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Abstract

In this paper, the authors present an analytical
calculation in order to predict the no-load flux density
in surface mounted synchronous permanent magnet
machines. This analytical model is based on two-
dimensional analysis in polar coordinates and has been
developed for both parallel and radial magnetization of
the magnets. The no-load magnetic vector potential is
established by solving Laplace/Poisson's equations
using the Fourier's series and the method of separating
variables. Two circular regions are considered: the
Region.I, which is the air-gap modified by Carter's
coefficient, and the Region.Il, which includes the
magnets and the air-spaces between magnets. The
analytical results are compared with the ones obtained
by a numerical analysis using the finite-element
method (FEM).

1 TIntroduction

At the present time, the numerical methods for
field computation, such as the finite-elements or the
finite-differences, provide accurate results concerning
the various magnetic sizes of the electrical machines,
with account the saturation etc. But, they are often
time-consuming, in particular for three-dimensional
models, and don't have the advantage to be sufficiently
explicit in comparison with analytical equations.
Therefore, several authors proposed two-dimensional
analytical models in order to predict the flux density in
the synchronous permanent magnet machines [1-7].
Indeed, the accurate knowledge of the magnetic field
distribution is a key issue of the performance
evaluation of permanent magnet motors, such as
demagnetization limit, winding inductances, stator and
rotor losses, back-emf, average and cogging torque,
forces for the prediction of acoustic noise and
vibration spectra, etc. The no-load flux density
waveform is mainly affected by number of pole-pairs,
air-gap length, magnet configuration (the magnet pole-

arc to pole-pitch ratio and the radial thickness of the
magnets) and the direction of the magnets
magnetization [4]. Thus, in design calculations, it is
necessary to study different magnetization patterns
(parallel, radial, etc.), possibly including imperfections
in the magnetization, for a wide range of magnets
shapes. That is why the authors extended their
analytical model to account for the tangential
magnetization component which can appear at the time
of magnet's manufacturing [4-7].

In order to satisfy the continuing request for
improving the design's precision and generality, the
authors have developed a two-dimensional analytical
model in polar coordinates for surface mounted
synchronous permanent magnet machines. This model
includes both parallel and radial magnetization. It
involves the solving Laplace/Poisson's equations using
the Fourier's series and the method of separating
variables. The results of analytical calculations are
compared with the results of numerical simulations
carried out by the finite-element method [8].

2 Analytical Model

2.1 Problem Description and Assumptions

The analysis of a surface mounted synchronous
permanent magnet machine will be developed for the
simplified geometry shown in Fig. 1. The parameters
of this geometry are: the inner stator radius modified
by Carter's coefficient, Ry, the outer magnet radius,

R,, , the inner magnet radius, R,, the radial thickness
of the magnets, h,,, the air-gap modified by Carter's
coefficient, g', the magnet pole-arc to pole-pitch ratio,
o, the number pole-pairs, p.

The main assumptions are: 1) End effects are
ignored; 2) The permeability of both stator and rotor
steels are assumed mnfinite, then the saturation effects
of the armatures is neglected; 3) The conductivities of



all regions of the model are assumed to be null; 4) The
permanent magnets are assumed to be nonoriented
(with no particular direction of magnetization),
isotropic, and having a linear demagnetization
characteristic (rare earth magnets); 5) The slotted
stator is transformed into a slotless stator by applying
the Carter's coefficient.

. Air-gap modified
Region {by Carter’s coefficient

Magnet
Region.IT Air-space
between magnets

Fig. 1. Simplified motor geometry.

2.2 Modeling of the Magnetization Direction using
the Fourier's series

According to the assumptions shown above, in the
rare earth magnets (Neodymium-Iron-Boron and
Samarium-Cobalt), we can liken the demagnetization

characteristic to a linear curve of slope p, ., and
the flux density equals to the remanent one, B, , for a

magnetic field of 0 A/m. Furthermore, an increase of
the operating temperature T, of the magnet causes a
reduction of the remanent flux density and therefore a
drop of the demagnetization curve. This influence is
quantified using a factor AB,, representing the
remanent flux density variation of the magnet when
the temperature rises 1K [2]:

Brm(Ta):BImO [E1+ABI'H1 [qTa_TaO)J (1)

where T,, is the ambient temperature of the magnet
and B, is the remanent flux density of the magnet at

the temperature T, .

The remanent flux density vector depends on the
direction of the magnets magnetization. Fig. 2
compares parallel and radial magnetization
distributions [4]. In polar coordinates, supposing that
the magnets are radially homogeneous, the remanent
flux density vector is thus given by:

Bin (Ts.0;) =B (Ta.©; ) O + By (T,.0, ) hg (2)

where i is the index of the magnetization direction
(i=P: Parallel or i=R: Radial), ©, is the
mechanical angular position of the rotor (the position

©,=0 is in the center of a North magnet),
B, (T,.0;) and BSi(T,.0,) are the radial and
tangential components of the remanent flux density
vector of the magnet. Fig. 3 shows typical waveforms
of these various components, under a pole-pair,
according to the direction of the magnets
magnetization. Then, Bf,(T,.©,) and B (T,.0;,)
can be expressed as Fourier's series:

+00
Z Bgnin(Ta,n) E:os(np [@r) p#l
BI (T,.0,) =" B (3.a)
ot (Ta)0s(0,)+ D Bhy (T,.n)os(np(®,) p=1
n=3,5...
+o00 .
> BO 4(T,.n)Bin(np(®,) p#l
B (T,,0,) =" o (3.b)
Bo i (Ta)Bin(0,)+ > B ,(T,.n)Bin(np(®,) p=1
n=3,5...
where BR, (T,.n), B o(T,.n). Bl on(T,) and  tangential components for the remanent flux density
BS wi(T;) Tepresent the various harmonic  Vector of the magnets. The expressions of these

amplitudes, for np#1 and np =1, of the radial and

harmonic amplitudes are given in the Appendix 1.



Fig. 2. Direction of the magnets magnetization. (a) Parallel
magnetization. (b) Radial magnetization.
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Fig. 3. Waveforms of the radial and tangential components
for the remanent flux density vector of the magnet.
(a) Parallel magnetization. (b) Radial magnetization.

2.3 General Equations In Polar Coordinates

2.3.1 General Differential Equations

The Maxwell's equations of magnetostatic are

rot(H) =j (= 0: No-Load) Ampere's law  (4.a)

Magnetic flux conservation ~ (4.b)

where j is the vector of current density, H is the

magnetic field vector and B is the magnetic flux

density vector. The magnetic vector potential A is
defined by:

B= rot(K) with div (K) =0 Coulomb's gage (4.c)
B and H verify the magnetic material equation:
5= /() ®)

where the function f is dependent on the material
physical properties.

The domain of study consists in four circular
regions (Fig. 1) the slotless stator, the air-gap
modified by the Carter's coefficient (Region.I), the
region including the magnets and the air-spaces
between magnets (Region.II) and finally the rotor.
According to the working assumptions, the magnetic
field of the slotless stator and the rotor can be
considered as null. Therefore, the domain of study is
reduced to two circular regions:

- Region.l: R, <r<R;:

By, =y (Hy, ©)
- Regiondl: R, <sr<R:
BiIIv =Ho mrﬂ(er) [H}Iv +Bi‘m (Ta’er) (7)

where g is the permeability of free space, W (©;)
is the relative magnetic permeability of Region.Il. We
can remark, on the Fig. 1, that pg(©,) is not
constant: Py =1 in the air-space between magnets and
M =My, 10 the magnets.



Using equations (4), (6) and (7), and neglecting the
end effects (AA, =A%0i, ), the no-load magnetic

vector potential, in each region, verifies the following
equations:

AAB =0 (8.2)

1 pa(0r) oARy +a(©,)DAZ, = 1EIb(Ta

o,) 8b
2 00, 00, ) (B0)

where the functions a(©,) and b(T,,0;) are given in
the Appendix 2.

2.3.2 The Assumption of Relative Magnetic
Permeability Homogeneity in Region.Il

To solve the differential equations above, we use
the method of separating variables. The equation (8.a)
is classical, contrary to (8.b) which results in solving a
second-order differential equation with no-constant
coefficients. To eliminate this problem, the rotor is
transformed into an equivalent one, where the relative
magnetic permeability of Region.Il is supposed
constant ( iy (©,) =y )- Contrary to [7], we suppose

that pg equals to 1 and we correct the remanent flux
density of the magnet, By, (T, )., to minimize the error
of computation [2], [4]:

1 + TP B, (Ta) )

Z BJv n T ,5,n Etos(np[@r)
B, (T,.1,0;) =| "™

JV npI(T r Ecos
n=35..

Z BJV a rn Bln(np[@)
B (T,.1,0,) =) "7

Oi
ij_npl(T r Eln
n=3,5...

where j is the index of the region (j=1: Region.I or
RegionID) : B}, ,(T,.r.n). BY ,(T,.r.n),

ot (Tar) and BY i (T,.r) represent the various

j=1:

harmonic amplitudes, in each region, for np#1 and

where B

is the corrected remanent flux density at
the temperature T, and p, is the relative magnetic

permeability of the magnet. We remark that for
M =1.2, the maximum error e =1-k, on the

remanent flux density equals to 8.33%.

By applying the assumption of relative magnetic
permeability homogeneity in Region.II and by using
the equation (8b), the no-load magnetic vector
potential in Region.II verifies the following equation:

B (T..0;)

) (10)

1
AAIIV == E%Bel (Ta=er) -

2.4 General Solutions In Polar Coordinates

The boundary conditions in the two regions are
defined by:

B (R;.©,)=0 (11.2)
B (Rp-©;) =BR (Rp»0; ) ~Boe (T,.0;)  (11.b)
Bl (Rp»©; ) =By (RO ) (11.¢)
BR (R0, ) =B (T,.0;) (11.d)

By solving the equations (8.a) and (10) with the
equations (11), the Fourier's series of the no-load
vector magnetic potential can be obtained. In each
region, the curl of the no-load magnetic vector
potential, (4.c), gives the radial and tangential
components of no-load flux density vector:

pzl

(12.a)
Z BJv n T ,r,n Eos(np[@r) p=1
pzl

(12.b)

Z BJV n T ,I,n Eln(np[@r) p=1

np =1 of the radial and tangential components for the

no-load flux density vector. The expressions of these
harmonic amplitudes are given in the Appendix 3.



3 Comparison with the Finite-Element
Calculations

The developed model has been applied to a three-
phase, slotless permanent magnet brushless motor with
an internal rotor and either parallel or radial
magnetized magnets. For the analytical-numerical
comparison, the geometric sizes of the motor and the

physical parameters of the magnet are: R} =20 mm,

R, =19mm, R,=16mm, p=1, B,y=108T for
T=20°C, AB,=-012%K and p,, =1.029
(Neodymium-Iron-Boron: N30H).

Figs. 4 and 5 show excellent agreement between
analytical and finite-element predicted distributions of
the components of no-load flux density. This is true, in
each region, for both parallel and radial magnetization
and for a, =1 or a, =0.8.
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Fig. 4. Distribution of the radial and tangential components
with a parallel or radial magnetization at T, = 100 °C for
o, = 1. (a) RegionI (r = 195 mm). (b) RegionlIl
(r=17.5 mm).
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Fig. 5. Distribution of the radial and tangential components
with a parallel or radial magnetization at T, = 100 °C for
o, = 08. (a) RegionI (r = 19.5 mm). (b) RegionIl
(r=17.5 mm).

4 Conclusion

A two-dimensional analytical model in polar
coordinates has been developed for surface mounted
synchronous permanent magnet machines. This model
makes it possible to determine the no-load flux density
created by the magnets in Regionl (the air-gap
modified by the Carter's coefficient) and Region.II (the
region including the magnets and the air-spaces
between magnets). To improve the design's precision
and generality, the authors have introduced into the
analytical model the choice between two types of

magnets magnetization: Parallel or Radial. The
agreement of the results of analytical and numerical
calculations is quite good. The maximum error for the
comparison analytical-numerical is 1.41% , which is
reasonable for a analytical model. This error is
primarily due to the assumption of relative magnetic
permeability homogeneity in Region.II.
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Appendix

Appendix 1: The different harmonic amplitudes; for np#1, np =1 and parallel or radial magnetization; of the
radial and tangential components for the remanent flux density vector of the magnets are:

v the harmonic.amplitudes of the radial component:

B (1, )= 22 Pm (1) E{(l ~np) Bin{(l +np) [0, %} (o) &{(1 el 2_1;}}

T[[l - (np)2 :|

(L)= B (1

- y Eﬁsin(apn)+0(pn-|

4B, (T .
B;lflin (T,.n)= % Bln[na g-‘

BI'P

m_npl

4B, (T
B;Iriinpl (Ta:n) = ﬂ_:[—( a) Bin{a 1—2-[:|

(Al.a)

(Alb)

(Al.c)

(Al.d)

V' the harmonic.amplitudes of the tangential component;

T[[l —(np)z}

B...(T )
BS{HPI (T,)= % Eﬁsm(apn) —orprr-|
Bor , (Ty.n) =0
Bgnlinpl (Ta ) =0

o, (1n) = 222 E{(l -1p) Bﬂ{(l +np) %} ~(1+1p) Bin{(l ~np) @, ﬂ}

(Ale)
p

(ALD

(Al.g)
(Alh)



Appendix 2: a(0,)= ;) (A2.9)

om, (1,.0,)
00

(A2b)

T

b(T,.r,0,)= 0a(9;) B, (T, er)—a(Or)EﬁBSi(Tw@r)‘

Appendix 3: The different harmonic amplitudes, in each region, for np#1 and np=1 of the radial and
tangential components for the no-load flux density vector are:

- inRegion.I: R, <r<R;:

V' the harmonic.amplitudes of the radial component:

np np n
Bﬂ,n(Ta,r,n)zBiIVn(Ta,n)E%(};ﬁn] (%] +(RTme GR—m (A3.a)

I
1 N\2
Bi‘;npl(Ta,r)=B§vnpl(Ta)E%H(&] 1 (A3b)

T

v’ the harmonic.amplitudes of the tangential component;

BY o(T,rn) =Bl ,(T,.n) E%[R—mjnp —[i‘.“ an[ﬁnp]ﬁ‘—m (A3.0)

T s s T

(A3.d)

. : R )2
Bglinpl (Ta =r) = Bivfnpl (Ta) E%(TSJ -1

- inRegionll: R, <r<R,:

v the harmonic.amplitudes of the radial component:

. . r np-1 R np-1 R np+1 . R np+1 .
Biy (T,.r.n) =By ,(T,.n) [R_] +[Rfj [—TJ +¢'(T,.n) Eﬁ—r] +np &' (T,,n) (A3.e)
- - r

m m r

v np1(Te-T) =By opr (Ta) Eﬁl +(%ﬂ +@ E%l —ln(RLj + (%]2 m[i—mﬂ ~BE, 1o (T,) (A3.D)

m T

v the harmonic.amplitudes of the tangential component;

np-1 np+1 np-1 np+1
Bg\ilin(Taﬂrrn) :Bilvin(Ta:n) %[}}:r j (&j " _[RLJ ]+ei(Ta,Il) Eﬁ%j ’ —ci (Ta,n) (A3g)

m T

8l = (1)) (2 o o (BB o) o

r m r T



where:

5

=

—_—

—

{3

S—

1

|—E’ﬁ
|—|

ei(Ta,n):ci(Ta,n) Bg'm n(T n
(T,.n) ~ (up +1) & (T, .0)
gi(Ta,n):BSfU(Ta ) +(np ~1) (&' (T,.n)
n(Ton) +np B, 4 (T,.n)
1—(np)2}

di (Ta) :Bx?lilcinpl (T )+B§nc _npl (T )

(A3.)

(A3.)

(A3K)

(A3))

(A3.m)
(A3.n)
(A3.0)

(A3p)

(A3.Q)



