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Abstract — An exact two-dimensional (2-D) analytical 
model (AM) of slotless permanent magnet (PM) machines in 
polar coordinates is used to determine the analytical 
equations of the air-gap flux density at no-load operation. The 
authors show that, for a radial magnetization, there is an 
optimal magnet thickness which permits to maximize the no-
load flux density. In order to use easily and directly this 
optimal value during the design of surface mounted PM 
motors (SMPMM), the authors propose an original analytical 
expression of this maximum magnet thickness that have been 
obtained by interpolation of the values given by several 
analytical computations. This interpolation function could be 
applied to SMPMM having a parallel or radial magnetization 
direction. 
 

Index Terms — Numerical interpolation, no-load air-gap 
flux density, magnet thickness, parallel and radial 
magnetization, synchronous permanent magnet machines. 

I. INTRODUCTION 
HE magnet thickness is a significant parameter for all 
the PM machines, since it influences the efficiency, the 

demagnetization withstand and the cost. Generally, in the 
optimization processes of the PM machines, one always 
tries to minimize the magnet thickness, in order to 
minimize the cost of the motor and, at the some time, the 
thickness must be higher than a minimal magnet thickness 
imposed to avoid demagnetizing armature reaction field. 
However this last optimization criterion is not enough. It 
could be more interesting to choose the magnet thickness 
between the demagnetization limit and the maximal limit 
obtained by maximizing the no-load air-gap flux density. 
Indeed, from a 2-D polar coordinate AM, which includes 
both parallel and radial magnetization [1], it is shown that, 
for a radial magnetization, if the magnet thickness is higher 
than a particular value, the air-gap flux density decreases. 
It means that a given value of the flux density can be 
obtained with two solutions of the magnet thickness, i.e., a 
small and a large value. From the optimization procedure 
point of view, this could create difficulties. Since the 
optimization processes are such that all possible 
combinations of parameters are considered, the largest 
value of the magnet thickness can be chosen leading to an 
unnecessary increase of the weight and the cost. Then, this 
solution must be discarded and thus, it is necessary to 
know the maximal magnet thickness which gives the 
maximum no-load flux density in the air-gap. Therefore, 
the authors propose an original analytical expression of 
this maximum magnet thickness. This expression is 

 
 
 
 
 
 
 
 
 
 
 
 
obtained by interpolation of several values of optimal 
thickness computed for various geometrical structures. 
This original analytical expression is a generalized 
equation contrary to [2] which did not take into account of 
the influence of magnet pole-arc to pole-pitch ratio on the 
evolution of the maximum magnet thickness. This 
interpolation function can be applied to the SMPMM 
having both parallel and radial magnetization direction. 
The analytical results are compared with the ones obtained 
by a numerical analysis using the finite-element method 
(FEM) [3]. 

II. A 2-D ANALYTICAL MODEL IN POLAR 
COORDINATES 

A 2-D polar coordinate AM of the SMPMM is used, 
considering the simplified geometry of Figure 1. The main 
assumptions are: 1) End effects are ignored; 2) The 
permeability of both stator and rotor are assumed infinite – 
The saturation effects of the armatures are neglected; 3) 
The conductivities of all regions of the model are assumed 
to be null; 4) The permanent magnets have a linear 
demagnetization characteristic, and are fully magnetized in 
the magnetization direction; 5) The effects of the slotting 
are neglected, but the air-gap is increased by applying the 
classical Carter's coefficient. 

y

x
z

0

r

sR′

rR

g′

Air-gap modified
by Carter’s coefficient

p p
π

α rΘ

mh

r
uΘ
uuur

Slotless stator

Rotor
ru
uur

mR

Magnet
Air-space
between magnets

Region.II

Region.I

 
Figure 1. Typical 4-Pole slotless SMPMSM. 
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The developed 2-D AM in polar coordinates is completely 
detailed in [1]. This model includes both parallel and radial 
magnetization. It enables the no-load flux density to be 
obtained from the solution of the Laplace/Poisson's 
equations by Fourier's series in two regions: the Region.I, 
which is the air-gap modified by Carter's coefficient, and 
the Region.II, which includes the magnets and the air-
spaces between magnets. The developed model differs 
from the model given in [4] because the rotor is 
transformed into an equivalent rotor, where the relative 
magnetic permeability of Region.II, rIIµ , equals to one and 
the remanent flux density of the magnet, rmB , is corrected 
to minimize the error induced by the homogeneity of the 
relative magnetic permeability in Region.II [5]-[6]. The 
no-load flux density, in each region, has been compared to 
the FEM calculations, and the agreement was quite 
satisfying. The no-load flux density magnitude in the air-
gap, i.e., in Region.I, m sR r R′≤ ≤ , can be expressed as: 

( ) m r r
Iv rmc a Iv _ n p r

s s m

R R RB B T , , , ,p,n,r, . .
R R R

⎛ ⎞
= ⋅ α Θ ∀⎜ ⎟′ ′⎝ ⎠

i if p  (1) 

where:  i  is the index of the magnetization direction 
( P⇒i : Parallel or R⇒i : Radial), 

  Iv _ n
if  is a function in Fourier's series which 

depend on the variables listed in the brackets. These 
variables are: sR′ , the inner stator radius modified by 
Carter's coefficient, mR , the outer magnet radius, rR , the 
inner magnet radius, pα , the magnet pole-arc to pole-pitch 

ratio, p , the number of pole-pairs, n , the harmonics 
number, r , the radial position, and rΘ , the mechanical 
angular position of the rotor (the position r 0 rad.Θ =  is in 
the center of a North magnet). 
  rmcB  represents the corrected remanent flux 
density of the magnet at the operating temperature aT  [1]: 

 ( ) ( )rmc a m rm0 rm a a0B T k B 1 B T T .⎡ ⎤= ⋅ ⋅ + ∆ ⋅ −⎣ ⎦  (2) 

where mk  is a correction coefficient of the magnet, rmB∆  
the remanent flux density variation of the magnet when the 
temperature rises 1K, a0T  the ambient temperature of the 
magnet, and rm0B  the remanent flux density of the magnet 
at the temperature a0T . 

III. AN ORIGINAL ANALYTICAL EXPRESSION 
OF THE MAXIMUM MAGNET THICKNESS 

A. EXISTENCE OF THE MAXIMUM MAGNET THICKNESS 
1) IDENTIFICATION OF PARAMETERS 

From equation (1), we can easily note that the equation 
(2) only have an influence on the amplitude of the no-load 
flux density in Region.I. Therefore, considering a linear 
model, the physical parameters of the magnets have no 
influence on the maximum magnet thickness, i.e., maxmh . 

On the other hand the function in Fourier's series, Iv _ n
if , 

which depend on the magnets magnetization direction and 
the geometrical parameters, has an influence on the shape 
of the no-load flux density in Region.I. 

The equation describing the geometrical structure of 
the slotless SMPMM is defined by: 

 ( ) ( )r s m m s m s mR R ,g ,h R R ,g h R g h .′ ′ ′ ′ ′ ′= − = − −  (3) 

where g′  is the air-gap modified Carter's coefficient and 

mh  is the radial thickness of the magnet. 

Introducing this above equation into the function Iv _ n
if , 

we can notice that the key parameters are: pα , p , the 

ratios of m sR R′  and m sh R′  which depend on sR′ , g′  
and mh  [7]. 

2) ANALYSIS OF THE NO-LOAD FLUX DENSITY IN 
REGION.I 

In this analysis, the operating temperature aT  is equal 
to 100°C and the considered magnet has the following 
physical parameters: rm0B 1.08 T=  for a0T 20 °C= , 

rmB -0.12 %/K∆ =  and rm 1.029µ = . 
Figures 2 and 3 show the evolution of the no-load flux 

density in Region.I at the surface of the slotless stator 
according to mh  for p 1= , p 1α = , various values of g′  

and two values of sR′  completely opposed: 10 mm  in the 
first case and 800 mm  in the second case ; these two 
values represent a very small and a very large slotless 
SMPMSM respectively. These curves have been plotted 
considering the two possible magnetization directions. We 
can observe that for parallel magnetization the maximum 
no-load flux density in Region.I corresponds to the 
geometrical limit of the machine, i.e., s r mR R h g′ ′≤ + + . 
This geometrical limit is represented by a rotor armature 
without a back-iron which is not a realistic solution. On the 
other hand, for a radial magnetization, one can remark that 
above a given value of mh , the no-load flux density 
decreases. This may be surprising but this reduction is due 
to the leakages between the two magnets. It can be 
understood by plotting the flux lines between two 
consecutive magnets. For a given value of g′ , these 
leakages increase with mh  [7]. The length of g′  also has 
an influence on the maximal value of the no-load flux 
density in Region.I. This is mainly due to the leakages 
around the edge of the magnets, which increase with g′  
[8]. These different leakages of magnets are represented in 
Figures 4 and 5 for the two magnetization directions and 
two particular given geometrical structures, e.g., p 1= , 

p 1α = , sR 10 mm′ = , mh 5 mm= , and g 1 mm′ =  or 

g 3 mm′ = . 
In conclusion, there is a maximal radial thickness of the 

magnet, which gives a maximum level of no-load flux 
density in Region.I. 
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Figure 2. The evolution of IvBi  at the surface of the slotless 
( sr R′=  and r 0 rad.Θ = ) according to mh  for a parallel 
magnetization, various values of g′ , p 1= , p 1α =  and 

(a) sR 10 mm′ = , (b) sR 800 mm′ = . 
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Figure 4. The different flux leakages between the magnets for a 
parallel magnetization and two given geometries – p 1= , 

p 1α = , sR 10 mm′ = , mh 5 mm= , and (a) g 1 mm′ = , 

(b) g 3 mm′ = . 

0 2 3 4 5 6 7 8 9 101
The magnet thickness (mm)

Evolution of the maximum

FEM
AM

Geometrical zone
s r mR R h g′ ′≤ + +

1: g’= 0.5 mm
2: g’= 1 mm
3: g’= 1.5 mm
4: g’= 2 mm
5: g’= 2.5 mm
6: g’= 3 mm
7: g’= 3.5 mm
8: g’= 4 mm
9: g’= 4.5 mm
10: g’= 5 mm
11: g’= 5.5 mm
12: g’= 6 mm
13: g’= 6.5 mm
14: g’= 7 mm
15: g’= 7.5 mm
16: g’= 8 mm

Th
e 

no
-lo

ad
 fl

ux
 d

en
si

ty
 in

 R
eg

io
n.

I (
T)

0

0.4

0.5

0.6

0.1

0.2

0.3

0.7

0.8

0.9

1
2

3
4

5
6

7
8

9
10

11
12

1314
1516

The magnet thickness
is unrealistic

 
(a) 

1: g’= 0.5 mm
2: g’= 2 mm
3: g’= 4 mm
4: g’= 8 mm
5: g’= 12 mm
6: g’= 16 mm
7: g’= 20 mm
8: g’= 24 mm
9: g’= 28 mm
10: g’= 50 mm
11: g’= 100 mm
12: g’= 150 mm
13: g’= 200 mm
14: g’= 300 mm
15: g’= 400 mm
16: g’= 500 mmFEM

AM

0 200 300 400 500 600 700 800100
The magnet thickness (mm)

Th
e 

no
-lo

ad
 fl

ux
 d

en
si

ty
 in

 R
eg

io
n.

I (
T)

0

0.4

0.5

0.6

0.1

0.2

0.3

0.7

0.8

0.9

1

Evolution of the maximum

1-9

10
11

12
13

14

15

16

Geometrical zone
s r mR R h g′ ′≤ + +

The magnet thickness
is unrealistic
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Figure 3. The evolution of IvBi  at the surface of the slotless 
( sr R′=  and r 0 rad.Θ = ) according to mh  for a radial 
magnetization, various values of g′ , p 1= , p 1α =  and 

(a) sR 10 mm′ = , (b) sR 800 mm′ = . 
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Figure 5. The different flux leakages between the magnets for a 
radial magnetization and two given geometries – p 1= , p 1α = , 

sR 10 mm′ = , mh 5 mm= , and (a) g 1 mm′ = , (b) g 3 mm′ = . 



 
 

B. INTERPOLATION OF THE MAXIMUM MAGNET 
THICKNESS 
1) PROBLEMATIC 

If the 2-D polar coordinate AM of the SMPMM is used 
with a radial magnetization to achieve an optimal design, 
this could lead a bad solutions. Indeed, in particular case, 
two different values of mh  can lead to the same value of 
no-load flux density. The highest solution of mh , which 
can be unrealistic, must be discarded and thus there is a 
need to know the value of maxmh  for a given geometry. It 

is then interesting to have an analytical expression of 

maxmh . But it is not possible to find an symbolic solution 

of the equation Iv mdB dh 0=i . Therefore, we proposed to 
interpolate an original analytical expression of maxmh  as a 

function of the considered parameters. 
In Figure 6, the no-load flux density in Region.I is 

plotted versus mh  for the two magnetization directions, 
two values of p  (namely 1 and 12) and a given 
geometrical structure, e.g., p 1α = , sR 10 mm′ =  and 

g 1 mm′ = . We can see that the magnetization direction of 
the magnets does not have almost any more influence on 
the no-load flux density in Region.I, when p  is high [8]. 

Figures 7 show the saturation effects on the evolution 
of the maximum for a given geometrical structure, e.g., 
p 1= , p 1α = , sR 10 mm′ = , mh 5 mm=  and g 1 mm′ = . 

In this analysis, the materials of the magnetic circuit, i.e., 
stator and rotor, have a saturation flux density, satB , of 
1.75 T and a relative magnetic permeability to the origin, 

r0µ , of 8639. In Figure 7(a) and 7(b), we can remark that 
the saturation of the materials causes an increase of the 
leakages around the edge of the magnets for the two 
magnetization directions. In Figure 7(c), we can then 
observe that with the effects saturation, the maximum no-
load flux density in Region.I begins to disappear in order 
to approach the geometrical limit of the machine. 

These notes and the geometrical limit for a parallel 
magnetization (Figure 2) lead us to use a radial 
magnetization to determine the analytical expression of 

maxmh . And the saturation effects will not be taken into 

account in this interpolation function. 

2) NUMERICAL APPROXIMATION 
By using the computed values of this maximum, we 

can evaluate the ratio of maxm sh R′  versus the ratio of 

m sR R′ . Figures 8(a) and 8(b) show the evolution of these 
standardized magnet curves for various values of p  
(namely 1 to 12) with p 1α =  and for various values of pα  

(namely 0.1 to 1) with p 1=  respectively. We can notice 
that, whatever p  and pα , sR′  doesn't have any influence 

on the shape of standardized magnet curves, contrary to p  
and pα  which decrease them. 
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Figure 6. Influence of IvBi  with mh  for two magnetization 
direction, for two values of p  and for a given geometry – 

p 1α = , sR 10 mm′ =  and g 1 mm′ = . 
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Figure 7. The saturation effects for a given geometry – p 1= , 

p 1α = , sR 10 mm′ = , mh 5 mm=  and g 1 mm′ = : The flux 
lines and color shade for (a) a parallel magnetization, (b) a 
radial magnetization ; and (c) The evolution of IvBi  at the 
surface of the slotless ( sr R′=  and r 0 rad.Θ = ) according to mh . 
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Figure 8. Evolution of maxm sh R′  with m sR R′  for various 

values of sR′  and (a) p  with p 1α = , (b) pα  with p 1= . 

To be able to take into account this phenomenon in a 
design model, a numerical approximation was done. An 
original analytical expression of maxmh  is proposed [2]: 

( )
( ) ( ) ( )2 p,p1 p 2 p

m m
m 1 smax

s s

R Rh p R 1 .
R R

α
α α⎡ ⎤

⎛ ⎞ ⎛ ⎞⎢ ⎥′= ⋅ ⋅ ⋅ −⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟′ ′⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

g
g f

f  (4) 

where 1f , 2f , 1g  and 2g  are the interpolation functions 
of maxmh  which depend on pα  or p , but also on the 

coefficients 1m , 2m ,…, 7m  and 1n , 2n ,…, 12n . The 
coefficients km  and jn  of the interpolation functions are 

determined for various values of p  (namely 1 to 12) with 

p 1α =  and for various values of pα  (namely 0.1 to 1) with 

p 1=  respectively. These coefficients will be evaluated by 
applying a non-linear method, of Levenberg-Marquardt 
type, in order to minimize the error between the function 
and the points calculated by the analytical model. The 
expressions and the evolutions of these interpolation 
functions, the values of these coefficients and the 
interpolation errors are given in the Appendix. 

Thanks to this original analytical expression, it is 
possible to determine of maxmh  for a given geometrical 

structure with an total interpolation error lower than 
2.264%. 

IV. CONCLUSION 
In this paper, an original analytical expression of the 

maximum magnet thickness has been proposed. Indeed, the 
authors have shown that there is effectively a maximum 
magnet thickness which enables to reach a maximum no-
load flux density in the air-gap. The 2-D polar coordinate 
AM of the SMPMM and the interpolated function of the 
maximum magnet thickness both permit now to eliminate 
the too heavy and expensive solutions and to maximize the 
no-load flux density in the air-gap at the same time. 
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APPENDIX 

The interpolation functions of maxmh  for various 

values of p  (namely 1 to 12) with p 1α = : 

 ( ) ( )3
1 2 4

m
1 p m exp m p m .= ⋅ − ⋅ +f  (A1) 

 ( ) ( ) ( )6
5 7

m
2 p 3 p,p g exp m p m .α = α ⋅ ⋅ +f  (A2) 

The values of the coefficients km : 
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0.275m
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Figure A.1. The interpolation functions ( )1 pf  and ( )2 p,pαf  of 

maxmh  for various values of p  with p 1α = . 

The interpolation functions of maxmh  for various 

values of pα  (namely 0.1 to 1) with p 1= : 
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Figure A.2. The interpolation functions ( )1 pαg , ( )2 pαg  and 

( )3 pαg  of maxmh  for various values of pα  with p 1= . 


