a powerful simulator, the underlying program

must be reliable, precise and fast. First, the reliability comes

from the consistence of the mathematical model compared

with in-vivo experiments. Second, the precision depends of

the sampling area, that is the spatial 3D unit dedicated to

the tumor discretization. Finally, speed is both related to the

quality of the code and to the performance of the hardware

resources. This paper deals with the last point.

Initially, the Oncosimulator has been developed for a

stand-alone PC equipped with a single core processor. This

approach obviously limits the program to sequential execu-

tions, even with today machines which are now integrating

double or quad core processors. Furthermore, one of the

goals of the ACGT project is to deploy a European computa-

tional grid able to support fast execution of the Oncosimula-

tor. It was thus desirable to adapt the Oncosimulator code to

benefit from the use of the ACGT grid power together with

the latest technology improvements.

Basically, the ACGT end-users may exploit the Oncosim-

ulator as follows:

• intensively: to find the better treatment, the clinician

has to try many combinations of parameters provided

by the Oncosimulator (size of the tumor, duration of

the treatment, quantity of drugs, interval between two

injections, etc.). In that case, many runs on different

parameters have to be executed, and the execution times

are directly correlated with the number of runs. It may

be not unusual to have a few hundred of parameter

combinations to test.

• with high precision: better the definition of the tumor,

better the estimation of the tumor behavior. In our case,

the definition of the tumor is directly linked to the
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3D discretization. From a computational point of view,

shrinking the discretization by 10 will increase the com-

putational complexity by 1000 since the modelization

operates in the 3D space.

• interactively: another way to focus to the right treat-

ment is to run successive simulations guided by a human

expert. Depending of the results of one simulation, the

clinician will slightly tune a few parameters according

to the tumor evolution. In that specific case, the response

time of the simulator is critical. Ideally, an execution

should not take more than ten to twenty seconds in order

to have an efficient interacting tool.

In the rest of the paper, we explore how the various

technologies available today can support these different kinds

of requirements [1].

II. TECHNOLOGIES

A. Grid computing

Grid computing consists in a set of machines (called

nodes) geographically spread and connected through Internet

(Fig. 1). A grid generally provides a high computing power

and a huge storage capacity. It is accessed through server

managers as, for instance, the Globus-SGE [3] environment.

These servers drive the node allocations according to the grid

workload.

Grids are well adapted to simultaneous executions of many

independent programs. The execution time of one program is

the same as if it is executed into a single machine. However,

since several programs are run in parallel, the global time Tg

needed to achieve the whole computation corresponds to:

Tg = Tp ×

⌈

Np

Nnodes

⌉

, (1)

where







Tp : execution time of single program

Np : number of single programs

Nnodes : number of nodes

Deploying a code on a grid is easy since no modification

is required. Only the execution management is crucial

in order to distribute program instances on the available

resources.

The grid solution is well adapted to the first use of the

Oncosimulator: a lot of executions can be run in parallel with

different parameters, each run being assigned to a different

machine. Results are automatically collected back to the user.
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Fig. 1. Example of a Grid infrastructure with repartition of the computation

power and the storage capacity

B. Cluster

A cluster is a set of identical machines connected through

a high-speed network (Fig. 2). From an implementation point

of view, there are basically two possibilities to execute a

code on this support. The first one follows the grid idea:

many instances of the same program are dispatched on the

different nodes of the cluster. Difficulties and implementation

are thus identical.

The second one required to modify the code for paral-

lelizing the various parts of the program on several nodes.

To get a fast program, computations must be shared between

the processors in order to have a number of communications

and synchronizations as small as possible.
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Fig. 2. Single Program Multiple Data (SPMD) Architecture

That makes the parallelization task quite difficult: Even by

assuming well adapted distribution of data in the processor

memories, it always remains, in many cases, a part of the

program which cannot be parallelized and have to be done

sequentially. We also need to keep in mind that communica-

tions add costs between processors, and these costs do not

exist in the monoprocessor version. As a consequence, the

execution time can be stated as follows:

T// =
Tparallel tasks

Np
+ Tseq + Ccomm (2)

In the case where Tg < (Np×T//) then the parallelization

is inadequate.

As for the grid technology, clusters are well adapted for

running a large set of independent simulations with different

parameters. If a smart parallelization can be done at the

cluster level, this technology is thus able to satisfy all end-

user requirements.

C. Multicore processors

A multicore processor is a component having, on the same

die, several cores – or processing units – connected to the

same memory (Fig. 3). In this architecture, the use of threads

(or light processes) enables to explicitly express in the source

code the parallel execution of various parts of the program.

Core 1

Memory

Core 0

processor

thread 1
thread 2

Fig. 3. Two-core processor organization

Using this technology, we need to extract parallel blocs

that do not have data, time and spatial dependencies. In a

sequential program, the process is composed of only one

thread. Therefore, its execution on a multicore processor

will be done only on one core. In a multithreaded program,

the process is divided into many threads. As a result, the

execution can be shared among all the cores.

Even if this solution covers all the end-user requirements

for speeding up the simulation, it is much better suited for

accelerating single instance of the Oncosimulator. With the

next generation of processors, a larger number of cores will

certainly be available, providing significant increase of the

computing power. Thus, this is a necessity for the next ver-

sion of programs like Oncosimulator programs which require

high computational power to use this new opportunity.

III. APPLICATION TO THE ACGT ONCOSIMULATOR

As a first approach, we have made a cluster imple-

mentation on the INRIA Genouest bioinformatics platform

where many instances of the Oncosimulator can be run

simultaneously. Their submissions are done through a web

browser at http://acgt.genouest.org.

The next step has been to integrate this work through the

ACGT grid environment. The feedback from the ACGT end-

users is encouraging since this implementation meets the

need of simulating the tumor evolution according to a large

set of parameters.

However, the execution time of each instance takes several

minutes, leading to a non-interactive tool. Then, we first tried

to develop a MPI version, but the code we developed was

requiring too much synchronization points to get this version

really efficient.

We are currently developing a multithreaded version tar-

geted multicore processors with the objective to fall below

an execution time of ten seconds.

The last point, which needs to be highlighted, is that

all these technologies are not mutually exclusive. On the

contrary! Grids are made of clusters which now include mul-

ticore processor nodes. Thus, parallelization improvement

made on one of these technologies will have a direct impact

on the whole ACGT project.
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