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Probing the micromechanics of a multi-contact interface at the
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Abstract. Digital Image Correlation is used to study the micromechanics of a multi-contact interface
formed between a rough elastomer and a smooth glass surface. The in-plane elastomer deformation is
monitored during the incipient sliding regime, i.e. the transition between static and sliding contact. As
the shear load is increased, an annular slip region, in coexistence with a central stick region, is found
to progressively invade the contact. From the interfacial displacement field, the tangential stress field
can be further computed using a numerical inversion procedure. These local mechanical measurements
are found to be correctly captured by Cattaneo and Mindlin (CM)’s model. However, close comparison
reveals significant discrepancies in both the displacements and stress fields that reflect the oversimplifying
hypothesis underlying CM’s scenario. In particular, our optical measurements allow us to exhibit an elasto-
plastic like friction constitutive equation that differs from the rigid-plastic behavior assumed in CM’s model.
This local constitutive law, which involves a roughness-related length scale, is consistent with the model of
Bureau et al. [Proc. R. Soc. London A 459, 2787 (2003)] derived for homogeneously loaded macroscopic
multi-contact interfaces, thus extending its validity to mesoscopic scales.

1 Introduction

The transition from static to sliding friction is a crucial
process in various fields, ranging from contact mechanics
[1], earthquakes dynamics [2] to human/humanoid object
grasping [3]. In the classical Amontons-Coulomb’s frame-
work, when two solids are brought in contact under a nor-
mal load P and subjected to a shear force Q, no rela-
tive motion occurs until Q exceeds some threshold value
Qs = µsP where µs is called the static friction coefficient.
However, in most real situations, the transition from static
to dynamic friction does not follow this ideal simple sce-
nario. As soon as Q > 0, partial slippage generally sets in
owing to the large stress heterogeneity within the contact
zone, which depend on the geometry of the objects in con-
tact as well as on the loading conditions. Understanding
this incipient sliding regime thus requires to gain access
to the interfacial micromechanics within the contact zone.

In the past ten years, several experimental groups de-
veloped new optical methods to obtain spatially resolved
mechanical measurements [4–8], which triggered intense
subsequent theoretical and numerical investigations [9–
15]. Fineberg and collaborators studied the onset of sliding
of a multi-contact interface, in a plane-plane contact con-
figuration, submitted to an adiabatic tangential loading
[6,7]. Using fast imaging of the interface illuminated with
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an evanescent laser sheet, they were able to measure local
changes in the real area of contact. This simple optical
measurement allowed them to reveal that, prior to macro-
scopic sliding, series of dynamical rupture fronts traveled
along the interface. In their experiments however, the con-
tact was one-dimensional. Chateauminois and collabora-
tors have considered more realistic, fully two-dimensional,
contacts [16,17]. By patterning a smooth elastomer’s sur-
face with a regular grid of micro-markers, they were able
to monitor, using Particle Image Velocimetry techniques,
the entire 2D displacement field at the interface. They ap-
plied this procedure to a smooth sphere loaded against
a smooth flat elastomer block in a torsional configuration
[17]. The authors showed that the transition from static to
kinetic friction involves an annular micro-slip front propa-
gating from the outer edge of the circular contact towards
the center. Using an inversion procedure, they computed
the interfacial shear stress field from the measured dis-
placements field. We emphasize that in their experiments,
macroscopic adhesion was important due to the smooth-
ness of the surfaces in contact. In most practical situations
however, interfaces are rough at microscopic length scales,
giving rise to a multi-contact frictional interface at which
macroscopic adhesive effects are strongly reduced.

In this paper, we expand on this latter two-dimensional
approach. We report on micromechanical measurements
at the onset of sliding between a smooth sphere and a flat
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Fig. 1. (Color online) Sketch of the experimental setup. The
normal cantilever used to measure P has a stiffness kN = 689±
5 N.m−1, while the tangential cantilever used to measure Q has
a stiffness KT = 9579± 25 N.m−1.

elastomer block whose surface is microscopically rough.
There are several important differences with respect to
[17]. First, the interface is of the multi-contact type. Sec-
ond, the loading is linear instead of torsional. Third, the
displacement field measurement is truly non-invasive as
we take advantage of the optically diffusive nature of the
multi-contact interface to extract the displacement fields
at all times using Digital Image Correlation (DIC), from
which the interfacial stress fields can be further computed.

In Section 2, we present the experimental setup and
samples preparation and show how the displacement field
is extracted from successive images of the interface. Macro-
scopic force measurements and resulting displacement fields
are then presented in Section 3. Section 4 details the proce-
dure used to compute the interfacial stress fields from the
measured displacement fields. In Section 5, these results
are compared to the predictions of Cattaneo and Mindlin
(CM)’s classical contact mechanics model. In Section 6, we
interpret the observed deviations as the effect of the rough
layer, which introduces a micrometric length scale in the
problem. Eventually, in Section 7, general conclusions and
perspectives are drawn.

2 Experiment, materials and methods

2.1 Experimental setup

Figure 1 shows a sketch of the experimental setup. It con-
sists of a planoconvex glass lens (optical grade, Thorlabs
LA1301, BK7, radius of curvature R = 128.8 mm) glued
onto a lens holder and rigidly attached to an optical ta-
ble. The lens surface is in frictional contact against a thick
elastomer block maintained by Van der Waals adhesion to
a supporting glass plate. The latter is connected via a set
of two orthogonal cantilevers to a translation stage that

can be driven at constant velocity v using a DC actuator
(LTA-HL, Newport Inc.). Two capacitive position sensors
(respectively MCC-20 and MCC-10, Fogale Nanotech),
each facing the mobile part of one cantilever, allow one to
measure both P and Q, respectively the normal and tan-
gential (shear) force, with a 1 mN resolution in the range
[0–2 N]. Both force signals are digitized and recorded at a
sampling rate of 1 kHz using a NI-PCI6251 DAQ board.
Imaging of the contact is done by illuminating the inter-
face through the transparent elastomer block with a white
LED diffusive array and a long-working distance Navitar
objective. Images of the interface are recorded with a CCD
camera (Redlake ES2020M, 1600×1200 pixels2, 8 bits, 24
frames/s at maximum). Synchronization between the cam-
era and the DAQ acquisition device is ensured by having
the DAQ board trigger the camera.

2.2 Sample preparation and characterization

The elastomer block (50× 50 mm, thickness h = 15 mm)
is made of crosslinked PolyDimethylSiloxane (PDMS Syl-
gard 184, Dow Corning). It is obtained by mixing in a 10:1
stoichiometric ratio a PDMS melt and a cross-linker agent
in a rectangular mold. The mixture is cured for 48 hours in
an oven at 70˚C. The free surface of the elastomer block is
rendered rough by mechanically abrading the lid’s upper
surface with a Silicon Carbide powder solution of typical
grain size 17 µm. After careful demoulding, the surface
roughness of the PDMS sample is characterized with an
optical profilometer (M3D, Fogale Nanotech). Its height
power spectrum is found to decay as a power law from a
maximum value of ∼ 30µm down to the micrometer scale.
The characteristic thickness h of the rough interface, de-
fined as the standard deviation of the height distribution,
is measured to be 0.595± 0.013µm.

Such PDMS elastomers have been reported to have a
bulk elastic Young’s modulus E in the range [2–4 MPa]
[16,18–20] (depending on the preparation protocol) and
a Poisson’s ratio ν close to 0.5 [21]. For the sample used
in these experiments, a JKR test is performed between
its smooth back side and the bare glass lens, yielding
a Young’s modulus E = 3.43 ± 0.05 MPa. For the fric-
tion experiments, the glass lens surface is passivated in a
PerfluoroDecylTricloroSilane saturated vapor phase in or-
der to reduce the macroscopic PDMS/glass adhesion and
to minimize heterogeneities in the interfacial properties.
Prior to each experiment, both glass and PDMS surfaces
are cleaned with ethanol and dried with filtered air.

2.3 Contact imaging and displacement fields
measurements

2.3.1 Contact imaging

Figure 2a shows a typical image of the elastomer/glass
interface under normal load. This image is obtained in
transmission geometry by illuminating the sample with a
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Fig. 2. (a) Image of the interface at P = 0.1 N. (b) Difference
between image (a) and a reference image without contact. For
both images, the white bar is 1 mm long. On (b) are shown
the x and y axis along with the r, θ coordinates system.

Fig. 3. (Color online) (a) Angularly averaged intensity profiles
I(r) for increasing loads P , with r = 0 located at the center of
the apparent contact. The lowest P curve is in cyan, while the
highest one is in pink. This color code is kept within this paper
to describe any normal dependence of the variables involved.
(b) Apparent contact radius versus P . The red circles corre-
spond to the measured apparent contact radius a obtained by
taking the minimal value of r for which I(r) = 0. The thin
black line is Hertz contact radius aH with E = 3.43 MPa.
Black vertical arrows have the same length, equal to

√
Rh.

(c) Inset: Same as (b) on a log-log scale. The solid black line
corresponding to Hertz prediction has a slope of 1/3.

diffuse white light. The interface appears spatially hetero-
geneous as a result of the diffusive nature of the rough
layer. In the contact region, additional bright spots are
present corresponding to the micro-junctions that favor-
ably transmit light at the glass-PDMS interface. At the
chosen magnification, images have a field of view of about
11.2× 8.4 mm (with a pixel size of ∼ 7.04 µm). The con-
tact region is difficult to visualize from the raw image
(Fig. 2a) but can be clearly identified in Fig. 2b by sub-
tracting a reference background image recorded prior to
the contact1. This operation allows one to reveal hundreds
of contact-induced micro-junctions contained within a cir-
cular (apparent) contact region (Fig. 2b for P = 0.1 N).
These characteristic features of the frictional joint remain
true for the explored range of normal load P used in these
experiments.

1 Careful image difference was done to take into account a
possible rigid-body displacement of the PDMS block between
the unloaded (reference) and loaded situations.

Taking advantage of the axial symmetry of the contact,
the apparent contact radius is computed in the following
way. Centers of the apparent contact r = 0 are first de-
termined using a standard center of symmetry search al-
gorithm. For each load P , the image intensity I(x, y) is
then averaged azimuthally over the angle θ (Fig. 3a) 2.
The apparent radius of contact a is then estimated as the
minimum radius such that I(r) = 0. Figure 3b shows the
resulting contact radius a and its load dependence along
with Hertz 3 contact radius aH derived for E = 3.43 MPa.
As clearly seen, the estimated radius a is systematically
larger than aH . This deviation can be accounted for by
taking into account the multi-contact nature of the inter-
face. As established by Greenwood and Tripp [22,23], the
surface roughness extends the apparent contact region by
a quantity of the order of

√
Rh ∼ 280 µm with respect to

the smooth configuration. As shown on Fig. 3b, such a cor-
rection to Hertz’s contact radii does allow one to recover
the measured apparent contact radii a.

2.3.2 Displacement field measurements

Interfacial displacement fields were computed from snap-
shots acquired at 8 frames/s (∆t = 0.125 s), and 4 frames/s
for the highest P (∆t = 0.25 s), using a Digital Image
Correlation technique (DIC) (see e.g. [24] and references
therein). This method consists in finding, for a given sub-
image centered at position (x, y) in a reference frame,
the displacement (ux, uy) that provides the maximum in-
tensity correlation with a subsequent (deformed) image
(Figs. 4a and b). A 2D correlation function (Fig. 4c) was
computed using a direct calculation. Sub-pixel resolution
was achieved by fitting the correlation function with a 2D
Gaussian surface using the pixel of maximum correlation
and its 8 nearest neighbors. The error on the displace-
ments was evaluated using a series of images of the surface
of the elastomer block, not in contact and uniformly dis-
placed at constant velocity along the x direction. DIC was
performed between an image at t = 0 and images at in-
creasing times t, allowing one to extract the displacements
ux between ∼ 0.14 pixels and ∼ 14 pixels. The error was
then taken as the standard deviation of the ux − vt dis-
placements distribution. This error was found to decrease
with the box size λ, in the range [10–100] pixels (Fig. 4d).
The optimal λ was chosen based on the best compromise
between spatial resolution and displacement measurement
accuracy. For the current experiments, the smallest appar-
ent contact radius is ∼ 217 pixels long. In order to extract

2 In order to keep the statistical errors constant, the number
of pixels within each annulus is kept constant, equal to 3000.
Thus, the width of the annuli decrease with their radius r.

3 Hertz contact is the contact between two non-conforming
elastic half-planes having smooth surfaces and well defined
radii of curvature. For instance, the Hertz contact radius aH
in the case of a rigid sphere pressed against an elastic plane is

aH =
(

3PR(1−ν2)
4E

)1/3

, with P the normal load, R the sphere

radius, and E and ν the Young’s modulus and Poisson’s ratio
of the elastic plane.
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Fig. 4. (Color online) Principles of the DIC measurement. (a)
Image at time t. (b) Image at time t + δt. (c) 2D correlation
function C(τx, τy) obtained by correlating the white line delim-
ited box in (a) (size λ = 20 pixels) with boxes in (b) (dashed
lines), displaced by (τx, τy) within the search zone. The red
dot indicates the sub-pixel location of the maximum of the
correlation function. The black arrow shows the resulting dis-
placement vector. (d) Log-log plot of the standard deviation σ
of the displacements distribution versus the box size λ.

at least 10 independent displacement measurements along
the contact, the displacement fields were computed with
λ = 20 pixels, on a 10 pixels wide square grid, yielding
a resolution on the displacement of ∼ 0.033 pixel (∼ 232
nm).

3 Force and displacement fields

We performed a series of 6 experiments in which the elas-
tomer block was driven at a prescribed velocity4 v =
5 µm/s, under constant normal force P in the range [0.1–
1.4 N]. For all runs, P was found to vary by less than
1% over the duration of the experiment and the apparent
contact zone remains circular. The velocity v was cho-
sen low enough for visco-elastic interfacial dissipation to
be negligible [25]. Since the normal loading of the con-
tact produces a significant shear force due to the small
coupling between normal and lateral motion of each can-
tilever, the contact was manually renewed prior to each
experiment, until the initial shear force Q was less than
1% of P . During this separation procedure, no measurable

4 In practice, the actual velocity was slightly smaller than the
prescribed velocity, decreasing monotonically from 4.9µm/s at
P = 0.1 N to 4.76µm/s at P = 1.4 N.
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Fig. 5. (Color online) Shear force Q versus δ = vt for loads
P = 0.1, 0.3, 0.5, 0.7, 1.0, 1.4 N (bottom to top). The color code
is the same as in Fig. 3a. Numbered disks from 1 to 6 corre-
spond to the 6 instants at which the displacement fields are
displayed in Figs. 6 and 10.

pull-off force was observed, indicating that adhesion forces
are negligible [26,27] at the contact length scale.

Figure 5 shows the measured evolution of the tan-
gential Q versus δ = vt for the 6 values of the normal
load P = {0.1, 0.3, 0.5, 0.7, 1.0, 1.4} N. Each curve ex-
hibits two distinct phases: an initial quasi-linear loading
associated with the incipient sliding regime, followed by
a plateau associated with a macroscopic steady sliding
regime. The transition between these two regimes involves
a monotonous decrease of the slope. In particular, we do
not observe any static friction peak in the loading curve,
which hampers a direct determination of the force thresh-
old Qs at which macroscopic sliding sets on from the sole
global force measurements. Qs was thus determined us-
ing the measured displacement fields at the center of the
contact as detailed further down.

Displacement fields ux and uy at time t were deter-
mined by correlating images at time t with a reference
image at t = 0 prior to any tangential loading using the
algorithm described earlier. Since the lens holder is not in-
finitely rigid, any applied shear force is expected to induce
minute rigid body displacement of the lens that needs to
be subtracted to the measured displacement ux. To quan-
tify this compliance effect, we independently measured the
displacement of the lens holder while tangentially load-
ing the elastomer block under controlled shear force using
the same correlation technique. The solid lens displace-
ment was found to vary linearly with Q, yielding a shear
stiffness ≈ 0.68 µm N−1. Actual interfacial displacements
along the x direction were then corrected for this finite
compliance effect.

Figure 6 shows the typical ux and uy displacement
fields at P = 0.5 N for all 6 positions on Fig. 5. As soon
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Fig. 6. (Color online) Snapshots of the 2D displacement fields ux and uy at P = 0.5 N for the loading experiment of Fig. 5
taken at instants labeled 1 to 6. On all displacement fields, the red dashed circle delimits the apparent contact area of radius a.
The yellow curves (respectively black curve) on snapshots indexed 1 to 5 (respectively 6) are cuts of the ux 2D displacements
fields at y = 0 and are meant as visual guides. (a) ux displacement fields. (b) uy displacement fields.

as Q increases, the displacement in the outer region of the
apparent contact increases. In contrast, the measured dis-
placement remains essentially null within a central circu-
lar region. As Q increases, the radius c of this stick region
decreases and eventually vanishes, marking the onset of
the macroscopic sliding phase. Figure 7 shows the time-
evolution of the displacement ux(r), averaged over the az-
imuthal angle θ, for different radii r = {0, 0.5a, 0.75a, a}
at a normal load P = 0.5 N. In the fully developed sliding
regime, the displacement ux varies linearly and uniformly
with time t (while uy remains stationary), indicating that
the PDMS sample is sliding as a whole at the driving
velocity. In the incipient sliding regime, the time evolu-
tion of the displacement ux strongly depends on r. As
previously mentioned, the transition to sliding initiates in
the outmost part of the contact zone and is completed
when the center region (corresponding to the r = 0 curve)
starts sliding. In order to properly extract the onset time
ts of macroscopic slippage, the central displacement time
signal ux(r = 0)(t) is used. The time ts is evaluated as
the intersection between the linear fit of ux(r = 0)(t) at
long times and the time axis. This time of macroscopic
slippage allows us to unambiguously identify a threshold
force Qs and an associated macroscopic friction coefficient
µs = Qs/P . The dynamical friction coefficient is further
defined as µd = Q(t ≥ ts)/P . Figure 8, which shows both
friction coefficients versus P , indicate that µs and µd both
display a slow decay with P , as it is usually found for elas-
tomers [19,28].
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Fig. 7. (Color online) Angularly averaged radial displacement
ux(r), with r = 0 being the center of the contact, for values
of r = 0, 0.5a, 0.75a, a at a normal load P = 0.5 N. The ratio
∆ux
∆t

is ∼ 4.81µm/s. The horizontal black dotted line is the
y = 0 axis. The dashed dotted line is a linear fit of ux(r = 0)
at long times. The intersection of both lines, shown with the
vertical black arrow, was arbitrarily chosen as the definition
for the onset time of macroscopic sliding.

4 Tangential stress fields

Tangential stress fields at the contacting interface were
derived using a Green’s tensor inversion procedure as de-
scribed in [16]. For a semi-infinite elastic medium, the
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Fig. 8. (Color online) Friction coefficients µs (lower red disks)
and µd (upper black disks) versus P . µs is defined as the ratio
Qs/P where Qs (shown in the inset) has been determined as
described earlier and schematically shown on Fig. 7. µd is taken
as the mean of Q/P for all Q ≥ Qs. Error bars are deduced
from its minimum and maximum values over this range.

Green’s tensor characterizes the displacements at the in-
terface induced by a point force applied at the free sur-
face [29]. In the limit of a semi-infinite and incompressible
elastic body, two assumptions which are well suited to our
experiments, the lateral and vertical displacements are de-
coupled, allowing one to express the lateral displacements
as a function of the lateral shear stresses only [19]. For a
point loading (Qx, Qy), the surface displacements ux and
uy are thus given respectively by

ux = GxxQx +GxyQy

uy = GyxQx +GyyQy (1)

with the components of the Green’s tensor G given by

Gxx =
3

4πE

(
1

r
+
x2

r3

)
Gxy = Gyx =

3

4πE

(xy
r3

)
Gyy =

3

4πE

(
1

r
+
y2

r3

)
(2)

For an extended contact, ux and uy are obtained by
convolving G with the shear stress at the interface σ and
can be formally written as

ui = Gij ∗ σjz (3)

where subscripts i, j stand for x or y. The stress fields
σxz and σyz can then be obtained by deconvolution. This
was done as in [16] using a classic iterative Van-Cittert
algorithm. The stress at step n+ 1 is obtained by adding

0 0.5 1 1.5 2 2.5

x 10
−4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fig. 9. (Color online) Comparison between Q versus δ as
measured in the experiment (black solid lines) and obtained
by summing up the shear stress within the contact zone, at
P = 0.5 N and P = 0.7 N. For clarity, 1 experimental point out
of 10 is shown. Inset: Optimum E values versus P . The shaded
area represents the value E = 3.43± 0.05 MPa obtained with
the JKR test (see Section 2.2).

to the one at time n a corrective term5 proportional to
the difference between the experimental displacement and
the convolved one obtained using Eq. 3. Convergence was
considered to be attained when the rms difference between
the calculated and the measured displacements was less
than the displacement resolution, i.e. 0.033 pixels.

The inversion procedure provides shear stress fields in
units of the Young’s modulus E (see Eqs. 2 and 3). The
value of E can then be directly fitted from the compari-
son between the shear force signal Q(t), obtained through
spatial integration of the calculated shear stress over the
contact, and the actual measured force signal. As shown in
Fig. 9 for P = 0.5 N and P = 0.7 N, the match between
both signals is very satisfactory, which validates the in-
version method. The extracted Young modulus shows a
weak dependence with the load (see inset) for which we
have no clear explanation. However, except for the two
extreme load values, it remains within the error bars of E
as independently measured with the JKR test. Note that
in the determination of the stress fields, we have used the
fitted values for E rather than the JKR value.

Figure 10 displays the shear stress fields σxz computed
at successive moments (indicated by the 6 labeled dots in
Fig. 5) during the incipient sliding phase. As expected, in
all 6 configurations, the shear stress vanishes outside the
apparent contact zone whose border is indicated by a red
dashed circle. Within the contact, σxz is radially symmet-
ric with respect to the center of the contact. Once macro-
scopic sliding has initiated (position 6), σxz is maximum
at the center of the contact and decreases continuously to-
wards the edge of the contact. During the transient loading

5 In practice, an initial guess at step n = 0 is taken as pro-
portional to the experimental displacements. Such an iterative
deconvolution procedure can very rapidly lead to numerical di-
vergence if not slowed down. Empirically, only 5 percent of the
difference in displacements is thus added to the stress at step
n, enabling convergence in typically hundreds of iterations.
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Fig. 10. (Color online) Snapshots of the 2D stress fields
σxz(x, y) at P = 0.5 N for the loading experiment of Fig. 5
taken at instants labeled 1 to 6. The yellow curves are cuts
along y = 0 and are intended to ease the visualization of a lower
stress region around the center. On all displacement fields, the
red dashed circle delimits the apparent contact area.

however, the shear stress exhibits a local minimum at the
center of the contact.

5 Comparison with models predictions

These precise local mechanical measurements are directly
amenable to comparison with existing theoretical mod-
els of incipient sliding. The first model, for a non-adhesive
elastic sphere-on-plane contact, was derived independently
by Cattaneo and Mindlin (CM) [30,31]. Since then, this
classic model has been refined and extended in various
ways (see for instance [1,32,33] and references therein),
for instance by introducing macroscopic adhesion [34,35]
or the elasto-plasticity of the materials [36]. Since (i) adhe-
sive forces were found to be negligible in our experiments
(no measurable pull-off force upon retraction of the con-
tact) and (ii) PDMS was used far from its plastic limit,
our measurements were compared to CM’s model.

CM’s calculations assume that (1) both surfaces are
smooth, (2) the pressure distribution σzz within the con-
tact is unchanged upon shearing and given by Hertz con-
tact theory, and (3) Amontons-Coulomb’s law of friction
is valid locally at any position within the contact, i.e. slip
occurs wherever the shear stress σxz reaches µσzz, µ being
the macroscopic friction coefficient6. CM’s model predicts

6 CM’s model postulates the existence of a single, stress-
independent friction coefficient, i.e. static and dynamical fric-
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Fig. 11. (Color online) ux/(µaH
2) in steady sliding versus

r/aH at all P (the color code is the same as in Figs. 3 and
5). The dashed black line represents Johnson’s prediction with
E = 3.43 MPa, smoothed out with the correlation box size
λ. The value of µ is obtained by averaging over all images in
steady sliding, i.e. for all t ≥ ts.

the coexistence of an inner adhesive circular region of ra-
dius c, which decreases with Q according to

c = aH

(
1− Q

µP

)1/3

, (4)

surrounded by an outer slip annulus, which is in full qual-
itative agreement with our experimental results. Using a
superposition principle, CM’s calculations provide com-
plete analytic expressions for σxz, σyz, ux and uy within
the contact, in both stick and slip regions [1,32]. Further
derivations by Johnson [1] also give ux and uy outside the
contact, thus providing the entire displacement field at
the interface. Note that CM’s model has previously been
supported by global force and displacement measurements
as well as by wear trace inspection [37,38]. However, no
comparison had yet been performed on the displacement
and stress distributions at mesoscopic scales.

Figures 11 and 12 show a direct comparison (i.e. with-
out any adjustable parameter) between the measured and
predicted displacement fields, averaged over the azimuthal
angle θ, in steady sliding and during the loading phase, re-
spectively. In steady sliding (Fig. 11), all ux(r) curves at
all loads have been rescaled by µaH

2, with µ =< µd >=<
Q(t ≥ ts) > /P and aH is the Hertz contact radius com-
puted using the value of the Young’s modulus E deduced
from the JKR test, i.e. E = 3.43 MPa. The agreement
with CM is found good at all normal loads P . During the
transient loading (Fig. 12), a similar overall agreement
is achieved. However, a closer look reveals that signifi-
cant deviations occur as Q increases, becoming more pro-
nounced as Q reaches Qs. To quantify these deviations,
Fig. 12b displays, on the example of P = 0.3 N, the dif-
ference ∆ux(r) between the measured displacements and
CM’s predictions at 4 different positions, 3 within the con-
tact (r = {0, 0.5aH , aH}) and 1 outside of it at r = 1.5aH ,
as a function ofQ. As clearly shown,∆ux(r) increases with

tion coefficients are equal, and thus predicts no static overshoot
in the Q curve.
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Fig. 12. (Color online) (a) ux/aH versus r/aH during the
loading phase for P = 0.3 N (aH ≈ 1.857 mm), shown for one
out of 8 images, i.e. every 1 second. Points are the measured
displacements. Solid lines represents Cattaneo-Mindlin’s model
predictions with E = 3.43 MPa. All curves have been arbitrar-
ily shifted vertically to ease visualization. (b) Deviation ∆ux
between ux(r) measured and CM’s predictions versus Q for
r ∼ 0 (•), r = 0.5aH (2), r = aH (×), and r = 1.5aH (+). The
color code is the same as in (a).

Q reaching a maximal value of a few µm when Q ∼ Qs at
all points r. Such deviations will be extensively discussed
further down.

Similarly, the tangential stress fields σxz(x, y) were an-
gularly averaged to obtain σxz(r) at all shear loads Q
(Fig. 13). When Q = Qs, if one assumes that Amontons-
Coulomb’s friction law remains valid at a local length
scale, one expects the shear and normal stresses to be
related with σxz = µsσzz. Taking Hertz’s pressure pro-
file7 for σzz, we have computed µsσzz. Figures 13a and
13b clearly show a rather good agreement between Hertz
(black solid line) and our experimental measurements, ex-
cept for a small tail at the edge of the contact. The latter
presumably results from the multi-contact characteristics
of the interface, and is to be related to the tail in the in-

7 In Hertz’s contact theory, σzz(r) = σ0

√
1− r2/aH2 with

σ0 =
(

6PE∗2

π3R2

) 1
3

and E∗ = E
1−ν2 is the reduced modulus.

Fig. 13. (Color online) Angularly averaged stress fields
σxz(x, y) at P = 0.2 N (a) and P = 0.7 N (b). On both plots,
the dashed line curve represents µsσzz(r) where σzz(r) is here
the Hertz pressure profile taking for E the optimum values ob-
tained from the inversion procedure and given in the inset of
Fig. 9. Small Q curves are shown in blue, while high Q curves
are in red. Profiles are shown every 1.25 second. CM’s stress
profiles were smoothed out with the correlation box size λ. (c),
(d) σxz(r = 0) and σxz(r = 0.5a) versus Q for the data shown
in (a) and (b) respectively.

tensity profiles as discussed earlier in section 2.3.1. When
Q < Qs, the stress profiles have qualitatively the same
radial dependence as predicted by CM’s model and indi-
cated with the dashed lines (Fig. 13a and b). Quantita-
tive analysis however reveals that deviations are clearly
present as shown for σxz(r = {0, 0.5a}) on Figs. 13c and
d. Yet, these stress profiles provide a mean to extract the
diameter of the stick region c. In CM’s model, σxz is max-
imum at r = c. Assuming that it is still true in our case,
it is thus possible to give an estimate of c and compare it
to CM’s predictions given by Eq. 4 (Fig. 14). Clearly, the
agreement for such a macroscopic quantity is good, even
though the amplitudes of σxz are not exactly captured by
CM’s stress predictions.

6 Local constitutive law of friction

At this point, we have shown that our measurements agree
with CM’s model, not only qualitatively with the existence
of an inner stick region surrounded by a growing annulus
of slip, but also quantitatively since both displacement and
stress distributions are found to follow reasonably well the
predicted shape and amplitude. However, close compari-
son reveals discrepancies, the most striking being that the
displacement in the vicinity of the center of the contact
is not strictly null during the transient phase, but slowly
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Fig. 14. (Color online) Tangential load dependence of c (•)
compared to CM’s model predictions (thin solid lines, Eq. 4)
for two normal loads, respectively P = 0.2 N and P = 0.7 N.
The color code is the same as used in Figs. 3 and 5. Sub-
pixel determination of c was obtained by fitting σxz around its
maximum value with a second order polynomial.

Fig. 15. (Color online) (a) σxz
σzz

versus ux for P = 0.7 N and

at different r taken every 70 µm between 0 and aH −
√
Rh.

Small r valued curves are shown in dark blue, while largest r
valued curves are in dark red. (b) σxz

µσzz
versus ux/(µL) for the

same load at different r. The solid black curve is 1− e−α with
α a dimensionless increasing number and corresponds to the
predictions of Eq. 5.

increases with Q as evidenced in Fig. 12b. This observa-
tion is at odds with the rigid-plastic-like constitutive law
assumed in CM’s model, which implies that the displace-
ment ux at the center of the contact should remain null
as long as σxz ≤ µsσzz. A possible explanation can be
found when considering the principle of the DIC measure-
ment itself, which is based on correlation boxes contain-
ing pixels corresponding to both micro-contacts and out-
of-contact regions. Contrary to experiments with smooth
marked PDMS such as in [16,17], the measured displace-
ments are thus averaged over the thickness h of the rough
layer and combine two intricate contributions: true slip at
the micro-contacts and elastic shear deformation of the
rough layer.

In order to characterize the local shear behavior of the
interface, we examine the relationship between the tan-

gential stress σxz and displacement ux measured at var-
ious positions r within the contact. Assuming that the
pressure profile σzz is given by Hertz’s contact theory, we

compute the ratio σxz(r)
σzz(r)

as a function of the displacement

at positions r, ux(r). Figure 15a shows, on the example of
P = 0.7N, the typical measured behavior obtained for all
normal loads P . Two distinct regimes can be identified.
At small ux, σxz/σzz increases quasi-linearly with ux. At
large ux however, σxz/σzz asymptotically reaches a con-
stant value. This observation can be understood as a direct
consequence of the shear response of the multi-contact in-
terface. This problem has been theoretically analyzed by
Bureau and coworkers in the context of a plane-on-plane
frictional contact configuration [39]. The surface topogra-
phy is described using Greenwood-Williamson’s model [40]
by an assembly of spherical asperities of equal radius, and
whose heights are randomly distributed with an exponen-
tial distribution. In addition, the response of each asperity
upon tangential loading is described by CM’s model. The
macroscopic normal and shear forces P and Q are dis-
tributed uniformly over the multi-contact interface. The
model predicts the evolution of the ratio Q/P as a func-
tion of the relative displacement δ of the centers of mass
of both solids in contact, in the form:

Q

P
= µ

(
1− e−

δ
µL

)
(5)

where µ is a microscopic friction coefficient and L = 2−ν
2(1−ν)h

is an elastic length whose value is controlled by the rms
roughness of the interface h, and which depends on the
material properties only through the Poisson’s ratio ν.
This prediction allowed the authors to interpret global
friction force vs displacement measurements at the inter-
face between two Plexiglas surfaces submitted to minute
shear oscillations.

In our sphere-on-plane configuration, the interfacial
stress field is not uniform. However, one may expect that
at intermediate length scales, smaller than the macro-
scopic contact size but larger than the inter-asperity dis-
tance, the local ratio between both components σxz and
σzz also obeys Eq. (5). The validity of this result is demon-
strated in Fig. 15, in which the local stress ratio is plotted
as a function of the measured displacement, for various
radii r and for P = 0.7 N (Fig. 15a). The different curves
exhibit very similar behaviors. However a slight pressure
dependence is visible at large displacements, which can be
corrected for by dividing each curve using the asymptotic
friction coefficient µ (i.e. the shear-to-normal stress ratio
measured at large ux). This yields a master curve, shown
in Fig. 15b, which can then be fitted using Eq. 5. Com-
bining all 6 experiments at different normal loads P , the
fitting parameters are found to have very little dependence
with σzz with µ = 0.93 ± 0.08 and L = 0.80 ± 0.23 µm.
The local friction coefficient µ is found consistent with
the macroscopic static friction coefficient µs (see Fig. 8).
The value of the elastic length is to be compared with
L = 0.89 µm predicted within Bureau et al.’s model when
considering the Poisson’s ratio ν=0.5 of PDMS and the
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rms roughness h = 0.595 µm of our surface (see Section
2.2).

This quantitative agreement suggests that Bureau et
al.’s macroscopic model for the shear response of multi-
contact interfaces can be extended to mesoscopic scales. It
also shows that the observed deviations from CM’s model
are fully compatible with an elasto-plastic-like behavior of
the rough interface, not taken into account in Amontons-
Coulomb friction law. In this respect, the type of measure-
ments performed here can be used to estimate the shear
stiffness k of a multicontact interface, a quantity which
has recently received significant attention (see e.g. [41–
44]). By extending Bureau et al.’s model locally, one can
define k as the initial slope of the curves in Fig. 15, i.e.

k =
(
∂σxz
∂ux

)
ux=0

= σzz
L . Taking 25kPa as a typical pres-

sure value in our experiments, one finds k ∼ 30 kPa/µm
to be the corresponding typical shear stiffness.

A few additional experiments were performed for a dif-
ferent roughness (h ∼ 1.3 µm) and different driving ve-
locities up to 20 µm/s in order to test the robustness of
these measurements. In the transient regime (Q ≤ Qs),
the results appear to be consistent with the observations
reported in this work (Figs. 11–14 and Fig. 15), provided
the data is rescaled with respect to the velocity and max-
imum shear force. In contrast, the long time behaviors
(Q > Qs) appears to depend on both the driving velocity
and the elastomer’s curing protocol [45]. The characteris-
tics of these long transients remain unexplained to date
and are beyond the scope of the present work.

7 Conclusion

Building on Chateauminois et al.’s earlier work [16,17],
we have developed a novel imaging technique to probe lo-
cally the spatial distribution of tangential displacement
and associated shear stress averaged over the micrometric
thickness of a heterogeneous multi-contact interface. The
method, based on Digital Image Correlation, uses both
micro-contacts and micro-asperities as displacement trac-
ers, yielding a sub-micrometer resolution in the measured
displacement with a typical 140 µm spatial resolution. We
emphasize that this technique is only suited for rough elas-
tic surfaces against smooth rigid bodies.

This method was used to study the transition from
static friction to macroscopic sliding of a smooth glass
sphere tangentially loaded against a microscopically rough
elastomer plane. This model geometry allowed us to di-
rectly compare the measured micro-mechanical fields to
a classical model by Cattaneo and Mindlin. We showed
that their model does capture reasonably well both the
shape and amplitude of the measured displacement and
stress fields. However, close comparison reveals that signif-
icant deviations occur, which have been shown to involve
a characteristic length scale of the order of the micromet-
ric surface roughness. In this respect, we characterized the
elastic shear response of our multi-contact interface prior
to slippage, which is ignored in CM’s model. The latter

was shown to be well captured by the model of Bureau et
al.’s developed in [39].

Overall, the present study suggests the need to replace
the rigid-plastic-like Amontons-Coulomb friction law with
an elasto-plastic constitutive friction law in CM-like deriva-
tions of the displacements/stress fields, and more gener-
ally in any micromechanical analysis of contact mechanics
problems (as done in e.g. [46]). The effective modulus of
the elastic part of this constitutive law is (i) proportional
to the local applied pressure and (ii) inversely proportional
to the thickness of the rough interfacial layer. The type of
measurements developed and validated in this work opens
the way for more focused studies in any other contact
geometry or loading configurations, for which no explicit
model might be available. The time-resolution of the mea-
surements being entirely controlled by the frame-rate of
the imaging system, we anticipate that the very same
method could also be used in the fast transient regimes
involved in frictional instabilities.

The authors are indebted to Antoine Chateauminois of Lab-
oratory PPMD of ESPCI for his valuable help on the inver-
sion procedure and to both Antoine Chateauminois and Chris-
tian Frétigny of PPMD, ESPCI for fruitful discussions. This
work was partly supported by ANR-DYNALO contract NT09-
499845.
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43. C. Campaná, B. N. J. Persson, and M. H. Muser, J. Phys.

Cond. Mat. 23 085001 (2011).
44. M. E. Kartal, D. M. Mulvihill, D. Nowell, and D. A. Hills,

Tribol. Int. 44, 1188 (2011).
45. A. Kurian, S. Prasad, and A. Dhinojwala, Macromolecules

43, 2438 (2010).
46. A. Brzoza, and V. Pauk, Archive of Applied Mechanics 78,

531 (2008).


