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Abstract. This article presents a review of the most recent theoretical and ex-
perimental results in hydrogen. We particularly emphasize the methods used to
deduce the Rydberg constant R∞ and we consider the prospects for future im-
provements in the precision of R∞.

1 Introduction

The hydrogen atom has a central position in the history of 20th-century physics. As it is
the simplest of atoms, it has played a key role in testing fundamental theories, and hydrogen
spectroscopy is associated with successive advances in the understanding of atomic structure.
The advent of tunable lasers and nonlinear techniques of Doppler free spectroscopy in the
seventies led to major advances in resolution and measurement precision which are described in
references [1,2]. Since, in the nineties, hydrogen spectroscopy has inspired a revolution in the art
of measuring the frequency of light thanks to optical frequency combs [3]. Consequently, several
optical frequencies of hydrogen are now known with a fractional accuracy better than 10−11,
the most precise being the 1S-2S two photon transition which has been measured with a relative
uncertainty of 1.4× 10−14 [4]. Thanks to these advances, the accuracy of the Rydberg constant
R∞ has been improved by several orders of magnitude in three decades. This is illustrated
in the figure 1 which clearly shows the improvements due to laser spectroscopy and optical
frequency measurements. Nevertheless, during the last decade, there has been little progress
with, for example, no important improvement between the R∞ values given by the last two
adjustments of the fundamental constants in 2002 and 2006 [5,6]. In this review, we describe
the analysis of the theoretical and experimental data used to deduce R∞ and we discuss the
prospects for the future improvements in the accuracy of R∞.

2 Energy levels of atomic hydrogen: theoretical calculations

2.1 Theoretical background

Figure 2 shows the energy levels of hydrogen for different steps of the theory. The solution of
the Schrödinger equation gives the same energy levels as the simple Bohr model. The energy
En depends only on the principal quantum number n:

En = −
hcR∞

n2
(1)
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Fig. 1. Relative precision of the Rydberg constant from 1920 to the present.

The Rydberg constant R∞ is known as a function of the fine structure constant α, of the
velocity of light c, of the Planck constant h and of the electron mass me:

R∞ =
α2mec

2h
(2)

This equation which links several fundamental constants is very useful for the adjustment of
the fundamental constants. In particular, as R∞ is very well known, it is a link between the fine
structure constant α and the h/me ratio and it is a way to deduce α from the h/m measurements
[7,8,9,10].

The next step takes into account the relativistic corrections which are given by the Dirac
equation. This equation lifts the degeneracy in j (j is the total angular momentum: j = l±1/2)
and explains the fine structure, but, for instance, the levels 2S1/2 and 2P1/2 are degenerate.
This degeneracy disappears with the corrections due to quantum electrodynamics (QED),which
are responsible for the Lamb shift between the 2S1/2 and 2P1/2 levels, first observed by Lamb
and Retherford in 1947 [11]. In this paper, we wish to give only an idea of the theoretical
calculations in hydrogen and more details are found in text books and recent review papers
[12,13,14].

The hydrogen level energy can be conventionally expressed by the sum of three terms:

En,l,j = EDirac
n,j + ERecoil

n + Ln,l,j (3)

where EDirac
n,j is the energy given by the Dirac equation for a particle with a reduced mass

mr = me(1 + me/mp)
−1 and ERecoil

n the first relativistic correction due to the recoil of the
proton which depends only on the principal quantum number n. The last term Ln,l,j is the
Lamb shift which takes into account all the other corrections: the QED corrections, the other
relativistic corrections due to the recoil of the proton and the effect of the proton charge
distribution. The first two terms of equation 3 are exactly known as a function of the Rydberg
constant R∞, of the fine structure constant α and of the electron to proton mass ratio me/mp.
In contrast, the calculation of the Lamb shift Ln,l,j is very difficult. It is obtained in a series of
terms in powers of α, Zα (Z is the charge of the nucleus and Zα characterizes the interaction
between the proton and the electron), me/mp and the root-mean-square charge radius of the
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Fig. 2. Energy levels of atomic hydrogen for successive steps of the theory. The Dirac equation describes
the fine structure splitting between the j = 1/2 and j = 3/2 levels and QED theory the splitting between
the 2S1/2 and 2P1/2 levels.

proton rp. A very clear review of these different terms is given in the reference [5]. In this paper,
we only present the most recent results.

2.2 Recoil corrections

The first recoil correction is:

ERecoil
n = −

m2
rc

2

me + mp

(Zα)4

8n4
(4)

In terms of frequency, this first correction is about 24 MHz for the 1S level, i.e. 10−8 times the
ionization energy of hydrogen. The following terms of the recoil correction vary as mec

2(me/mp)
2(Zα)4

and mec
2(me/mp)(Zα)5 and they have an exact expression. The next term, which varies as

mec
2(me/mp)(Zα)6, has been calculated in the period 1988-1998 by several authors [15,16,17,18,19,20].

Table 1 summarizes the successive results which have been obtained and shows the difficulty of
this kind of calculations. Finally, the value of this correction is now known with an uncertainty
of 10 Hz for the 1S level.

2.3 Quantum electrodynamics corrections

The corrections due to QED are the main contribution to the Lamb shift. The self energy (SE)
corresponds to the emission and reabsorption of virtual photons by the electron, and the vacuum
polarization (VP) to the creation of virtual electron-positron pairs. A simple explanation of the
self energy is given by the Welton model [21]. Because of the residual energy of the empty
modes of the electromagnetic field (the energy h̄ω/2 of the harmonic oscillators), the electron
is submitted to the fluctuations of the vacuum field which induce fluctuations in its position.
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Table 1. Successive calculations of the term in mec
2(me/mp)(Zα)6 of the correction due to the recoil

of the proton.

Reference Mathematical expression Value for the 1S level (MHz)

[15] mec
2(me/mp)(Zα)6n−3[3− ln(2/Zα) + ...] −26.6 kHz

[16] mec
2(me/mp)(Zα)6n−3[5/2 − ln(2/Zα) + ...] −31.8 kHz

[17] mec
2(me/mp)(Zα)6n−3[5/2 − ln(2/Zα) + 2 ln(1/Zα) − 4.25] +25.2 kHz

[18] There is no term in ln(1/Zα)
[19] mec

2(me/mp)(Zα)6n−3[4 ln(2)− 7/2] −7.4 kHz
[20] Numerical calculation to all orders in Zα −7.16(1) kHz

This effect modifies the Coulomb potential seen by the electron and is particularly important
for the S levels: it reduces the binding energy, i.e. it increases slightly the energy of the S states
(l = 0), because, for the S states, the electron has a large probability |Ψ(0)|2 to be inside the
nucleus. This is the reason for the splitting between the 2S1/2 and 2P1/2 levels (see Figure 2).

For the self energy, the lowest-order radiative correction (called ”one-loop” or ”one-photon”
correction) is given by:

E
(2)
SE =

α

π

(Zα)4

n3
F (Zα)mec

2 (5)

where F (Zα) is a sum of terms in powers of Zα and ln(Zα):

F (Zα) = A41 ln(Zα)−2+A40+A50(Zα)+A62(Zα)2 ln2(Zα)−2+A61(Zα)2 ln(Zα)−2+GSE(Zα)(Zα)2

(6)
There are similar equations for the vacuum polarization correction. All the terms in equation
6 have an exact expression, except the last one GSE(Zα) which has been calculated intensively
since the seventies [22,23,24,25,26,27]. More recently, the one-loop correction to all orders in
Zα has been obtained numerically for the 1S, 2S, 3S and 4S levels with an uncertainty of a
few Hz [28,29].

The following radiative correction takes into account the emission and reabsorption of two
virtual photons. It varies as α2 and is given by:

E(4) =
(α

π

)2 (Zα)4

n3
F (4)(Zα)mec

2 (7)

where:

F (4)(Zα) = B40+B50(Zα)+B63(Zα)2 ln3(Zα)−2+B62(Zα)2 ln2(Zα)−2+B61(Zα)2 ln(Zα)−2+B60(Zα)2+...
(8)

The terms of equation 8 are calculated in references [30,31,32,33,34]. However there is a con-
troversy on the last calculated term B60. For the 1S level, Pachucki and Jentschura obtain
B60 = −61.6(9.2) [35] while Yerokin et al. give B60 = −127(38) [36]. This difference corre-
sponds to 6.6 kHz for the Lamb shift of the 1S level.

2.4 Other corrections

There are many of other terms in the calculation of the Lamb shift which are detailed in
reference [5]: the three-loop radiative corrections, the effect of the creation of virtual pairs
µ+µ− and τ+τ−, the radiative recoil corrections, the self energy and the polarization of the
nucleus, and the effect of the non-zero size of the nucleus. This last term is important and is
given for the proton by:

ENS =
2

3

(

mr

me

)3
(Zα)2

n3
mec

2

(

2πZαrp

λC

)2

(9)
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Table 2. Summary of the calculation of the 1s Lamb shift. The main uncertainties are due to the proton
size correction (about 50 kHz) and to the two-loop corrections (about 3.3 kHz). The uncertainties in the
one-loop correction (SE and VP) are essentially due to the uncertainty in the fine structure constant
α.

Term of the Lamb shift Value for the 1S level Uncertainties

Self-energy (one-loop) 8 383 339.466 kHz 0.083 kHz
Vacuum polarization (one-loop) − 214 816.607 kHz 0.005 kHz
Recoil corrections 2 401.782 kHz 0.010 kHz
Proton size 1 253.000 kHz 50 kHz
Two-loop corrections 731.000 kHz 3.300 kHz
Radiative recoil corrections − 12.321 kHz 0.740 kHz
Vacuum polarization (muon) − 5.068 kHz < 0.001 kHz
Vacuum polarization (hadron) − 3.401 kHz 0.076 kHz
Proton self-energy 4.618 kHz 0.160 kHz
Three-loop corrections 1.800 kHz 1.000 kHz
Nuclear size corrections to SE and VP − 0.149 kHz 0.011 kHz
Proton polarization − 0.070 kHz 0.013 kHz

1S Lamb shift 8 172 894(51) kHz

where λC is the Compton wavelength of the electron. The rms charge radius of the proton rp is
obtained from elastic electron-proton scattering experiments. There is a long history of analysis
of these experiments. The most recent work gives rp = 0.895(18) fm which corresponds to a
shift of the 1S level of about 1.2 MHz [37].

To summarize, we give in table 2 the value of the different terms contributing to the Lamb
shift of the 1S level. For this calculation, we have used the value of rp from reference [37] and
the values of R∞, α and me/mp given in reference [5]. The theoretical uncertainty in the 1S
Lamb shift is estimated to be 3.7 kHz, mainly due to the calculation of the two-loop corrections.
At this level, the precision is not limited by the uncertainties in R∞, α and me/mp. On the
contrary, the uncertainty due to the charge distribution of the proton rp is about 50 kHz,
making it the largest source of uncertainty in the calculation of the 1S Lamb shift.

3 Precise measurements in hydrogen

In this section, we present the hydrogen frequency measurements which are used for the ad-
justment of the fundamental constants and for the determination of the Rydberg constant.

3.1 Lamb shift of the 2S1/2 level

Since the historic measurement of Lamb and Retherford [11], a number of measurements of
the 2S1/2 − 2P1/2 splitting have been reported [38,39,40,41,42]. The recent results are shown in
the figure 3. The most precise direct determination of this splitting is the one by Lundeen and
Pipkin (1057.845(9) MHz [39]). The value obtained by Hagley and Pipkin in 1994 is an indirect
determination deduced from the 2S1/2−2P3/2 splitting [40]. By using the theoretical value of the
2P1/2−2P3/2 fine structure splitting [26], this determination is 1057.842(12) MHz (see figure 3).
The result of Drake in 1998 (1057.852(15) MHz [41]) is also an indirect determination, obtained
by measuring the anisotropy of the emitted light in an applied electric field. The experiment
of Pal’chikov, Sokolov and Yakovlev was performed by using atomic interferometry to measure
the ratio between the 2S1/2 Lamb shift and the lifetime of the 2P1/2 level. This result is very
precise (1057.8514(19) MHz [42]), but there is a controversy over the theoretical value of 2P1/2

lifetime which is used [43,44]. Finally, if we take into account only the direct measurements of
the 2S1/2 − 2P1/2 and 2S1/2 − 2P3/2 splittings, we obtain a mean value of 1057.8439(72) MHz
for the 2S1/2 Lamb shift.
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Fig. 3. Recent measurements of the Lamb shift between the 2S1/2 and 2P1/2 levels.

3.2 The 1S-2S transition

The 1S − 2S transition is studied by Doppler-free two-photon spectroscopy, first proposed by
Vasilenko et al. [45]. The principle is to place an atom in a standing wave formed by two
counter-propagating laser beams with the same frequency. If the atom absorbs one photon
from each beam, the total momentum of the absorbed photons is zero, and, consequently, there
is a cancellation of the first order Doppler effect and of the recoil effect. The idea to apply
this two-photon spectroscopy to the 1S-2S transition in hydrogen was immediately proposed
by several authors, Cagnac et al. [46], Baklanov and Chebotayev [47] and Hänsch et al. [48]. It
was a very attractive proposal: because of the very small natural width (1.3 Hz) of the 2S level,
the quality factor of the 1S − 2S transition is about 2 × 1015. However it was experimentally
very difficult, due to the UV wavelength of this transition (243 nm) and the low transition
probability.

Since the first observation by Hänsch et al. in 1975 [49], the 1S − 2S transition has been
studied by several other groups in Southampton [50], Oxford [51,52,53], Yale [54] and MIT [55].
Nevertheless, the most important work has been performed by the group of Hänsch, who has
continuously studied this transition since these first observations. In a long series of experiments,
Hänsch has improved the precision on the measurement of the 1S − 2S frequency. The first
determination of this frequency used an interferometric method with a calibrated absorption
line of 130Te2 [50,51,56,57]. In these experiments, the accuracy was limited by that of the 130Te2

reference (about 2.7 × 10−10). In the nineties, this limitation was overcome thanks to optical
frequency measurements. In a first experiment, Hänsch used a frequency chain which linked
the 1S-2S frequency (about 2466 THz) to a transportable CH4-stabilized He-Ne frequency
standard at 88 THz [58,59]. Now, this complex frequency chain has been superseded by a
femtosecond laser frequency comb, which links in one fell swoop the Cs clock at 9 GHz to the
optical frequency. Thanks to this technique, pioneered by Hall and Hänsch, Hänsch’s group has
recently succeeded in measuring the 1S-2S interval with respect to a transportable Cs atomic
fountain clock from the SYRTE (formerly Laboratoire Primaire du Temps et des Fréquences) in
Paris [60,4]. This last measurement reduces the uncertainty to 34 Hz (i.e. a relative uncertainty
of about 1.4 × 10−14). The value obtained for the 1S − 2S frequency is:

ν1S−2S = 2 466 061 413 187 074 (34) Hz (10)

This result is one of the most precise optical frequency measurements.

3.3 Two-photon spectroscopy of the 2S − nS and 2S − nD transitions

In Paris we began to study the 2S−nS and 2S−nD transitions in 1983. These experiments are
complementary to those of the 1S−2S measurements, because the Lamb shift of the 2S level has
been measured precisely (see section 3.1), and, consequently, it is easy to extract the Rydberg
constant from the 2S− nS/D interval. The two-photon 2S− nS/D transitions are induced in a
metastable 2S atomic beam of hydrogen or deuterium collinear with the counter-propagating
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laser beams. The excitation wavelength is in the near infrared, for example 778 nm for the
2S − 8S/D transitions. The details of this experiment are described in references [61,62,63].

In our first experiments, we used an interferometric method to compare the hydrogen wave-
lengths to an iodine stabilized He-Ne laser. With this method, we determined the frequencies of
the 2S− nD transitions in hydrogen and deuterium for the levels n = 8, 10 and 12 [64,65]. The
relative accuracy was limited to 1.7 × 10−10 by the standard laser. In 1993, we measured the
optical frequencies of the 2S1/2 − 8S1/2, 2S1/2 − 8D3/2 and 2S1/2 − 8D5/2 transitions in hydro-
gen with a frequency chain using two standard lasers (iodine stabilized and methane stabilized
helium-neon lasers) and obtained a precision in the range of 10−11 [66,67]. More recently, we re-
made these measurements in hydrogen and deuterium with an accuracy better than one part in
1011 [68] using a new frequency chain with a new standard laser, namely a diode laser at 778 nm
stabilized on the 5S-5D two-photon transition of rubidium. The frequency of this standard was
measured with a frequency chain at the (LPTF) [69]. Finally, we completed these results by
the measurement of the 2S− 12S/D transitions [70]. A complete report of these experiments is
given in reference [71]. For example, we obtain for the frequency of the 2S1/2−8D5/2 frequency
in hydrogen:

ν2S1/2−8D5/2
= 770 649 561 581.1 (5.9) kHz (11)

and we have a similar result in deuterium. The relative uncertainty is limited to 7.6 × 10−12

because of the natural width of the 8D level (572 kHz) and the inhomogenous light shift
experienced by the atoms passing through the Gaussian profile of the laser beams.

3.4 Frequency comparison between hydrogen frequencies

The goal of this method is to avoid absolute frequency measurements. The idea, proposed by
Hänsch, is to compare the 1S−2S frequency with transitions whose energies are approximatively
one-fourth that of the 1S − 2S transition (see equation 1), such as the 2S − 4P transition
[49,72,53,54], or the 2S − 4S/D two-photon transitions [73,74,75]. In our group, we have also
performed an experiment based on the same idea, but this time by comparing the 1S− 3S and
the 2S− 6S/D frequencies [76]. The three last experiments [54,75,76] provided a determination
of the 1S Lamb shift with an uncertainty of about 50 kHz and these results are always used in
the adjustment of the fundamental constants [5,6].

4 Determination of the Rydberg constant

The Rydberg constant is deduced from the data described in section 3 through a least squares
adjustment. It is possible to make this adjustment with only the hydrogen data, the values of
the fine structure constant α and the electron-to-proton mass ratio me/mp being given a priori
[71], or to perform a global adjustment with the data concerning all the fundamental constants.
Since 1998, the CODATA (Committee on Data for Science and Technology) has used the latter
method to determine the value of R∞. The value obtained in the 2006 CODATA adjustment
is [6]:

R∞ = 10 973 731.568 527(73) m−1 (12)

with a relative uncertainty of 6.6 × 10−12. The advantage of this method is to give the most
accurate value, but the drawback is a mixing of all the experimental and theoretical results
and it is difficult to see the most important input data. In the following sections, we describe
several simple ways to determine the Rydberg constant.

4.1 Determination of R∞ from the 1S − 2S interval

In equation 3, the Dirac energy EDirac
n,j and the recoil energy ERecoil

n are exactly known as a
function of the Rydberg constant. Thus, it is possible to rewrite this equation in the form:

En,l,j = an,jhcR∞ + Ln,l,j (13)
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where an,j is a numerical coefficient which is an exactly known function of α and me/mp, and
whose value is approximatively given by the Bohr model an,j ≈ −1/n2 (see equation 1). Then,
the 1S − 2S frequency is:

ν1S−2S = (a2,1/2 − a1,1/2)cR∞ + (L2S1/2
− L1S1/2

)/h ≈ (3/4)cR∞ + (L2S1/2
− L1S1/2

)/h (14)

where L1S1/2
and L2S1/2

are the Lamb shifts of the 1S and 2S levels. In this equation, the
frequency ν1S−2S is known with an uncertainty of 34 Hz, but the Lamb shift difference L2S1/2

−
L1S1/2

is calculated with a precision of only about 44 kHz, because of the uncertainty in the
proton radius rp. Consequently, in spite of the very high accuracy of the 1S− 2S measurement
(1.4×10−14), the Rydberg constant can be deduced from equation 14 with a relative uncertainty
of only (1.8 × 10−11).

4.2 Determination of R∞ from the 2S − 8D interval

To deduce R∞ from the 2S − 8D measurement, we can follow the same method. We have:

ν2S1/2−8D5/2
= (a8,5/2−a2,1/2)cR∞+(L8D5/2

−L2S1/2
)/h ≈

(

1

4
−

1

64

)

cR∞+(L8D5/2
−L2S1/2

)/h

(15)
In this expression, the uncertainty on the theoretical values of the Lamb shifts are respectively
2.5 Hz and 6.4 kHz for the 8D5/2 and 2S1/2 levels (because of the 1/n3 scaling law of the Lamb
shift, the uncertainty on the 2S1/2 Lamb shift is one eighth that of the 1S1/2). Taking into
account the experimental uncertainty (5.9 kHz, see equation 11), we can finally extract R∞

from equation 15 with a relative uncertainty of about (1.1 × 10−11).
Another way to obtain R∞ is to combine the 2S1/2−8D5/2 frequency with the measurement

of the 2S1/2 Lamb shift (see section 3.1). In this way, it is possible to eliminate the 2S1/2 level.
Indeed, we have:

ν2P1/2−2S1/2
+ ν2S1/2−8D5/2

= (a8,5/2 − a2,1/2)cR∞ + (L8D5/2
− L2P1/2

)/h (16)

In this case, the theoretical uncertainties on the 2P1/2 and 8D5/2 Lamb shifts are very small
(80 and 2.5 Hz) [26]. With this method, the accuracy of R∞ is limited by the uncertainties in
the measurements of the frequencies ν2P1/2−2S1/2

and ν2S1/2−8D5/2
. The relative accuracy of R∞

is finally 1.2× 10−11. This method is slightly less precise, but it does not use the experimental
value for the rms charge radius of the proton.

4.3 Comparison of the 1S − 2S and 2S − 8D intervals

In the two preceding sections, we have seen that the accuracy of the Rydberg constant is limited
by the theoretical or experimental uncertainties in the Lamb shifts. In fact, it is possible to
avoid this difficulty by using the 1/n3 scaling law for the Lamb shift. Numerous terms of the
Lamb shift vary with the principal quantum number exactly as 1/n3 (for instance the effect
of the charge distribution of the nucleus), and the deviation from this scaling law has been
calculated precisely by Karshenboim [77]. He obtains for the 1S and 2S Lamb shifts:

∆2 = (L1S1/2
− 8L2S1/2

)/h = −187.232 (5) MHz (17)

A more recent calculation of ∆2 is given in reference [78]. If we combine this equation with
equations 14 and 15, we obtain a system of 3 equations where the unknowns are R∞, L1S1/2

and L2S1/2
. We can then form a linear combination to eliminate the 1S and 2S Lamb shifts:

7ν2S1/2−8D5/2
− ν1S1/2−2S1/2

≈

(

57

64

)

cR∞ + 7L8D5/2
/h + ∆2 (18)
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In this expression, the main uncertainty is due to the measurement of the 2S1/2 − 8D5/2 fre-
quency (7 × 5.9 kHz) and the Rydberg constant is deduced with a relative uncertainty of
1.4 × 10−11. The advantage of this method is to deduce R∞ without the measurements of the
2S1/2 Lamb shift and of the proton radius rp. Moreover, this technique is applicable to both hy-
drogen and deuterium (there is no precise measurement of the 2S1/2 Lamb shift in deuterium).
For instance, from the measurements of the 1S1/2 − 2S1/2, 2S1/2 − 8D5/2 and 2S1/2 − 12D5/2

frequencies in hydrogen and deuterium, one obtains a value of R∞ with a relative uncertainty
better than 10−11 [71]:

R∞ = 10 973 731.568 54(10) m−1 (19)

Morover, we can deduce the Lamb shift of the 1S1/2 and 2S1/2 levels in hydrogen:

L1S1/2
/h = 8 172.837(26) MHz (20)

(L2S1/2
− L2P1/2

)/h = 1 057.8447(34) MHz (21)

In this last result, we have used the theoretical value of the 2P1/2 Lamb shift (−12.835 99 (8) MHz
[26]). This value of the 2S1/2 Lamb shift deduced from the optical frequency measurements is
more precise than the direct determinations made by microwave spectroscopy.

Finally, if we take into account the theoretical calculations of the Lamb shift (see section
2), we can deduce a value of the rms charge radius of the proton (rp = 0.8765 (80) fm) which
is more precise than the one deduced from the electron-proton scattering experiments. For this
calculation, we have used B60 = −94.3, which is the mean value of the results of the references
[35,36] (see section 2.3).

5 Conclusion

In conclusion, we have presented several methods to determine the Rydberg constant. There
are several limitations, mainly the uncertainty in the rms charge radius of the proton and
the uncertainties in the measurements of the 2S − nS/D frequencies in hydrogen. To reduce
the first limitation, a precise measurement of rp is ongoing at the Paul Scherrer Institute by
spectroscopy of muonic hydrogen. The principle is to measure the 2S− 2P energy difference in
µ−p by infrared spectroscopy [79]. In muonic hydrogen, the muon is very close to the proton
because its mass is about 207 times that of the electron. Consequently, the effect of the proton
charge distribution is about 0.93 THz for the 2S level of muonic hydrogen whereas it is only
146 kHz in hydrogen. The details of this project are given in references [80,81]. The goal is to
obtain a relative accuracy of 10−3. Then the effect of the proton size for the 1S level of hydrogen
would be known with an uncertainty of 2.5 kHz. Using equation 14, it will be possible to deduce
R∞ with a relative precision of about 2 × 10−12.

An alternative way to improve the precision of the Rydberg constant is to measure another
optical frequency in hydrogen very precisely. Several groups are working in this direction. At the
National Physical Laboratory, Flowers and colleagues have built a new experiment to improve
the measurements of the 2S − nS/D hydrogen frequencies by using a femtosecond frequency
comb [82]. In Paris, we intend to measure the optical frequency of the 1S − 3S two-photon
transition [83,84]. This transition is also being studied by the group of Hänsch. The same group
is also working towards an experiment on the He+ ion. All these efforts are promising to improve
the accuracy on the Rydberg constant in the near future.
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G. Santarelli, M. Abgrall, P; Laurent, C. Salomon and A. Clairon, Phys. Rev. Lett. 84, (2000) 5496.
61. J.C. Garreau, M. Allegrini, L. Julien and F. Biraben, J. Phys. France 51, (1990) 2263.
62. J.C. Garreau, M. Allegrini, L. Julien and F. Biraben, J. Phys. France 51, (1990) 2275.
63. J.C. Garreau, M. Allegrini, L. Julien and F. Biraben, J. Phys. France 51, (1990) 2293.
64. F. Biraben, J.C. Garreau, and L. Julien, Europhys. Lett. 2, (1986) 925.
65. F. Biraben, J.C. Garreau, L. Julien, and M. Allegrini, Phys. Rev. Lett. 62, (1989) 621.
66. F. Nez, M.D. Plimmer, S. Bourzeix, L. Julien, F. Biraben, R. Felder, O. Acef, J.J. Zondy, P. Laurent,

A. Clairon, M. Abed, Y. Millerioux and P. Juncar, Phys. Rev. Lett. 69, (1992) 2326.
67. F. Nez, M.D. Plimmer, S. Bourzeix, L. Julien, F. Biraben, R. Felder, Y. Millerioux and P. de

Natale, Europhys. Lett. 24, (1993) 635.
68. B. de Beauvoir, F. Nez, L. Julien, B. Cagnac, F. Biraben, D. Touahri, L. Hilico, O. Acef, A. Clairon

and J.J. Zondy, Phys. Rev. Lett. 78, (1997) 440.
69. D. Touahri, O. Acef, A. Clairon, J.J. Zondy, R. Felder, L. Hilico, B. de Beauvoir, F. Biraben and

F. Nez, Opt. Commun. 133, (1997) 471.
70. C. Schwob, L. Jozefowski, B. de Beauvoir, L. Hilico, F. Nez, L. Julien, F. Biraben, O. Acef and

A. Clairon, Phys. Rev. Lett. 82, (1999) 4960.
71. B. de Beauvoir, C. Schwob, O. Acef, J.-J. Zondy, L. Jozefowski, L. Hilico, F. Nez, L. Julien,

A. Clairon and F. Biraben, Eur. Phys. J. D. 12, (2000) 61.
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