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THE SQUARES OF THE LAPLACIAN-DIRICHLET
EIGENFUNCTIONS ARE GENERICALLY LINEARLY INDEPENDENT

YANNICK PRIVAT AND MARIO SIGALOTTI

ABSTRACT. The paper deals with the genericity of domain-dependesdttsgl

properties of the Laplacian-Dirichlet operator. In parté&r we prove that, gener-
ically, the squares of the eigenfunctions form a free familje also show that
the spectrum is generically non-resonant. The results latared by applying
global perturbations of the domains and exploiting analpgrturbation prop-
erties. The work is motivated by two applications: an exiseeresult for the
problem of maximizing the rate of exponential decay of a dednmembrane
and an approximate controllability result for the bilin&ahrodinger equation.

INTRODUCTION

Genericity is a measure of how much robust and frequent eepiofs. It enjoys,
therefore, a deep-rooted success in control theory, wheenaric behavior is,
roughly speaking, the expected behavior of systems imglphysical quantities
whose value can only be approximated.

A paradigmatic example of generic properties in controbtlies the controllabil-
ity of a finite-dimensional linear system

Q) &t =Ax+ Bu, x € R", uweR™

It is well known, and the proof simply follows from the Kalmariterion, that for
every choice of the positive integetsandm a generic linear system of typg (1) is
controllable. More precisely, the set of paitd, B) for which () is controllable
is open and dense in the product of the spaces>ofn andn x m matrices. (See,
for instance, [37].)

When a control system involves partial differential egoagi, conditions guaran-
teeing its controllability, observability or stabilizdiby can often be stated in terms
of the eigenvalues or eigenspaces of some linear operggucdtly, the leading
term of the evolution operator). In this paper we are maintgriested in condi-
tions depending on the domain on which the control systenadfgb differential
equations is defined. The genericity of some relevant cmmgitfor control appli-
cations has already been considered and proved in the §&aktaf partial differ-
ential equations (e.g., the simplicity of the eigenvalukthe Laplacian-Dirichlet
operator proved in[[21, 9] and applied in the control framewin [[L7]). Others,
due to their technical nature, need to be tackled by spedaificnaents. This has
led to the development of several tools for studying the geity with respect to
the domain of control-related properties of partial diiatial operators. Without
seeking exhaustiveness, let us mention the works by LiodsZaiazua [[18] and
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Ortega and Zuazud [R4] on the Stokes system, those by Omegzuazual[33, 25]
on the plate equation, the paper by Chitour, Coron and Glwg@} on the heat
and wave equations and the recent work by Beauchard, ChKaiieb and Long
[B] on the Schrodinger equation.

The scope of this paper is to prove the genericity with respethe domain of

some properties of the Laplacian-Dirichlet operator isg@iiom control theory and
optimization among which, in particular, the linear indegence of the squared
eigenfunctions.

In doing so we propose a technique that, we believe, has a wédge of ap-
plicability, going beyond the conditions studied here addpable to different
operators. The difference between our approach and thosdyuadopted is that
we focus less on local infinitesimal variations of the doneail more on global,
long-range perturbations. In order to get genericity tsdubm this kind of pertur-
bations we have to rely on analytic-dependence propediethé eigenvalues and
eigenfunctions of the Laplacian-Dirichlet operator widspect to analytic pertur-
bations of the domain. (It should be stressed, however ahallytic perturbation
theory applies to a much larger range of operators.) Theafl@aoving generic-
ity through global perturbations is clearly not new, beinginsically contained in
analytic perturbation theory. Our work has actually beespiired by a paper by
Hillairet and Judge[[15], where the authors prove, usindal@erturbations, the
generic simplicity of the eigenvalues of the Laplacianigbilet operator on pla-
nar polygons with at least four vertices. The argument ifj,[i&wever, relies on
the existence, in the class of interest, of domains havinglg spectrum. The
difficulty of extending the proof of[[15] to show the generigdar independence
of the squared eigenfunctions on smooth domains is that gheznof smooth do-
mains having the desired property are not handily availaBlee kind of domain
on which the property can be easily checked is given by coffed. However,
many results on spectral stability when non-smooth domaiespproximated by
smooth ones are known (see, in particular, the works by Arand Daners[]3and
Bucur [T]where uniform stability of the eigenfunctions is studiedylamply the
existence, for every € N, of a smooth domaifk,, whose firstn eigenfunctions
have linearly independent squares. In order to propagatgomal analytic pertur-
bation the property satisfied 13y,, one can use, for instance, exponential flows of
vector fields (even a narrow family of vector fields is enougbenerate a full orbit
of domains, se€]1]). One has, however, to take care of theljesrossing of the
analytically depending eigenvalues. In order to do so, ¢traeilsl select analytic
paths along which the firgt eigenvalues are simple. This problem is related to
the Arnold conjecture (sed][{,]10]) and has been solved by Teytgljh [28tel’s
result, recalled in Propositidp 2, is crucial for the progabperturbation technique
(Theoremg]3 anf] 4).

Let us conclude this introduction by describing the moihgiapplications of the
properties that we consider. The generic linear indepeselefthe squared eigen-
functions has been conjectured in dimension two by HébaadiHenrot in [12],
where the authors consider the problem of stabilizing withlargest possible de-
cay rate a membrane fixed at its boundary using a dampinggamtira portion of
the membrane of fixed area. The existence and uniqueness sbliltion for this
problem can be deduced from the linear independence of theresd eigenfunc-
tions of the Laplacian-Dirichlet operator on the domairefillby the membrane.
(See Sectiof] 2 for more details.)
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It should be noticed that whether such linear independennetionly generic but
rather always true is still an open question. A negativeltésuMahar and Willner

[L9] on the squared eigenfunctions of a Sturm-Liouville raper justify a cautious
stance toward a conjecture saying that the linear indepeedghould always hold
true.

Linear independence of the squared eigenfunctions appaéaesnaturally also in
the study of the controllability of the bilinear Schrodergquation. In this context,
indeed, non-resonance conditions on the spectrum of thentnedled Schrodinger
operator are often required (see, for instanle, [8]). Sineé&™" eigenvalue\;, of
—A+eV i H?(Q) N HL(Q) — L?(Q) is analytic with respect te and satisfies

4 ;= / V(x z)%dz

= (z)or(z)
where (¢, )nen is @ complete system of eigenfunctions-ef\ (see []), then the
linear independence of the famify? ),.cn clearly plays a role in the study of the
size of the family of potentiald” for which the spectrum has some prescribed
property.
Another application discussed in Sect[dn 2 correspondse@ase where the un-
controlled Schrodinger operator is defined by a potent&l,we.,V = 0 and( is
free. We show in this case that, generically with respeét,tao nontrivial linear
combination with rational coefficients of the eigenvalués-@\ annihilates. We
deduce from this fact and the results [ih [8] a generic appnaié controllability
property for the Schrodinger equation.

Properties about the non-annihilation of linear comboradiof eigenvalues play a
role also in other domains. Let us mention, for instancerg¢bent work by Zuazua
on switching systems in infinite dimensidn][30], where thedition that the sums
of two different pairs of eigenvalues of the Laplacian-Bhifet operator are dif-

ferent is used to prove null-controllability of the heat ation using switching

controls.

The paper is organized as follows: in Sectfpn 1 we introdeeeesdefinitions and
notations and we prove the main abstract results of the pdjeoremd]3 and
B). We conclude the section by deducing from the abstracitsesome specific
generic conditions; in particular, we obtain the genenedir independence of the
squared eigenfunctions of the Laplacian-Dirichlet opmratn Section2 we pro-
pose two applications of these generic properties to thmligtation of vibrating
membranes and to the controllability of the Schrodingeratign.

Acknowledgments.We would like to thank Yacine Chitour, Antoine Henrot, Pier
Domenico Lamberti and Enrique Zuazua for several fruitfistdssions and ad-
vices.

1. GENERIC PROPERTIES BY GLOBAL PERTURBATIONS

1.1. Notations and abstract genericity result. Throughout the paped denotes
an integer larger than or equal to two aNdhe set of positive integer numbers,
while Ny = {0} UN.

Given a Lipschitz domaif2 ¢ R?, we denote by(\?),cn the nondecreasing
sequence of eigenvalues of the Laplacian-Dirichlet operat

—A: H*(Q) N HNQ) — L*(Q)
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counted according to their multiplicity. As it is well knowit is always possible
to choose an orthonormal basisiof(©2) made of eigenfunctions of the Laplacian-
Dirichlet operator. In the sequel any such choice will beaded by(¢S}),,cxy with
#5 corresponding to the eigenvalu€. We will identify ¢! with its extension to
zero outside).

We define the class of domaiis,, as the set of openonnectedsubsets ofR¢
with C"™ boundary. ByD,,, we denote the subset &f,, of C"* topological balls
i.e., those open subsebsof R? such that there exists@™-diffeomorphism ofR¢
transforming the unit ball if2. Similarly, we defineD ; as the orbit of the unit
ball by bi-Lipschitz homeomorphisms &,

It is well known that},,, and D,,,, endowed with th&€™ topology inherited from
that of C™-diffeomorphisms, are complete metric spaces (5de [20]patticular,
they are Baire spaces.

Let us recall that, given a Baire spadg a residual set (i.e. the intersection of
countably many open and dense subsets) is den&e iA boolean functiorP :

X — {0,1} is said to begenericin X if there exists a residual sét such that
everyz in Y satisfies propert, that is,P(x) = 1.

A sequence of open domaif€,,),cn is said tocompactly convergé a domain
Q if for every compact sekk C Q U Q°, there existsux € N such that for all
n>ng, KCQ,UQ,".

In the sequel of the paper, we make use several times of tloe/foy result, whose
proof can be found in]J3, Theorem 7.3].

Proposition 1. Letn € N and fix a Lipschitz domaift ¢ R? such that\, ... \?

are simple. Lef); be a sequence of Lipschitz domains compactly convergifg to
and such that)en$y, is bounded. Then* — X and, therefore )™ is simple
foreveryj = 1,...,n, for k large enough. Moreover, up to a sign in the choice of
¢§?’v, ¢?k — ¢% in L™(RY), ask goes to infinity, forj = 1,...,n.

Another result playing a crucial role in our argument is tbkofving proposition.
(See [2B, Theorem 6.4].)

Proposition 2. Letm > 2 and g, 2; be two domains in:,, that are C™-
differentiably isotopic. Then there exists an analyticveuj0,1] > ¢ — Q; of
C™-diffeomorphisms such th&, is equal to the identity); (o) = ©; and ev-
ery domainQ2; = Q+(€y) has simple spectrum farin the open interval0, 1).

Teytel deduces the proposition stated abiovihe case wher@, and(2; areC™-
differentiably isotopic to the unif-dimensional balfrom a more general result,
namely [2B, Theorem BHis argument applies also, without modifications, to pairs
of domains belonging to the same isotopy class. Theorem Bghguarantees the
existence of an analytic path of simple-spectrum operatorsng any elements of
a family of operators satisfying strong Arnold hypothesien their eigenvectors
(see also[J4[10]). For this reason we expect that our metbaltl e adapted to
other situations.

We are ready to prove the following theorem on generic pit@gseamong topolog-
ical balls.
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Theorem 3. LetF,, : R™"t) _, R n € N, be a sequence of analytic func-
tions. For everyn € N, we say that a Lipschitz domain satisfies propertyP,,

if AL, ..., A are simple and if there exist pointszy, ..., z, in © and a choice
B, ..., ¢Sk of the firstn eigenfunctions of the Laplacian-Dirichlet operator tn
such that

2 Fu(¢f(@1), -, 03 (@1), o 8L (@), oo iy (), AT AY) # 0.

Assume that, for every < N, there existskR,, € Dy satisfying propertyp,,.
Then, for everyn € NU {+o0}, a generic2 € D,,, satisfiesP,, for everyn € N.

Proof. Fix m € NU {+oc0}. Define, for everyn € N, the set of domains
A, ={Q € D, | Q satisfiesP, }.
We shall fixn € N and prove that eacH,, is open and dense iD,,,.

Let us first prove that4d,, is open. FixQ2 € A,, a choice of eigenfunctions
#%,..., ¢ andn pointszy,...,x, € Q such that[{2) holds true. Suppose by
contradiction that there exists a sequef@g).cy In D, \ A,, that converges to
). Notice that the convergence in,,, implies compact convergence in the sense
recalled above. Propositi¢h 1 thus implies that, for aahoib;bg’“, j=1,...,n,
one has

Fo(of(z1), ..., (@), AL, ... X £ 0.
This contradicts the assumption tl§at ¢ A,, for everyk € N.

We prove now the density ofl,,. Notice that, without loss of generality; > 2.

Fix @ € D,,. LetR,, be as in the statement of the theorem, thaRls, € Dy ;
and satisfies propert,,. Notice thatR,, can be approximated by a sequence of
domains inD,, in the sense of the compact convergence. Therefore, byiagply
the same argument as above, we deduce that there BYists D, , satisfyingP,,.

Choosez;s?",j =1,...,n,andz1, ..., 2, € R, such that
Ep(@7m (1), R (), AT ARy £ 0,

We now apply Propositiof] 2 witf}y = R, and; = Q. We deduce that, fon >
2, there exists an analytic cury@ 1] > ¢ — @, of C"-diffeomorphisms such that
Qo is equal to the identityQ; (R,) = 2 and every domait, = Q(R,) € Dp,
has simple spectrum farin the open interval0, 1). Due to standard analytic
perturbation theory (seﬂl6])$t are analytic functions of and there exists a

choice Ofgb?t, j=1,...,n,t€[0,1], such thatz)?t o Q¢ varies analytically with
respect ta in Cm(ﬁn). In particular,
t = Fy(@F (Qu(x1)), - 8 (Qu(@n)) AT A

is an analytic real-valued function. Since its value at 0 is different from zero,
then it annihilates only for finitely manye [0, 1].

Hence, as required) can be approximated arbitrarily well iR,,, by an element
of A4,. O

Let us turn our attention to domains that are not necessagiglogical balls.The
extension of Theoreff] 3 works along similar lines, once ardedtion argument is
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used to transfer each propefBy, from the set of topological balls to the desired
isotopy class of domains.

Theorem 4. Let (F}, )nen, (Pn)nen and (R, )nen be as in the statement of Theo-
rem[3. Then, for everyr € N U {+c}, a genericQ) € ¥,, satisfiesP,, for every
n € N.

Proof. Fix m € N U {+oco}. Thanks to Theorerf] 3, a genefit € D,, satisfies
Py, for everyn € N. Fix one such2 and notice that, in particular, the spectrum
(M) ,en is simple.

Define, for everyn € N, the set

A, = {Q € %, | Q satisfiesP, }.

The openness af,, in ¥,, can be proved following exactly the same argument
used in the proof of Theorefh 3 to show that eahis open inD,,,.

We are left to prove that,, is dense in%,,. Without loss of generalityn > 2.
Take() € ,,,. Let B be an open ball aR¢ containingf). By eventually shrinking
B, we can assume thatB N 92 contains at least one poipt Up to a change of
coordinates, we can assume tliais centered at the origin and= (0,...,0,1).

Consider a smooth vector field @f satisfying

14
: if 22+ +22 <
V(zy,...,xq) = Tg—1T4 ! as P
2 2
2 i+ +1
A PR 2
0 ifaxf+---+x;>p+1

for somep > 1. The behavior o/ in a neighborhood of the unit ball is represented
in Figure[1. Notice thaV’ is complete, since it vanishes outside a compact set.

Plot of the vector field V
2r X N p

15F =
O

051

o
<
<«

~05F

-15fs =

FIGURE 1. Phase portrait of the vector field

By constructionV” is everywhere tangent @5. The ball B is therefore invariant
for the flow of V. Notice that the pointg and—p are the only zeros df in B and
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thatz, is strictly decreasing along all trajectoriesidfstaying inB. Thereforep
is a repulsive equilibrium fol” restricted toB and—p an attractive one.

Notice that, sinc&) € ,,, then its boundary has finitely many components and
therefore there exists a bd¥ contained iff2 such thap € 9B’. Notice, moreover,
that the differential oft” at+p is +Id. Then, for everyr € B, e~*V (x) belongs

to B’ for everyt larger than some, € R. We deduce that'V (B’) compactly
converges taB ast tends to infinity. SinceB’ C Q, thene!V' (Q) compactly
converges t@ as well ag — +oo0.

Consider an analytic path— @, of C™-diffeomorphisms oR? such that), = Id
andQ:(B) = ), whose existence can be deduced from Propodition 2. Then

Q= Q2amant o eV (€2) compactly converges 1 ast — +oc.

Moreover,each(Y, is isotopic tof2. It follows from Propositior{]1 that we can fix
t large enough in such a way that verifiesP,,. Proposmorﬂz implies that there

exists an analytic path of domains— Q, such that), = Q, Q; = Q; and the

spectrum of the Laplacian-Dirichlet operator @nis simple for every ¢ (0,1).

Hence, as in the proof of Theordin 3, we can deduceﬁlaq;ﬁtisfieSPn for all but
finitely manys € [0, 1]. In particular,Q is in the closure of4,,. O

1.2. Consequences of the abstract resultsin this section, we present two corol-
laries of Theorenj]4 showing that (i) the squares of the LagmaBirichlet eigen-
functions are generically linearly independent and (&) tlaplacian-Dirichlet spec-
trum is generically non-resonant.

Recall that a finite or infinite sequence of real numbers i@ &abenon-resonant
if every nontrivial rational linear combination of finiteijany of its elements is
different from zero.

In order to verify that the squares of the Laplacian-Dirthtigenfunctions on
a suitably choseni-orthotope are linearly independent, we prove the follawvin
technical result.

Lemma5. Lety belong taC>° ([0, +0),R), N be a positive integer an@, . .., an)
be a sequence of pairwise distinct positive real numbersure that there exist
lp € Ng andl; € N such thatp(otPl)(0) £ 0 for everyp = 0,..., N — 1.
Then, the functiong(a;-),...,¢(an-) are linearly independent on every right-
neighborhood of zero.

Proof. We are interested in finding all th¥-tuples(vi, ...,vn) € RY such that
fo 1 Yep(ag-) = 0in aright- neighborhood of zero. Differentiating this r@a

lo + ply times yields the relatiod 5, vzalo 7" p(o+Ph) (g, = 0. Evaluating
suchrelation at zerofgr=0,..., N—1, we obtaln a system d¥ linear equations

in the N variablesyy, ..., vn. Since(a?(i_l))lgi,jSN is a Vandermonde matrix,
the determinant of the N x N matrix underlying such a system writes

on = det <( e 1))1<m<N) Halowlﬁkll)(o)
k=1

_ H lo _ lo H alo (lo+kl1 ) £ 0.

1§i<j<N
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This concludes the proof of the lemma. O

Proposition 6. Let (i1, ..., 11qg) be a non-resonant sequence of positive real num-
bers andR be thed—orthotoperzl(O, u;). Then, the Laplacian-Dirichlet eigen-
values ofR are simple and the squares of the Laplacian-Dirichlet efgantions

are linearly independent.

Proof. Let us prove the lemma by induction @rn> 1.

If d =1, thenyy is any positive real number and the squared eigenfunctibtieo
Laplacian-Dirichlet operator oR are(sin?(k - /u1))ren. The proposition follows
then from Lemm4]5, applied tp(z) = sin?(x), lp = 1, 11 = 2, anday, = k/ju1.

Let now d be larger than one. Fak = (ki,...,ks) € N% we write K/ =
(k1,...,kq—1), K = kq and we denote by the (un-normalized) Laplacian-
Dirichlet eigenfunction

Clearly, fK(wl, e ,xd) = fK/(wl, C ,xd_l) sin(l?xd/,ud). EIX I _C N¢ finite
and{yx | K € I} C Rsuchthafy" ., 7xf& =00onR. Let] = {K | K € I}.
Then for every(z1, . .., zq_1) € [[°= (0, usw) and everyry € (0, ugm) we have

Z Z Y frr (w1, ... xq_1)? | sin® <@> —0.

kel \Kel K=k fd

d
k'l’i
%

fr(z1,. ., 2q) = Hsin( !
i=1

LLi

Therefore, applying again Lemnfla 5¢dx) = sin?(z), we deduce that, for every
kel,

d—1
Z Yk f2r =0 on H(O,/mr).
Kel, K=k i=1
The induction hypothesis implies thak is equal to zero for ever)K such that
K = k. Sincek is arbitrary inI, the proposition is proved. 0O

We can now state the first corollary of Theorfm 4.

Corollary 7. Letm € NU {oc}. Generically with respect t@ € ¥, the squares
of the Laplacian-Dirichlet eigenfunctions are linearlydependent when restricted
to any measurable subsetffof positive measure.

Proof. First notice that functionsypy, . . ., ¢, defined on a domaif® are linearly
independent if and only if there existpointsz, .. ., z, in 2 such that
e1(z1) ... on(z)
det : : # 0.
o1(zn) oo on(zn)
Apply Theoren{}§ with
n ceo Yn

Fn(yla"'>yn(n+1)) = det ’
Yn2—nt1  --- Yn2
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for (y1,..., Ynms1)) € R*™*D, andR, = R for everyn € N, whereR is the
d-orthotope introduced in the statement of Proposifjon 6.

Then for a generi€2 € ¥, the squares of the Laplacian-Dirichlet eigenfunctions
are linearly independent dn. Assume that there exists a measurable suBiset

Q2 of positive measure anfll constantsy, ...,y such thatzfz1 o (z)? =0
on O. Recall now that the hypo-analyticity of the Laplacian @ter implies that
each eigenfunction is analytic insife Hencey; = --- = v = 0. g

Corollary[ can be used to get generic spectral properties[B§, Section 6.3].
Another consequence of Theorghn 4 is the following corallary

Corollary 8. Fixm € NU {oco}, k € Nandq = (q1,...,qx) € R¥\ {0}. Then,
for a generic2 € ¥, one has

k
(3) > A #0.

=1
In particular, a generic) € ¥,,, has non-resonant spectrum.

Proof. Let R be ad-orthotope defined as in the statement of Proposfijon 6.
We denote by the subset ofR defined by

I'={(z1,...,2q) €OR | &g = pgm}.
Consider a perturbatioR' := (Id + tV')(R) of the domainR, with ¢ small and
V" a smooth vector field whose support is compact and does mos@utoR \ I'.

Then, it is well known (see, e.g[ [1f,]22]] 26]) that, since Itaplacian-Dirichlet
eigenvalues oR are simple, the shape derivativexﬁ alongV is defined as
(AR, V) = LR

_ [ (0FY
dt . 0——/F<W> (V'V)dO',

wherer denotes the outward normal  anddo the (d — 1)-dimensional surface
element. By hypothesig = (0,...,0,1) onT, so thatV - v is equal tovg, thed™
component of/. Notice, moreover, that

o R
% = afk,

for some nonzero constantc R (defined up to sign) and sonig € N¢—!, where
[k, is defined as in the proof of Propositiph 6.

Letq = (q1,...,qr) € RF\ {0} and introduces : Q — S, ¢\, Differentiat-
ing G at{) = R along a vector field” chosen as above yields,

(dG, V) /qucl le X1y...,Tg_1)vqdo.
r

=1
Due to Propositior]6,

k

2 £2
ZQlcz fi, I
=1

is not everywhere zero dn Thus, it is possible to choodé for which (dG, V') #
0.
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The conclusion follows by applying Theorefh 4 with, = 1 for n # k and

Fr(yy,... ,yk(k+1)) = Zle QiYk2+i and by takingR; = (Id + tV)(R) for ¢
small enough. d

2. APPLICATIONS TO SHAPE OPTIMIZATION AND CONTROL THEORY

2.1. Stabilization of a damped membrane.We consider here a stabilization prob-
lem in R? and we are interested in proving the existence and unigaesfesolu-
tions for a related shape optimization problem. More pedgidet us denote by
Q) ¢ R? a domain belonging t®,,, m € NU {cc}. Assume that the Laplacian-
Dirichlet eigenvalues df? are simple.

We consider the problem of stabilizing a membrane fixed atbihendaryos?,
thanks to a damping acting only on a subdomaienote byy, the characteristic
function of w. The displacement of the membrane, in presence of a viscous
damping of the typ@ky.,, k > 0, satisfies

% — Av +2ka($)% =0 (t,z) € (0,4+00) x Q

) v(t,z) =0 x€ed, t>0
v(0,2) = vo(x) x €
%(O,x) = vy (x) T €,

wherevy € H}(Q) andv; € L%(Q). This system is known to be exponentially
stable ifw has positive measure and it is possible to define its expiaheecay rate
(which does not depend on the initial data). A natural goestonsists in looking
for the largest decay rate once the area g fixed. Such optimization problem is
already quite difficult in the one-dimensional case (see [fL8]). For this reason
Hébrard and Henrot i J1.2] introduce a simplified versionitdfy considering,
instead of the decay rate, the quantity

s Q7 )2
(5) In()i= nf | )6 (@) de,
whereN is a given positive integer angf? denotes, as in the previous sections, the
n'™™ normalized Laplacian-Dirichlet eigenfunction.

Then, we are driven to study the following shape optimizapooblem

min Jy (w)
w € Ly,

(6)

where £, denotes the set of measurable subsetQ of measurd. It is conve-
nient to identify subdomains @ with their characteristic functions, so théj is
identified with

{a € L°(Q) | a(z) = 0 or 1 ae. anol/Q a(z)dz = e} .

The one-dimensional problem is completely solved i) [18]the same paper it is
noticed that the proof of existence and uniqueness of thienapt for (@) can be
easily adapted to the two-dimensional case under the gehgpiothesis that the
square of the Laplacian-Dirichlet eigenfunctiofig, . . . , gzs% are linearly indepen-
dent (see Corollarf] 7). Indeed, first the authors prove tieence of an optimum
a* in a relaxed class. In order to prove that such a maximum isasacteristic

function, they study the optimality conditions satisfiedddy by considering per-
turbations ofa* with support inA; := {z € Q | e < a*(x) < 1 — ¢}, with a small
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e > 0. They can prove in this way the existencefreal numbersyy, ..., ay
such thaiv} + - - - 4 o, # 0 and

N
> ey (x)* = constant, for almost every € A..
k=1

Then, because of the analyticity of the eigenfunctions drithie linear indepen-
dence of their squaregl. must have measure zero.

Theorem 9. Generically with respect t® € D,,, the optimization problent](6)
has a unique solutiowy,.

2.2. Controlled Schrodinger equation. We apply in this section Corollarfy} 8 in
order to prove the generic approximate controllability dbiknear Schrodinger
equation of the type

P22 (t,x) = (A +ut)W(2))h(t,x), (t,z) € (0,+00) x
(7) P(t,x) =0 red, t>0

¥(0,2) = vo(x) T €Q,
where () belongs toX,, for somem € NU {oc0}, W € L>*(Q,R), the con-
trol « belongs toL>°([0, +00), U) for some fixed measurable sub&ebf R with
nonempty interior, angy, € L?(Q, C). System[[7) admits always a mild solution
Y € C([0, +00), L2(£2, C)) in the sense of [5].

The control systen]]7) is said to be approximately contitéia for everyqg, ¢ €
L?(9,C) and every: > 0 there exist a contrat € L>([0, +oc0), U) and a positive
time 7" such that the solutiog of (@) satisfies|y(T',-) — 11 12(q) < e.

It has been proved irf][8] thal| (7) is approximately contiaaif the Laplacian-
Dirichlet operator orf2 has non-resonant spectrum and

(8) /QW(HUW?(UCW%H(@ dx #0 foreveryk € N.

Corollary[$ ensures that the Laplacian-Dirichlet spectisigenerically non-resonant.
On the other hand, the unique continuation property imphas, for everyk € N,

the producisi¢’, | is a nonzero function ofe. Therefore, for every2 with non-
resonant spectrur{W € L>(Q) | @) holds true is residual inL>(2). More-
over, due to the continuity of the eigenfunctions statedrimpBsition[1, for every

k € N the map

(W) /Q W (2)62 (2) 62,1 (x) da

is continuous with respect to the product topologyipf x L>°(R?). As a conse-
guence we obtain the following result.

Proposition 10. Generically with respect t¢2, W) € %, x L>(R%), endowed
with the product topology, systefi} (7) is approximately idiable.
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