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Joint Research Unit of the University of Technology of Belfort-Montbéliard (UTBM)  
and the University of Franche-Comté (UFC) – EA 3898 
Rue Thierry Mieg, F-90010 Belfort, France 
 
Abstract — The authors present a general computation of the time-varying magnetic flux 
density distribution of high-speed surface mounted permanent magnet (PM) motors (SMPMM). 
It deals with an analytical model (AM) which is based on a two-dimensional (2-D) analysis in 
polar co-ordinates and solves the governing Helmholtz/Laplace field equation in the air-
gap/magnet/rotor yoke regions, with due account of the eddy-current reaction field. It enables 
the parasitic eddy-current losses in the turning parts (i.e. PM and rotor yoke) to be calculated 
for SMPMM, having either internal or external rotor topologies and overlapping stator 
windings. This analysis accounts for both time and space magnetomotive force (MMF) 
harmonics, but neglects the influence of the stator slotting. The analytical results are compared 
with the ones obtained by numerical analysis using the finite-element method (FEM) and show 
a good agreement. 
 

1. INTRODUCTION 
 
High-speed brushless permanent magnet (PM) motors 
with surface-mounted PM are likely to be a key 
technology for many future applications of motion 
control and drives systems, since they lead to high 
efficiency, small size and light weight [1]. In order to 
maintain the mechanical integrity of a PM machine rotor 
intended for high-speed operation, the rotor assembly is 
often retained within a retaining sleeve, which may be 
either conducting or non-conducting [2]. In these types of 
machines, the conducting retaining sleeve, the PM, and 
the rotor back-iron are exposed to high order flux 
harmonics which are not synchronous with the rotor. The 
parasitic eddy-current losses, caused by these non-
synchronous fields, are a well known problem in 
conventional synchronous machine design. More 
specifically, the losses in the turning parts result from 
both stator slotting permeance harmonics [3-5] and MMF 
harmonics which are of two types: (a) MMF harmonics 
caused by the discrete positions of stator winding 
conductors [6-8], and (b) MMF harmonics caused by 
time harmonics in the stator current, which result from 
six-step commutation [9-11] and Pulse-Width-
Modulation (PWM) [12]. 
Most of the time, the parasitic eddy-current losses tend to 
negligible for small actuator motors and low speed 
machines, but are of considerable amount in large 
machines used, e.g., in electric and hybrid propulsion 
systems. Hence, the ability to predict these losses is very 
important for the machine designers in order to evaluate 
the loss effect on the temperature rise and to avoid 
thermal stress and magnet damage. 
A full study of the magnetic fields and induced eddy-
currents can be made using time stepping finite-element 

analysis [4, 6]. But these techniques are very time 
consuming – due to the combination of magnetic non 
linearity and the requirement to model the relative 
movement of the rotor and stator – and, therefore, not 
suitable for design studies and optimization. Further, 
since the induced eddy-currents can be highly not 
uniformly distributed, a fine discretisation may be 
necessary to accurately model skin effect, which, in turn, 
may give rise to numerical instability issues. Then, the 
AM are often preferred for predicting the eddy-current 
losses in the turning parts at the design stage. It is thus 
necessary to solve the diffusion equation [3, 5, 9-12] in 
order to take into account the influence of the eddy-
current reaction field. 
In order to satisfy the continuing request for improving 
the design's precision and generality, the authors have 
developed a 2-D polar co-ordinate AM for calculating the 
eddy-current losses in the turning parts of high-speed 
SMPMM, with a non-conducting retaining sleeve, having 
either internal or external rotor topologies and 
overlapping stator windings. It involves resolution of 
Helmholtz/Laplace’s equations in the air-gap/PM/rotor 
yoke regions using the complex Fourier's series and the 
method of separating variables. The main originality of 
this AM that it makes it possible to predict the time-
varying magnetic flux density in rotor steel, contrary for 
example to the AM is presented in [11]. As in [9-12], the 
method is general because it accounts for curvature, time 
and space MMF harmonics, and effect of the eddy-
current reaction field. However, as in [11], it neglects the 
air-gap permeance variation due to stator slotting. With 
these assumptions, the influence of the eddy-currents on 
the inducing field and the losses in the turning parts are 
clarified. For a given machine the evolution of these 
losses versus the rotational speed is given. Finally, the 
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Fig. 1. Motor topologies (a) real (b) simplified with a (i) external or 

(ii) internal rotor. 

analytical results are compared with the ones obtained by 
numerical analysis using the FEM [13]. 
 
2. MATHEMATICAL APPROACH 
 
A. Problem Description and Simplifying Assumptions 
 
The SMPMM for both internal and external rotor 
topologies and the parameters of these geometries are 
presented in Fig. 1.a. The main assumptions are: 1) End 
effects are ignored; 2) The PM with p 1α =  and the rotor 
yoke are homogeneous, isotropic, and characterized by 
the constant relative magnetic permeabilities, rIIµ  and 

rIIIµ , and constant electrical conductivities, IIσ  and IIIσ ; 
3) The permeability of stator laminations is assumed to be 
infinite, thus there are no eddy-current losses in the 
stator; 4) The saturation effects of the armatures are 
neglected; 5) The permeance variation due to stator 
slotting is neglected; and 6) The stator winding is 
represented by an equivalent linear distribution over the 
stator slot openings. 
 
B. Slotted Stator Modification 
 
For Brushless PM machines with a slotted stator, the 
effect of slotting may taken into account by introducing a 
Carter's coefficient cK . In fact, the slotted stator is 
transformed into a slotless stator (see Fig. 1.b.) by 
applying this coefficient which is approximated by [15] 
 

( )c t t extK g= τ τ − γ ⋅ , (1) 
 
where tτ  is the stator tooth-pitch; ext m rmg g h= + µ ; g  
is the actual air-gap length; rmµ  is the relative magnetic 
permeability of the PM and mh  is their radial thickness; 
and the slot-width reduction factor γ  is given by 
 

( )1 24 tan ln 1− γ = ⋅ β ⋅ β − + β π  
, (2) 

 
where ( )0 extb 2gβ = ; 0b  is the width of the stator slot 
opening. 
Therefore, the effective air-gap g′  and the equivalent 
armature bore radius sR′  are given, respectively, by 
 

( )c extg g K 1 g′ = + − ⋅ , (3.a) 

( )s s s c extR R k K 1 g′ = + ⋅ − ⋅ , (3.b) 
 
where sR  is the radius of the stator surface adjacent to 
air-gap, and sk  is the index of motor topologies ( sk 1= :
  

 internal rotor or sk 1= − : external rotor). 
 

C. Stator Excitation Functions 
 
In a Brushless PM machine, the phase winding current 
waveform (for 180°e squarewave conducting mode), 
which may be either analytical or numerical, contains 
significant harmonics. These can be expressed as a 
complex Fourier series, as following: 
 

( )
u

0
e

2j u t
m

ui t I e
+∞

=−∞

π ⋅ ⋅ ω ⋅ −ϕ− ⋅ 
 

 
 = ℜ ⋅ 
  
∑

g

g , (4) 

 
where g  is the index of phases (A: 0, B: 1, and C: 2); u  
is the time harmonic orders ( u 0≠  and odd); uI  is the 

stator harmonic current of order u ; j 1= − ; 0ω  is the 
rotor angular velocity (electrical); t  is the time; ϕ  is the 
phase displacement of the current in relation to the 
voltage; and m  is the number of phases. 
The stator resultant MMF waveforms produced by the 
overlapping m-phases stator windings, derived from an 
analytical prediction of the current waveform, can be 
obtained by applying complex Fourier analysis: 
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u v
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uv

j t vp
m s mF t, F e
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where ( ) ( )uv s 0t, u tΘ = ⋅ ω ⋅ − ϕf ; v  is the spatial 
harmonic orders ( v 0≠  and odd); p  is the number of 
pole pairs; sΘ  is the mechanical angular position of the 
stator  (the position s 0Θ =  is defined in Fig. 1); and 

m uv
F  represents the complex harmonic amplitude of 

MMF which is defined by: 
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where s 0,1,...,= +∞ ; N  is the number of series turns per 
phase; 0 0 sb Rα = ; and 

v v v v vwf sof wof wdf itfK K K K K= ⋅ ⋅ ⋅  
is the winding factor with [14]: 

- 
vsofK  is the slot-opening factor: 

 

v
0 0

sofK sin vp vp
2 2
α α   = ⋅ ⋅   

   
, (7.a) 

 
- ( )vtpfK x  is the stator tooth-pitch factor: 
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- 

vwofK  is the winding opening factor: 
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- 

vwdfK  is the winding distribution factor: 
 

( ) ( )vwdf tpf tpfv v
K K q K 1= , (7.d) 

 
- 

vtifK  is the tooth inclination factor: 
 

( )v vtif tpf iK K y= , (7.e) 
 
where pτ  is the pole-pitch; t t s sR 2 Qα = τ = π ; 

sQ 2p m q= ⋅ ⋅  is the total number of slots; q  is the 
number of stator slots per pole per phase; cN  is the 
number of layers; iy  is the span of tooth inclination; 

1 1N m q N′= ⋅ − ; 1N′  is the number of slots between two 
serial consecutive conductors in the first layer; and 2N  is 
the number of slots between two consecutive layers. The 

ratio of cp pτ τ , with cpτ  the coil span, permit to define 
the winding pitch 
 

( )wp 1 2 t py 1 N N = − + ⋅α τ  . (8) 
 
By dividing equation (5) by 0 0 sb R′ ′= α ⋅  the width of the 
stator slot opening modified by cK , the equivalent 
current density distribution at the stator surface can be 
written as: 
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D. General Differential Equations in Polar Coordinates 
 
By assuming that the term D t∂ ∂

ur
 is negligible in 

comparison with the conduction current density J
r

, the 
Maxwell's equations are written, as following: 
 

( ) Brot E
t

∂
= −

∂

uruuuuuuurr
 Faraday's law, (10.a) 

( )div B 0=
ur

 Magnetic flux conservation, (10.b) 

( )div J 0=
r

 Electric charge conservation, (10.c) 

( )rot H J=
ur r

 Ampere's law, (10.d) 

rB H B= µ ⋅ +
ur ur uur

 Magnetic material equation, (10.e) 

J E= σ ⋅
r ur

 Ohm's law, (10.f) 
 
where E

ur
 is the electric field vector; B

ur
 is the magnetic 

flux density vector; J
r

 is the eddy-current density vector; 
H
ur

 is the magnetic field vector; 0 rµ = µ ⋅µ ; 0µ  is the 
permeability of free space, rµ  and σ  are the relative 
magnetic permeability and the electrical conductivity of 
the material. The magnetic vector potential A

ur
 is defined 

by 
 

( )B rot A=
uuuuuuuurur ur

 with ( )div A 0=
ur

 Coulomb's gage. (10.g) 

 
In order to obtain the time-varying armature reaction 
magnetic flux density distribution and the associated 
losses in the turning parts due to ( )m sJ t,Θ  at the stator 
surface, it is necessary to solve the diffusion equation in 
the rotating reference frame rΘ  (the position r 0Θ =  is in 
the center of a North magnet, see Fig 1). The domain of 
study consists of three concentric regions (see Fig. 1.b.), 
of constant thickness and permeabilitie, namely the air-
gap modified by cK  (Region.I), the PM (Region.II), and 
the rotor yoke (Region.III). Using equations (10), and 



neglecting the end effects ( z
ri ri zA A u= ⋅

uuur uur
 and z

zJ J u= ⋅
r uur

), 
the time-varying armature reaction magnetic vector 
potential verifies the Laplace's equation in Region.I 
 

( )z
ri rA t,r, 0∆ Θ =I , (11.a) 

 
and the Helmholtz's equation in Region.II/III 
 

( ) ( )
uv

2z z
ri r ri rA t,r, A t,r, 0∆ Θ − Θ δ =k k k , (11.b) 

 
where k  is the index of conducting regions 
(II: Region.II, and III: Region.III), and 

uv
δk  represents 

the complex skin depth of the conducting regions which 
is defined by 
 

( )
uv

uv
0

1 2
1 j 1 j u v

α
δ = = ⋅

+ + + ⋅σ ⋅µ ⋅ω
k

k
k k

, (12) 

 
E. General Solutions In Polar Coordinates 
 
Assuming that the stator iron is infinitely permeable, the 
boundary condictions at the interface between the 
different regions, ( t∀  and rΘ ), are defined by 
 

( ) ( )ri s r s 0 m rB t,R , k J t,Θ ′ Θ = − ⋅µ ⋅ ΘI , (13.a) 

( ) ( )ri m r rII ri m rB t,R , B t,R ,Θ ΘΘ = ν ⋅ ΘI II , (13.b) 

( ) ( )r r
ri m r ri m rB t,R , B t,R ,Θ = ΘI II , (13.c) 

( ) ( )rII ri r2 r rIII ri r2 rB t,R , B t,R ,Θ Θν ⋅ Θ = ν ⋅ ΘII III , (13.d) 

( ) ( )r r
ri r2 r ri r2 rB t,R , B t,R ,Θ = ΘII III , (13.e) 

( )r
ri r1 rB t,R , 0Θ =III , (13.f) 

 
where r r1ν = µk k  is the relative magnetic reluctivity of 
conducting regions. 
By using the method of separating variables and by 
solving the equations (11) with the equations (13), the 
complex Fourier's series of the armature reaction vector 
magnetic potential can be obtained. In each region, the 
equation (10.g) gives the radial and tangential 
components of the time-varying armature reaction 
magnetic flux density vector in complex Fourier series: 
 

( ) ( ) ( )

u v

uv r
e

uv

j t vpr / r /
ri r riB t, r, B r e

+∞ +∞

=−∞ =−∞

 ⋅ + ⋅ΘΘ Θ  
  Θ = ℜ ⋅ 
  
∑ ∑j j

g , (14) 

 
where ( ) ( ) ( ) ( )uv 0t u v t v 2= + ⋅ ω ⋅ − ϕ + ⋅ ψ − πg ; j is the 
index of the region (I: Region.I, II: Region.II, and 
III: Region.III); ψ  is the phase displacement of the 
current in relation to the electromotive force (EMF); and 

( )
uv

r /
riB rΘ

j  represents the various harmonic amplitudes of 

the radial and tangential components for the 
( )r /

ri rB t,r,Θ Θj  which are given in the Tab. I. We can 
notice that these amplitudes depend mainly on u , v , p , 

uvmJ , sk , the various adimensional ratios of regions (see 

Tab. I), and the modified Bessel functions of the first and 
second kinds of order vp , i.e. ( )vp �I  and ( )vp �K . 
 
F. Parasitic Eddy-Current Losses 
 
The average eddy-current losses in the conducting 
regions, over an electrical cycle 0T 2= π ω , can be 
calculated from Poynting's theorem [9-12]: 
 

{ }e

2 p
zm

ri rr R
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p R LP J B d
π

Θ ∗

=

⋅ ⋅
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k

k
k k k

k k
, (15) 

 
where Rk  is the radius of conducting regions (i.e. 
Region.II: mR , and Region.III: r2R ), and mL  the axial 
length of PM. 
By introducing the equations (10.a), (10.g), and (14) in 
the equation (15), the average eddy-current losses are 
defined in Region.III by 
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u v
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uv uv
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m 9

  

u v
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and in Region.II by 
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u v

e
uv uv

2
m 10

  

u v
P J P
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∑ ∑II IIIC , (16.b) 

 
where 

uv9C  and 
uv10C  are the harmonic coefficients of 

losses in the two conducting regions, which are given in 
the Tab. I. It can be noted that the first term in the above 
expression corresponds to the average parasitic eddy-
current losses in the turning parts, Ptp . 
One can remark that, in the equations (16), these average 
eddy-current losses are proportional to the square of the 
current. The combinations of the time harmonic u  and 
the spatial harmonic v  for which ( )u v 0+ =  are 
synchronous with the rotor, and, therefore, do not create 
eddy-current losses, but contribute to the generation of 
torque. In a Brushless SMPMM, combinations of time 
and spatial harmonic components for which 
( )u v 6, 12, 18,...,+ =  are not synchronous with the rotor, 
and, therefore, contribute to generation of the average 
eddy-current losses. 



Table I 
Main harmonic amplitudes, coefficients and adimensional ratios of AM. 

Regions Components The harmonic amplitudes of the time-varying armature reaction magnetic flux density vector 
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Fig. 2. The analytical and numerical eddy-current losses in the two 

conducting regions. 

3. COMPARISON WITH FINITE ELEMENT 
SIMULATIONS 

 
The developed AM has been applied to various motor 
topologies. We give the results of a 2-pole, 10000 rpm, 
500 W, 3-phase, Brushless motor with an internal rotor 
topology whose main parameters are given in Tab. II. The 
machine was surface-mounted, parallel magnetised 
sintered Nd-Fe-B magnets, and had a two slot/pole/phase 
overlapping stator winding. 
Fig. 2. shows the analytical and numerical eddy-current 
losses in two conducting regions versus the time for an 
operating speed of 10000 rpm and for sinusoidal phase 
current waveforms, with ( I 3.343 A=  RMS). One can 
remark that the average eddy-current losses in Region.III 

are negligible in comparison with the losses in Region.II 
and that the agreement of the results of both analytical 
and numerical calculations is quite good (less than 2 %). 
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Fig. 3. Losses in load motor mode versus motor speed in the turning 

parts. 
 

Table II 
Main parameters of 2-pole, 10000 rpm, 500 W, 3-phases, Brushless 

SMPMM with internal rotor 

Parameters Values 
Axial length of PM, mL  45 mm  

Carter's coefficient, cK  1.011  

Ratios of 0 tb τ  0.2  

Ratios of m sR R′ , r2 mR R , r1 r2R R  0.947 , 0.737 , 0  

Conductivity of Region.II, IIσ  ( ) 160.694 10 m −× Ω ⋅  

Conductivity of Region.III, IIIσ  ( ) 164.227 10 m −× Ω ⋅  

Relative permeability of Region.II, rIIµ  1.029  

Relative permeability of Region.II, rIIIµ  1123  
Number of series turns per phase, N  48  
Number of layers, cN  2  
Span of tooth inclination, iy  0  

winding pitch (shortening step), wpy  5 6  

Fig. 3. plots the losses in load motor mode versus the 
machine's rotational speed for the current level, 
I 3.343 A=  RMS. The average eddy-current losses are 
given for the whole rotor (i.e. in the turning parts) with a 
slotted stator and a slotless stator. It can be observed that 
these losses are proportional to the square of the speed, 
due to the increased of the skin effect. One could also 
note that the losses resulting from stator slotting 
permeance harmonics are negligible because of the low 
ratios of 0 tb τ . 
 
 
4. CONCLUSION 
 
A 2-D AM in polar co-ordinates has been developed to 
estimate the parasitic eddy-current losses in the turning 
parts for high-speed SMPMM having either internal or 
external rotor topologies and overlapping stator windings. 
This model accounts for curvature, time and space MMF 
harmonics, and effect of the eddy-current reaction field, 
but, it neglects the effect of the slotting. The accuracy of 
the AM has been proved by comparison with FEM 
simulations. A possible outlook of the work is now to 
develop an AM taking into account the slot effect. 
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