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ABSTRACT. Let g be a free brace algebra. This structure implies that g is also a pre-Lie
algebra and a Lie algebra. It is already known that g is a free Lie algebra. We prove here that
g is also a free pre-Lie algebra, using a description of g with the help of planar rooted trees, a
permutative product, and manipulations on the Poincaré-Hilbert series of g.
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Introduction

Let D be a set. The Connes-Kreimer Hopf algebra of rooted trees HD
R is introduced in [5] in the

context of Quantum Field Theory and Renormalization. It is a graded, connected, commutative,
non-cocommutative Hopf algebra. If the characteristic of the base field is zero, the Cartier-
Quillen-Milnor-Moore theorem insures that its dual (HD

R)∗ is the enveloping algebra of a Lie
algebra, based on rooted trees (note that (HD

R)∗ is isomorphic to the Grossman-Larson Hopf
algebra [10, 11], as proved in [12, 16]). This Lie algebra admits an operadic interpretation: it
is the free pre-Lie algebra PL(D) generated by D, as shown in [4]; recall that a (left) pre-Lie
algebra, also called a Vinberg algebra or a left-symmetric algebra, is a vector space V with a
product ◦ satisfying:

(x ◦ y) ◦ z − x ◦ (y ◦ z) = (y ◦ x) ◦ z − y ◦ (x ◦ z).
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A non-commutative version of these objects is introduced in [9, 13]. Replacing rooted trees
by planar rooted trees, a Hopf algebra HD

PR is constructed. This self-dual Hopf algebra is
isomorphic to the Loday-Ronco free dendriform algebra based on planar binary trees [15], so by
the dendriform Milnor-Moore theorem [2, 18], the space of its primitive elements, or equivalently
the space of the primitive elements of its dual, admits a structure of brace algebra, described in
terms of trees in [8] by graftings of planar forests on planar trees, and is in fact the free brace
algebra Br(D) generated by D. This structure implies also a structure of pre-Lie algebra on
Br(D).

As a summary, the brace structure of Br(D) implies a pre-Lie structure on Br(D), which
implies a Lie structure on Br(D). It is already proved in several ways that PL(D) and Br(D) are
free Lie algebras in characteristic zero [3, 8]. A remaining question was the structure of Br(D)
as a pre-Lie algebra. The aim of the present text is to prove that Br(D) is a free pre-Lie algebra.
We use for this the notion of non-associative permutative algebra [14] and a manipulation of
formal series. More precisely, we introduce in the second section of this text a non-associative
permutative product ⋆ on Br(D) and we show that (Br(D), ⋆) is free. As a corollary, we prove
that the abelianisation of HD

PR (which is not HD
R), is isomorphic to a Hopf algebra HD′

R for a
good choice of D′. This implies that (HD

PR)ab is a cofree coalgebra and we recover in a different
way the result of freeness of Br(D) as a Lie algebra in characteristic zero. Note that a similar re-
sult for algebras with two compatible associative products is proved with the same pattern in [6].

Notations. We denote by K a commutative field of characteristic zero. All objects (vector
spaces, algebras. . . ) will be taken over K.

1 A description of free pre-Lie and brace algebras

1.1 Rooted trees and planar rooted trees

Definition 1

1. A rooted tree t is a finite graph, without loops, with a special vertex called the root of t.
The weight of t is the number of its vertices. The set of rooted trees will be denoted by T .

2. A planar rooted tree t is a rooted tree with an imbedding in the plane. the set of planar
rooted trees will be denoted by TP .

3. Let D be a nonempty set. A rooted tree decorated by D is a rooted tree with an application
from the set of its vertices into D. The set of rooted trees decorated by D will be denoted
by T D.

4. Let D be a nonempty set. A planar rooted tree decorated by D is a planar tree with an
application from the set of its vertices into D. The set of planar rooted trees decorated by
D will be denoted by T D

P .

Examples.

1. Rooted trees with weight smaller than 5:
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2. Rooted trees decorated by D with weight smaller than 4:
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d

, (a, b, c, d) ∈ D4.

2



3. Planar rooted trees with weight smaller than 5:
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4. Planar rooted trees decorated by D with weight smaller than 4:

qa, a ∈ D, q

q

a
b , (a, b) ∈ D2, q∨qq

a

cb

, q

q

q

a
b

c

, (a, b, c) ∈ D3,

q∨qq q

a

d
c

b

, q∨qq

q

a

db

c

, q∨qq

q

a

cb

d

,
q∨qq

q

a

b

dc

, q
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q

q

a
b

c
d

, (a, b, c, d) ∈ D4.

Let t1, . . . , tn be elements of T D and let d ∈ D. We denote by Bd(t1 . . . tn) the rooted tree

obtained by grafting t1, . . . , tn on a common root decorated by d. For example, Bd( q

q

a
b

q c ) = q∨qq

q

d

ca

b

.
This application Bd can be extended in an operator:

Bd :

{

K[T D] −→ KT D

t1 . . . tn −→ Bd(t1 . . . tn),

where K[T D] is the polynomial algebra generated by T D over K and KT D is the K-vector space
generated by T D. This operator is monic, and moreover KT D is the direct sum of the images
of the Bd’s, d ∈ D.

Similarly, let t1, . . . , tn be elements of T D
P and let d ∈ D. We denote by Bd(t1 . . . tn) the

planar rooted tree obtained by grafting t1, . . . , tn in this order from left to right on a common

root decorated by d. For example, Ba( q

q

b
c

qd) = q∨qq

q

a

db

c

and Ba( qd q

q

b
c ) = q∨qq

q

a

bd

c

. This application Bd

can be extended in an operator:

Bd :

{

K〈T D
P 〉 −→ KT D

P

t1 . . . tn −→ Bd(t1 . . . tn),

where K〈T D
P 〉 is the free associative algebra generated by T D

P over K and KT D
P is the K-vector

space generated by T D
P . This operator is monic, and moreover KT D

P is the direct sum of the
images of the Bd’s, d ∈ D.

1.2 Free pre-Lie algebras

Definition 2 A (left) pre-Lie algebra is a couple (A, ◦) where A is a vector space and
◦ : A ⊗ A −→ A satisfying the following relation: for all x, y, z ∈ A,

(x ◦ y) ◦ z − x ◦ (y ◦ z) = (y ◦ x) ◦ z − y ◦ (x ◦ z).

Let D be a set. A description of the free pre-Lie algebra PL(D) generated by D is given
in [4]. As a vector space, it has a basis given by T D, and its pre-Lie product is given, for all
t1, t2 ∈ T D, by:

t1 ◦ t2 =
∑

s vertex of t2

grafting of t1 on s.

For example:

qa ◦ q∨qq

d

cb

= q∨qq q

d

c
b

a

+ q∨qq

q

d

cb

a

+ q∨qq

q

d

cb

a

= q∨qq q

d

c
b

a

+ q∨qq

q

d

cb

a

+ q∨qq

q

d

bc

a

.

In other terms, the pre-Lie product can be inductively defined by:










t ◦ qd −→ Bd(t),

t ◦ Bd(t1 . . . tn) −→ Bd(tt1 . . . tn) +

n
∑

i=1

Bd(t1 . . . (t ◦ ti) . . . tn).
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Lemma 3 Let D a set. We suppose that D has a gradation (D(n))n∈N such that, for all

n ∈ N, D(n) is finite set of cardinality denoted by dn, and D(0) is empty. We denote by FD(x)
the Poincaré-Hilbert series of this set:

FD(x) =
∞
∑

n=1

dnxn.

This gradation induces a gradation (PL(D)(n))n∈N of PL(D). Moreover, for all n ≥ 0, PL(D)(n)
is finite-dimensional. We denote by tDn its dimension. Then the Poincaré-Hilbert series of

PL(D) satisfies:

FPL(D)(x) =

∞
∑

n=1

tDn xn =
FD(x)

∞
∏

i=1

(1 − xi)t
D

i

.

Proof. The formal series of the space K[T D] is given by:

F (x) =
∞
∏

i=1

1

(1 − xi)t
D

i

.

Moreover, for all d ∈ D(n), Bd is homogeneous of degree n, so the Poincaré-Hilbert series of
Im(Bd) is xnF (x). As PL(D) = KT D =

⊕

Im(Bd) as a graded vector space, its Poincaré-
Hilbert formal series is:

FPL(D)(x) = F (x)
∞
∑

n=1

dnxn = F (x)FD(x),

which gives the announced result. 2

1.3 Free brace algebras

Definition 4 [1, 2, 18] A brace algebra is a couple (A, 〈〉) where A is a vector space and 〈〉
is a family of operators A⊗n −→ A defined for all n ≥ 2:

{

A⊗n −→ A
a1 ⊗ . . . ⊗ an −→ 〈a1, . . . , an−1; an〉,

with the following compatibilities: for all a1, . . . , am, b1, . . . , bn, c ∈ A,

〈a1, . . . , am; 〈b1, . . . , bn; c〉〉 =
∑

〈〈A0, 〈A1; b1〉, A2, 〈A3; b2〉, A4, . . . , A2n−2, 〈A2n−1; bn〉, A2n; c〉,

where this sum runs over partitions of the ordered set {a1, . . . , an} into (possibly empty) con-
secutive intervals A0 ⊔ . . . ⊔ A2n. We use the convention 〈a〉 = a for all a ∈ A.

For example, if A is a brace algebra and a, b, c ∈ A:

〈a; 〈b; c〉〉 = 〈a, b; c〉 + 〈b, a; c〉 + 〈〈a; b〉; c〉.

As an immediate corollary, (A, 〈−;−〉) is a pre-Lie algebra. Here is another example of relation
in a brace algebra: for all a, b, c, d ∈ A,

〈a, b; 〈c; d〉〉 = 〈a, b, c; d〉 + 〈a, 〈b; c〉; d〉 + 〈〈a, b; c〉; d〉 + 〈a, c, b; d〉 + 〈〈a; c〉, b; d〉 + 〈c, a, b; d〉.

Let D be a set. A description of the free brace algebra Br(D) generated by D is given in
[2, 9]. As a vector space, it has a basis given by T D

P and the brace structure is given, for all
t1, . . . , tn ∈ T D

P , by:

〈t1, . . . ; tn〉 =
∑

graftings of t1 . . . tn−1 over tn.
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Note that for any vertex s of tn, there are several ways of grafting a planar tree on s. For
example:

〈 qa , q b ; q

q

d
c 〉 = q∨qq q

d

c
b

a

+ q∨qq

q

d

ca

b

+ q∨qq q

d

b
c

a

+
q∨qq

q

d

c

ba

+ q∨qq

q

d

bc

a

+ q∨qq q

d

b
a

c

.

As a consequence, the pre-Lie product of Br(D) can be inductively defined in this way:











〈t; qd〉 −→ Bd(t),

〈t;Bd(t1 . . . tn)〉 −→
n
∑

i=0

Bd(t1 . . . titti+1 . . . tn) +
n
∑

i=1

Bd(t1 . . . ti−1〈t; ti〉ti+1 . . . tn).

Proposition 5 Br(D) is the free brace algebra generated by D.

Proof. From [2, 9]. 2

Lemma 6 Let D a set, with the hypotheses and notations of lemma 3. The gradation of

D induces a gradation (Br(D)(n))n∈N of Br(D). Moreover, for all n ≥ 0, Br(D)(n) is finite-

dimensional. Then the Poincaré-Hilbert series of Br(D) is:

FBr(D)(x) =

∞
∑

n=1

t′Dn xn =
1 −

√

1 − 4FD(x)

2
.

Proof. The Poincaré-Hilbert formal series of K〈T D
P 〉 is given by:

F (x) =
1

1 − FBr(D)(x)
.

Moreover, for all d ∈ D(n), Bd is homogeneous of degree n, so the Poincaré-Hilbert series of
Im(Bd) is xnF (x). As Br(D) = KT D

P =
⊕

Im(Bd) as a graded vector space, its Poincaré-
Hilbert formal series is:

FBr(D)(x) = F (x)
∞
∑

n=1

dnxn = F (x)FD(x).

As a consequence, FBr(D)(x) − FBr(D)(x)2 = FD(x), which implies the announced result. 2

2 A non-associative permutative product on Br(D)

2.1 Definition and recalls

The following definition is introduced in [14]:

Definition 7 A (left) non-associative permutative algebra is a couple (A, ⋆), where A is a
vector space and ⋆ : A ⊗ A −→ A satisfies the following property: for all x, y, z ∈ A,

x ⋆ (y ⋆ z) = y ⋆ (x ⋆ z).

Let D be a set. A description of the free non-associative permutative algebra NAPerm(D)
generated by D is given in [14]. As a vector space, NAPerm(D) is equal to KT D. The non-
associative permutative product is given in this way: for all t1 ∈ T D, t2 = Bd(F2) ∈ T D,

t1 ⋆ t2 = Bd(t1F2).

In other terms, t1 ⋆ t2 is the tree obtained by grafting t1 on the root of t2. As NAPerm(D) =
PL(D) as a vector space, lemma 3 is still true when one replaces PL(D) by NAPerm(D).
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2.2 Permutative structures on planar rooted trees

Let us fix now a non-empty set D. We define the following product on Br(D) = KT D
P : for all

t ∈ T D
P , t′ = Bd(t1 . . . tn) ∈ T D

P ,

t ⋆ t′ =

n
∑

i=0

Bd(t1 . . . titti+1 . . . tn).

Proposition 8 (Br(D), ⋆) is a non-associative permutative algebra.

Proof. Let us give K〈T D
P 〉 its shuffle product: for all t1, . . . , tm+n ∈ T D

P ,

(t1 . . . tm) ∗ (tm+1 . . . tm+n) =
∑

σ∈Sh(m,n)

tσ−1(1) . . . tσ−1(m+n),

where Sh(m,n) is the set of permutations of Sm+n which are increasing on {1, . . . ,m} and
{m + 1, . . . ,m + n}. It is well known that ∗ is an associative, commutative product. For
example, for all t, t1, . . . , tn ∈ T D

P :

t ∗ (t1 . . . tn) =
n
∑

i=0

t1 . . . titti+1 . . . tn.

As a consequence, for all x ∈ KT D
P , y ∈ K〈T D

P 〉, d ∈ D:

x ⋆ Bd(y) = Bd(x ∗ y). (1)

Let t1, t2, t3 = Bd(F3) ∈ T D
P . Then, using (1):

t1 ⋆ (t2 ⋆ t3) = t1 ⋆ Bd(t2 ∗ F3)

= Bd(t1 ∗ (t2 ∗ F3))

= Bd((t1 ∗ t2) ∗ F3)

= Bd((t2 ∗ t1) ∗ F3)

= Bd(t2 ∗ (t1 ∗ F3))

= t2 ⋆ (t1 ⋆ t3).

So ⋆ is a non-associative permutative product on Br(D). 2

2.3 Freeness of Br(D) as a non-associative permutative algebra

We now assume that D is finite, of cardinality D. We can then assume that D = {1, . . . ,D}.

Theorem 9 (Br(D), ⋆) is a free non-associative permutative algebra.

Proof. We graduate D by putting D(1) = D. Then Br(D) is graded, the degree of a tree
t ∈ T D

P being the number of its vertices. By lemma 6, as the Poincaré-Hilbert series of D is
FD(x) = Dx, the Poincaré-Hilbert series of Br(D) is:

FBr(D)(x) =
∞
∑

i=1

t′Di xi =
1 −

√
1 − 4Dx

2
. (2)

We consider the following isomorphism of vector spaces:

B :











(K〈T D
P 〉)d −→ Br(D)

(F1, . . . , FD) −→
d
∑

i=1

Bi(Fi).
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Let us fix a graded complement V of the graded subspace Br(D) ⋆ Br(D) in Br(D). Because
Br(D) is a graded and connected (that is to say Br(D)(0) = (0)), V generates Br(D) as a
non-associative permutative algebra. By (1), Br(D) ⋆ Br(D) = B((T D

P ∗ K〈T D
P 〉)D).

Let us then consider T D
P ∗ K〈T D

P 〉, that is to say the ideal of (K〈T D
P 〉, ∗) generated by T D

P .
It is known that (K〈T D

P 〉, ∗) is isomorphic to a symmetric algebra (see [17]). Hence, there exists
a graded subspace W of K〈T D

P 〉, such that (K〈T D
P 〉, ∗) ≈ S(W ) as a graded algebra. We can

assume that W contains KT D
P . As a consequence:

K〈T D
P 〉

T D
P ∗ K〈T D

P 〉 ≈ S(W )

S(W )T D
P

≈ S

(

W

KT D
P

)

. (3)

We denote by wi the dimension of W (i) for all i ∈ N. Then, the Poincaré-Hilbert formal series

of S
(

W
KT D

P

)

is:

F
S

„

W

KT D
P

«(x) =
∞
∏

i=1

1

(1 − xi)wi−t′D
i

. (4)

Moreover, the Poincaré-Hilbert formal series of K〈T D
P 〉 ≈ S(W ) is, by (2):

FS(W )(x) =
1

1 − FBr(D)(x)
=

1 −
√

1 − 4Dx

2Dx
=

FBr(D)(x)

Dx
=

∞
∏

i=1

1

(1 − xi)wi

. (5)

So, from (3), using (4) and (5), the Poincaré-Hilbert series of T D
P ∗ K〈T D

P 〉 is:

FT D

P
∗K〈T D

P
〉(x) = FS(W )(x) − F

S

„

W

KT D
P

«(x)

=
∞
∏

i=1

1

(1 − xi)wi

(

1 −
∞
∏

i=1

(1 − xi)t
′D

i

)

=
FBr(D)(x)

Dx

(

1 −
∞
∏

i=1

(1 − xi)t
′D

i

)

.

As B is homogeneous of degree 1, the Poincaré-Hilbert formal series of Br(D) ⋆ Br(D) is:

FBr(D)⋆Br(D)(x) = DxFT D

P
∗K〈T D

P
〉(x) = FBr(D)(x)

(

1 −
∞
∏

i=1

(1 − xi)t
′D

i

)

.

Finally, the Poincaré-Hilbert formal series of V is:

FV (x) = FBr(D)(x) − FBr(D)⋆Br(D)(x) = FBr(D)(x)
∞
∏

i=1

(1 − xi)t
′D

i .

Let us now fix a basis (vi)i∈I of V , formed of homogeneous elements. There is a unique
epimorphism of non-associative permutative algebras:

Θ :

{

NAPerm(I) −→ Br(D)
q i −→ vi.

We give to i ∈ I the degree of vi ∈ Br(D). With the induced gradation of NAPerm(I), Θ is a
graded epimorphism. In order to prove that it is an isomorphism, it is enough to prove that the
Poincaré-Hilbert series of NAPerm(I) and Br(D) are equal. By lemma 3, the formal series of
NAPerm(I), or, equivalently, of PL(I), is:

FNAPerm(I)(x) =
∞
∑

n=1

tDi xi =
FV (x)

∞
∏

i=1

(1 − xi)t
D

i

= FBr(D)(x)
∞
∏

i=1

(1 − xi)t
′D

i
−tD

i . (6)
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Let us prove inductively that tn = t′n for all n ∈ N. It is immediate if n = 0, as t0 = t′0 = 0. Let
us assume that tDi = t′Di for all i < n. Then:

∞
∏

i=1

(1 − xi)t
D

i
−t′D

i = 1 + O(xn).

As t′0 = 0, the coefficient of xn in (6) is tn = t′n. So FNAPerm(I)(x) = FS(W )(x), and Θ is an
isomorphism. 2

3 Freeness of Br(D) as a pre-Lie algebra

3.1 Main theorem

Theorem 10 Let D be a finite set. Then Br(D) is a free pre-Lie algebra.

Proof. We give a N
2-gradation on Br(D) in the following way:

Br(D)(k, l) = V ect(t ∈ T D
P / t has k vertices and the fertility of its root is l).

The following points are easy:

1. For all i, j, k, l ∈ N, Br(D)(i, j) ⋆ Br(D)(k, l) ⊆ Br(D)(i + k, l + 1).

2. For all i, j, k, l ∈ N, t1 ∈ Br(D)(i, j), t2 ∈ Br(D)(k, l), 〈t1; t2〉 − t1 ⋆ t2 ∈ Br(D)(i + k, l).

Let us fix a complement V of Br(D) ⋆ Br(D) in Br(D) which is N
2-graded. Then Br(D) is

isomorphic as a N-graded non-associative permutative algebra to NAPerm(V ), the free non-
associative permutative algebra generated by V .

Let us prove that V also generates Br(D) as a pre-Lie algebra. As Br(D) is N-graded, with
Br(D)(0), it is enough to prove that Br(D) = V + 〈Br(D);Br(D)〉. Let x ∈ Br(D)(k, l), let us
show that x ∈ V + 〈Br(D);Br(D)〉 by induction on l. If l = 0, then t ∈ Br(D)(1) = V (1). If
l = 1, we can suppose that x = Bd(t), where t ∈ T D

P . Then x = 〈t; qd〉 ∈ 〈Br(D);Br(D)〉. Let
us assume the result for all l′ < l. As V generates (Br(D), ⋆), we can write x as:

x = x′ +
∑

i

xi ⋆ yi,

where x′ ∈ V and xi, yi ∈ Br(D). By the first point, we can assume that:
∑

i

xi ⊗ yi ∈
⊕

i+j=k

Br(D)(i) ⊗ Br(D)(j, l − 1).

So, by the second point:

x − x′ −
∑

i

〈xi; yi〉 =
∑

i

xi ⋆ yi − 〈xi; yi〉

∈
∑

i+j=k

Br(D)(i + j, l − 1)

∈ V + 〈Br(D);Br(D)〉,
by the induction hypothesis. So x ∈ V + 〈Br(D);Br(D)〉.

Hence, there is an homogeneous epimorphism:
{

PL(V ) −→ Br(D)
v ∈ V −→ v.

As PL(V ), NAPerm(V ) and Br(D) have the same Poincaré-Hilbert formal series, this is an
isomorphism. 2

We now give the number of generators of Br(D) in degree n when card(D) = D for small
values of n, computed using lemmas 3 and 6:
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1. For n = 1, D.

2. For n = 2, 0.

3. For n = 3,
D2(D − 1)

2
.

4. For n = 4,
D2(2D − 1)(2D + 1)

3
.

5. For n = 5,
D2(31D3 − 2D2 − 3D − 2)

8
.

6. For n = 6,
D2(356D4 − 20D3 − 5D2 + 5D − 6)

30
.

7. For n = 7,
D2(5441D5 − 279D4 − 91D3 − 129D2 − 22D − 24)

144
.

3.2 Corollaries

Corollary 11 Let D be any set. Then Br(D) is a free pre-Lie algebra.

Proof. We graduate Br(D) by putting all the qd ’s homogeneous of degree 1. Let V be a
graded complement of 〈Br(D),Br(D)〉. There exists an epimorphism of graded pre-Lie algebras:

Θ :

{

PL(V ) −→ Br(D)
qv −→ v.

Let x be in the kernel of Θ. There exists a finite subset D′ of D, such that all the decorations of
the vertices of the trees appearing in x belong to Br(D′). By the preceding theorem, as Br(D′)
is a free pre-Lie algebra, x = 0. So Θ is an isomorphism. 2

Corollary 12 Let D be a graded set, satisfying the conditions of lemma 3. There exists a

graded set D′, such that (HD
PR)ab is isomorphic, as a graded Hopf algebra, to HD′

R .

Proof. (HD
PR)ab is isomorphic, as a graded Hopf algebra, to U(Br(D))∗. For a good choice

of D′, Br(D) is isomorphic to PL(D′) as a pre-Lie algebra, so also as a Lie algebra. So U(Br(D))
is isomorphic to U(PL(D′)). Dually, (HD

PR)ab is isomorphic to HD′

R . 2

Corollary 13 Let D be graded set, satisfying the conditions of lemma 3. Then (HD
PR)ab is

a cofree coalgebra. Moreover, Br(D) is free as a Lie algebra.

Proof. It is proved in [7] that (HD′

R )∗ is a free algebra, so Prim((HD′

R )∗) = PL(D′) is a free
Lie algebra and HD′

R is a cofree coalgebra. So Prim((HD
PR)∗) = Br(D) is a free Lie algebra and

HD
PR is a cofree coalgebra. 2
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