Free brace algebras are free prelie algebras

Loïc Foissy

To cite this version:

Loïc Foissy. Free brace algebras are free prelie algebras. 2008. hal-00322214v2

HAL Id: hal-00322214
 https://hal.science/hal-00322214v2

Preprint submitted on 26 Jan 2009 (v2), last revised 23 Jun 2009 (v3)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Free brace algebras are free prelie algebras

Loïc Foissy
Laboratoire de Mathématiques, FRE3111, Université de Reims Moulin de la Housse - BP 1039-51687 REIMS Cedex 2, France
e-mail: loic.foissy@univ-reims.fr

ABSTRACT. Let \mathfrak{g} be a free brace algebra. This structure implies that \mathfrak{g} is also a prelie algebra and a Lie algebra. It is already known that \mathfrak{g} is a free Lie algebra. We prove here that \mathfrak{g} is also a free prelie algebra, using a description of \mathfrak{g} with the help of planar rooted trees, a permutative product, and manipulations on the Poincaré-Hilbert series of \mathfrak{g}.

KEYWORDS. Prelie algebras, brace algebras.
AMS CLASSIFICATION. 17A30, 05C05, 16W30.

Contents

1 A description of free prelie and brace algebras 2
1.1 Rooted trees and planar rooted trees 2
1.2 Free prelie algebras 3
1.3 Free brace algebras 4
2 A non-associative permutative product on $\mathcal{B} r(\mathcal{D})$ 5
2.1 Definition and recalls 5
2.2 Permutative structures on planar rooted trees 6
2.3 Freeness of $\mathcal{B} r(\mathcal{D})$ as a non-associative permutative algebra 6
3 Freeness of $\mathcal{B} r(\mathcal{D})$ as a prelie algebra 8
3.1 Main theorem 8
3.2 Corollaries 9

Introduction

Let \mathcal{D} be a set. The Connes-Kreimer Hopf algebra of rooted trees $\mathcal{H}_{R}^{\mathcal{D}}$ is introduced in [4] in the context of Quantum Field Theory and Renormalization. It is a graded, connected, commutative, non-cocommutative Hopf algebra. If the characteristic of the base field is zero, the Cartier-Quillen-Milnor-Moore theorem insures that its dual $\left(\mathcal{H}_{R}^{\mathcal{D}}\right)^{*}$ is the enveloping algebra of a Lie algebra, based on rooted trees (note that $\left(\mathcal{H}_{R}^{\mathcal{D}}\right)^{*}$ is isomorphic to the Grossman-Larson Hopf algebra $[9,10]$, as proved in $[11,15])$. This Lie algebra admits an operadic interpretation: it is the free prelie algebra $\mathcal{P} \mathcal{L}(\mathcal{D})$ generated by \mathcal{D}, as shown in [3]; recall that a (left) prelie algebra, also called a left Vinberg algebra or a left-symmetric algebra, is a vector space V with a product - satisfying:

$$
(x \circ y) \circ z-x \circ(y \circ z)=(y \circ x) \circ z-y \circ(x \circ z) .
$$

A non-commutative version of these objects is introduced in [7, 12]. Replacing rooted trees by planar rooted trees, a Hopf algebra $\mathcal{H}_{P R}^{\mathcal{D}}$ is constructed. This self-dual Hopf algebra is isomorphic to the Loday-Ronco free dendriform algebra based on planar binary trees [14], so by the dendriform Milnor-Moore theorem [2, 16], the space of its primitive elements, or equivalently the space of the primitive elements of its dual, admits a structure of brace algebra, described in terms of trees in [6] by graftings of planar forests on planar trees, and is in fact the free brace algebra $\mathcal{B} r(\mathcal{D})$ generated by \mathcal{D}. This structure implies also a structure of prelie algebra on $\mathcal{B} r(\mathcal{D})$.

As a summary, the brace structure of $\mathcal{B} r(\mathcal{D})$ implies a prelie structure on $\mathcal{B} r(\mathcal{D})$, which implies a Lie structure on $\mathcal{B} r(\mathcal{D})$. It is already proved, using combinatorial methods on trees, that $\mathcal{P} \mathcal{L}(\mathcal{D})$ and $\mathcal{B} r(\mathcal{D})$ are free Lie algebras in characteristic zero [6]. A remaining question was the structure of $\mathcal{B r}(\mathcal{D})$ as a prelie algebra. The aim of the present text is to prove that $\mathcal{B} r(\mathcal{D})$ is a free prelie algebra. We use for this the notion of non-associative permutative algebra [13] and a manipulation of formal series. More precisely, we introduce in the second section of this text a non-associative permutative product \star on $\mathcal{B r}(\mathcal{D})$ and we show that $(\mathcal{B} r(\mathcal{D}), \star)$ is free. As a corollary, we prove that the abelianisation of $\mathcal{H}_{P R}^{\mathcal{D}}$ (which is not $\mathcal{H}_{R}^{\mathcal{D}}$), is isomorphic to a Hopf algebra $\mathcal{H}_{R}^{\mathcal{D}^{\prime}}$ for a good choice of \mathcal{D}^{\prime}. This implies that $\left(\mathcal{H}_{P R}^{\mathcal{D}}\right)_{a b}$ is a cofree coalgebra and we recover in a different way the result of freeness of $\mathcal{B} r(\mathcal{D})$ as a Lie algebra in characteristic zero.

Notations. We denote by K a commutative field of any characteristic. All objects (vector spaces, algebras...) will be taken over K.

1 A description of free prelie and brace algebras

1.1 Rooted trees and planar rooted trees

Definition 1

1. A rooted tree t is a finite graph, without loops, with a special vertex called root of t. The weight of t is the number of its vertices. The set of rooted trees will be denoted by \mathcal{T}.
2. A planar rooted tree t is a rooted tree with an imbedding in the plane. the set of planar rooted trees will be denoted by \mathcal{T}_{P}.
3. Let \mathcal{D} be a nonempty set. A rooted tree decorated by \mathcal{D} is a planar tree with an application from the set of its vertices into \mathcal{D}. The set of rooted trees decorated by \mathcal{D} will be denoted by $\mathcal{T}^{\mathcal{D}}$.
4. Let \mathcal{D} be a nonempty set. A planar rooted tree decorated by \mathcal{D} is a planar tree with an application from the set of its vertices into \mathcal{D}. The set of planar rooted trees decorated by \mathcal{D} will be denoted by $\mathcal{T}_{P}^{\mathcal{D}}$.

Examples.

1. Rooted trees with weight smaller than 5 :

$$
\ldots, \forall, 1, v, \forall, Y, \perp, \forall, \forall, \forall, \forall, \forall, Y, Y, Y,
$$

2. Rooted trees decorated by \mathcal{D} with weight smaller than 4 :

$$
\begin{aligned}
& { }_{\cdot}, a \in \mathcal{D}, \quad \mathbf{Q}_{a}^{b},(a, b) \in \mathcal{D}^{2}, \quad{ }^{b} \bigvee_{a}{ }^{c}={ }^{c} \bigvee_{a}{ }^{b}, \dot{!}_{a}^{c},(a, b, c) \in \mathcal{D}^{3},
\end{aligned}
$$

3. Planar rooted trees with weight smaller than 5:

$$
., \downarrow, \vee, \downarrow, \vee, \forall, \forall, Y, \downarrow, \mathcal{V}, \downarrow, \downarrow, \vee, \downarrow, \forall, V, V, \vee, Y, Y, Y, \downarrow!
$$

4. Planar rooted trees decorated by \mathcal{D} with weight smaller than 4:

$$
\begin{aligned}
& { }_{\cdot}{ }_{a}, a \in \mathcal{D}, \quad \mathfrak{l}_{a}^{b},(a, b) \in \mathcal{D}^{2}, \quad{ }^{b} \bigvee_{a}^{c}, \mathfrak{l}_{a}^{c},(a, b, c) \in \mathcal{D}^{3},
\end{aligned}
$$

Let t_{1}, \ldots, t_{n} be elements of $\mathcal{T}^{\mathcal{D}}$ and let $d \in \mathcal{D}$. We denote by $B_{d}\left(t_{1} \ldots t_{n}\right)$ the rooted tree obtained by grafting t_{1}, \ldots, t_{n} on a common root decorated by d. For example, $B_{d}\left(\mathfrak{l}_{a}^{b} \cdot{ }_{c}\right)={ }^{b} \bigvee_{d}^{c}$. This application B_{d} can be extended in an operator:

$$
B_{d}:\left\{\begin{array}{rll}
K\left[\mathcal{T}^{\mathcal{D}}\right] & \longrightarrow & K \mathcal{T}^{\mathcal{D}} \\
t_{1} \ldots t_{n} & \longrightarrow & B_{d}\left(t_{1} \ldots t_{n}\right)
\end{array}\right.
$$

where $K\left[\mathcal{T}^{\mathcal{D}}\right]$ is the polynomial algebra generated by $\mathcal{T}^{\mathcal{D}}$ over K and $K \mathcal{T}^{\mathcal{D}}$ is the K-vector space generated by $\mathcal{T}^{\mathcal{D}}$. This operator is monic, and moreover $K \mathcal{T}^{\mathcal{D}}$ is the direct sum of the images of the B_{d} 's, $d \in \mathcal{D}$.

Similarly, let t_{1}, \ldots, t_{n} be elements of $\mathcal{T}_{P}^{\mathcal{D}}$ and let $d \in \mathcal{D}$. We denote by $B_{d}\left(t_{1} \ldots t_{n}\right)$ the planar rooted tree obtained by grafting t_{1}, \ldots, t_{n} in this order from left to right on a common root decorated by d. For example, $B_{a}\left(\mathfrak{l}_{b}^{c} \cdot{ }_{d}\right)={ }^{c} \bigvee_{a}{ }^{d}$ and $B_{a}\left(\cdot{ }_{d} \mathfrak{l}_{b}^{c}\right)={ }^{d} \bigvee_{a}{ }^{c}{ }^{c}$. This application B_{d} can be extended in an operator:

$$
B_{d}:\left\{\begin{array}{lll}
K\left\langle\mathcal{T}_{P}^{\mathcal{D}}\right\rangle & \longrightarrow & K \mathcal{T}_{P}^{\mathcal{D}} \\
t_{1} \ldots t_{n} & \longrightarrow & B_{d}\left(t_{1} \ldots t_{n}\right),
\end{array}\right.
$$

where $K\left\langle\mathcal{T}_{P}^{\mathcal{D}}\right\rangle$ is the free algebra generated by $\mathcal{T}_{P}^{\mathcal{D}}$ over K and $K \mathcal{T}_{P}^{\mathcal{D}}$ is the K-vector space generated by $\mathcal{T}_{P}^{\mathcal{D}}$. This operator is monic, and moreover $K \mathcal{T}_{P}^{\mathcal{D}}$ is the direct sum of the images of the B_{d} 's, $d \in \mathcal{D}$.

1.2 Free prelie algebras

Definition 2 A (left) prelie algebra is a couple (A, \circ) where A is a vector space and \circ : $A \otimes A \longrightarrow A$ satisfying the following relation: for all $x, y, z \in A$,

$$
(x \circ y) \circ z-x \circ(y \circ z)=(y \circ x) \circ z-y \circ(x \circ z)
$$

Let \mathcal{D} be a set. A description of the free prelie algebra $\mathcal{P} \mathcal{L}(\mathcal{D})$ generated by \mathcal{D} is given in [3]. As a vector space, it has a basis given by $\mathcal{T}^{\mathcal{D}}$, and its prelie product is given, for all $t_{1}, t_{2} \in \mathcal{T}^{\mathcal{D}}$, by:

$$
t_{1} \circ t_{2}=\sum_{s \text { vertex of } t_{2}} \text { grafting of } t_{1} \text { on } s
$$

For example:

In other terms, the prelie product can be inductively defined by:

$$
\left\{\begin{aligned}
t \circ \cdot d & \longrightarrow B_{d}\left(t_{1}\right) \\
t \circ B_{d}\left(t_{1} \ldots t_{n}\right) & \longrightarrow B_{d}\left(t t_{1} \ldots t_{n}\right)+\sum_{i=1}^{n} B_{d}\left(t_{1} \ldots\left(t \circ t_{i}\right) \ldots t_{n}\right)
\end{aligned}\right.
$$

Lemma 3 Let \mathcal{D} a set. We suppose that \mathcal{D} has a gradation $(\mathcal{D}(n))_{n \in \mathbb{N}}$ such that, for all $n \in \mathbb{N}, \mathcal{D}(n)$ is finite set of cardinal denoted by d_{n}, and $\mathcal{D}(0)$ is empty. We denote by $F_{\mathcal{D}}(x)$ the Poincaré-Hilbert series of this set:

$$
F_{\mathcal{D}}(x)=\sum_{n=1}^{\infty} d_{n} x^{n} .
$$

This gradation induces a gradation $(\mathcal{P} \mathcal{L}(\mathcal{D})(n))_{n \in \mathbb{N}}$ of $\mathcal{P} \mathcal{L}(\mathcal{D})$. Moreover, for all $n \geq 0, \mathcal{P} \mathcal{L}(\mathcal{D})(n)$ is finite-dimensional. We denote by t_{n} its dimension. Then the Poincaré-Hilbert series of $\mathcal{P} \mathcal{L}(\mathcal{D})$ satisfies:

$$
F_{\mathcal{P L}(\mathcal{D})}(x)=\sum_{n=1}^{\infty} t_{n} x^{n}=\frac{F_{\mathcal{D}}(x)}{\prod_{i=1}^{\infty}\left(1-x^{i}\right)^{t_{i}}}
$$

Proof. The formal series of the space $K\left[\mathcal{T}^{\mathcal{D}}\right]$ is given by:

$$
F(x)=\prod_{i=1}^{\infty} \frac{1}{\left(1-x^{i}\right)^{t_{i}}}
$$

Moreover, for all $d \in \mathcal{D}(n), B_{d}$ is homogeneous of degree n, so the Poincaré-Hilbert series of $\operatorname{Im}\left(B_{d}\right)$ is $x^{n} F(x)$. As $\mathcal{P} \mathcal{L}(\mathcal{D})=K \mathcal{T}^{\mathcal{D}}=\bigoplus \operatorname{Im}\left(B_{d}\right)$ as a graded vector space, its PoincaréHilbert formal series is:

$$
F_{\mathcal{P L}(\mathcal{D})}(x)=F(x) \sum_{n=1}^{\infty} d_{n} x^{n}=F(x) F_{\mathcal{D}}(x)
$$

which gives the announced result.

1.3 Free brace algebras

Definition $4[1,2,16]$ A brace algebra is a couple $(A,\langle \rangle)$ where A is a vector space and \rangle is a family of operators $A^{\otimes n} \longrightarrow A$ defined for all $n \geq 2$:

$$
\left\{\begin{aligned}
A^{\otimes n} & \longrightarrow A \\
a_{1} \otimes \ldots \otimes a_{n} & \longrightarrow\left\langle a_{1}, \ldots, a_{n-1} ; a_{n}\right\rangle
\end{aligned}\right.
$$

with the following compatibilities: for all $a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{n}, c \in A$,

$$
\left\langle a_{1}, \ldots, a_{m} ;\left\langle b_{1}, \ldots, b_{m} ; c\right\rangle\right\rangle=\sum\left\langle\left\langle A_{0},\left\langle A_{1} ; b_{1}\right\rangle, A_{2},\left\langle A_{3} ; b_{2}\right\rangle, A_{4}, \ldots, A_{2 n-2},\left\langle A_{2 n-1} ; b_{n}\right\rangle, A_{2 n} ; c\right\rangle\right.
$$

where this sum runs over partitions of the ordered set $\left\{a_{1}, \ldots, a_{n}\right\}$ into (possibly empty) consecutive intervals $A_{1} \sqcup \ldots \sqcup A_{2 n}$. We use the convention $\langle a\rangle=a$ for all $a \in A$.

For example, if A is a brace algebra and $a, b, c \in A$:

$$
\langle a ;\langle b ; c\rangle\rangle=\langle a, b ; c\rangle+\langle b, a ; c\rangle+\langle\langle a ; b\rangle ; c\rangle .
$$

As an immediate corollary, $(A,\langle-;-\rangle)$ is a prelie algebra. Here is another example of relation in a brace algebra: for all $a, b, c, d \in A$,

$$
\langle a, b ;\langle c ; d\rangle\rangle=\langle a, b, c ; d\rangle+\langle a,\langle b ; c\rangle ; d\rangle+\langle\langle a, b ; c\rangle ; d\rangle+\langle a, c, b ; d\rangle+\langle\langle a ; c\rangle, b ; d\rangle+\langle c, a, b ; d\rangle .
$$

Let \mathcal{D} be a set. A description of the free brace algebra $\operatorname{Br}(\mathcal{D})$ generated by \mathcal{D} is given in $[2,8]$. As a vector space, it has a basis given by $\mathcal{T}_{P}^{\mathcal{D}}$ and the brace structure is given, for all $t_{1}, \ldots, t_{n} \in \mathcal{T}_{P}^{\mathcal{D}}$, by:

$$
\left\langle t_{1}, \ldots ; t_{n}\right\rangle=\sum \text { graftings of } t_{1} \ldots t_{n-1} \text { over } t_{n}
$$

Note that for any vertex s of t_{n}, there are several ways of grafting a planar tree on s. For example:

As a consequence, the prelie product of $\mathcal{B} r(\mathcal{D})$ can be inductively defined in this way:

$$
\left\{\begin{aligned}
\langle t ; \bullet d\rangle & \longrightarrow B_{d}(t), \\
\left\langle t ; B_{d}\left(t_{1} \ldots t_{n}\right)\right\rangle & \longrightarrow \sum_{i=0}^{n} B_{d}\left(t_{1} \ldots t_{i} t t_{i+1} \ldots t_{n}\right)+\sum_{i=1}^{n} B_{d}\left(t_{1} \ldots t_{i-1}\left\langle t ; t_{i}\right\rangle t_{i+1} \ldots t_{n}\right)
\end{aligned}\right.
$$

Proposition $5 \mathcal{B} r(\mathcal{D})$ is the free brace algebra generated by \mathcal{D}.
Proof. From [2, 8].

Lemma 6 Let \mathcal{D} a set, with the hypotheses and notations of lemma 3. The gradation of \mathcal{D} induces a gradation $(\mathcal{B r}(\mathcal{D})(n))_{n \in \mathbb{N}}$ of $\mathcal{B} r(\mathcal{D})$. Moreover, for all $n \geq 0, \mathcal{B} r(\mathcal{D})(n)$ is finitedimensional. Then the Poincaré-Hilbert series of $\mathcal{B} r(\mathcal{D})$ is:

$$
F_{\mathcal{B} r(\mathcal{D})}(x)=\sum_{n=0}^{\infty} t_{n}^{\prime} x^{n}=\frac{1-\sqrt{1-4 F_{\mathcal{D}}(x)}}{2}
$$

Proof. The Poincaré-Hilbert formal series of $K\left\langle\mathcal{T}_{P}^{\mathcal{D}}\right\rangle$ is given by:

$$
F(x)=\frac{1}{1-F_{\mathcal{B} r(\mathcal{D})}(x)}
$$

Moreover, for all $d \in \mathcal{D}(n), B_{d}$ is homogeneous of degree n, so the Poincaré-Hilbert series of $\operatorname{Im}\left(B_{d}\right)$ is $x^{n} F(x)$. As $\mathcal{B} r(\mathcal{D})=K \mathcal{T}_{P}^{\mathcal{D}}=\bigoplus \operatorname{Im}\left(B_{d}\right)$ as a graded vector space, its PoincaréHilbert formal series is:

$$
F_{\mathcal{B} r(\mathcal{D})}(x)=F(x) \sum_{n=1}^{\infty} d_{n} x^{n}=F(x) F_{\mathcal{D}}(x)
$$

As a consequence, $F_{\mathcal{B} r(\mathcal{D})}(x)-F_{\mathcal{B} r(\mathcal{D})}(x)^{2}=F_{\mathcal{D}}(x)$, which implies the announced result.

2 A non-associative permutative product on $\mathcal{B r}(\mathcal{D})$

2.1 Definition and recalls

The following definition is introduced in [13]:
Definition 7 A (left) non-associative permutative algebra is a couple (A, \star), where A is a vector space and $\star: A \otimes A \longrightarrow A$ satisfies the following property: for all $x, y, z \in A$,

$$
x \star(y \star z)=y \star(x \star z)
$$

Let \mathcal{D} be a set. A description of the free non-associative permutative algebra $\mathcal{P e r m}(\mathcal{D})$ generated by \mathcal{D} is given in [13]. As a vector space, $\operatorname{Perm}(\mathcal{D})$ is equal to $K \mathcal{T}^{\mathcal{D}}$. The nonassociative permutative product is given in this way: for all $t_{1} \in \mathcal{T}^{D}, t_{2}=B_{d}\left(F_{2}\right) \in \mathcal{T}^{D}$,

$$
t_{1} \star t_{2}=B_{d}\left(t_{1} F_{2}\right)
$$

In other terms, $t_{1} \star t_{2}$ is the tree obtained by grafting t_{1} on the root of t_{2}. As $\mathcal{P e r m}(\mathcal{D})=\mathcal{P} \mathcal{L}(\mathcal{D})$ as a vector space, lemma 3 is still true when one replaces $\mathcal{P} \mathcal{L}(\mathcal{D})$ by $\operatorname{Perm}(\mathcal{D})$.

2.2 Permutative structures on planar rooted trees

Let us fix now a non-empty set \mathcal{D}. We define the following product on $\mathcal{B r}(\mathcal{D})=K \mathcal{T}_{P}^{\mathcal{D}}$: for all $t \in \mathcal{T}_{P}^{\mathcal{D}}, t^{\prime}=B_{d}\left(t_{1} \ldots t_{n}\right) \in \mathcal{T}_{P}^{\mathcal{D}}$,

$$
t \star t^{\prime}=\sum_{i=0}^{n} B_{d}\left(t_{1} \ldots t_{i} t t_{i+1} \ldots t_{n}\right) .
$$

Proposition $8(\mathcal{B} r(\mathcal{D}), \star)$ is a non-associative permutative algebra.
Proof. Let us give $K\left\langle\mathcal{T}_{P}^{\mathcal{D}}\right\rangle$ its shuffle product: for all $t_{1}, \ldots, t_{m+n} \in \mathcal{T}_{P}^{\mathcal{D}}$,

$$
\left(t_{1} \ldots t_{m}\right) *\left(t_{m+1} \ldots t_{m+n}^{\prime}\right)=\sum_{\sigma \in S h(m, n)} t_{\sigma^{-1}(1)} \ldots t_{\sigma^{-1}(m+n)},
$$

where $\operatorname{Sh}(m, n)$ is the set of permutations of S_{m+n} which are increasing on $\{1, \ldots, m\}$ and $\{m+1, \ldots, m+n\}$. It is well known that $*$ is an associative, commutative product. For example, for all $t, t_{1}, \ldots, t_{n} \in \mathcal{T}_{P}^{\mathcal{D}}$:

$$
t *\left(t_{1} \ldots t_{n}\right)=\sum_{i=0}^{n} t_{1} \ldots t_{i} t t_{i+1} \ldots t_{n}
$$

As a consequence, for all $x \in K \mathcal{T}_{P}^{\mathcal{D}}, y \in K\left\langle\mathcal{T}_{P}^{\mathcal{D}}\right\rangle, d \in \mathcal{D}$:

$$
\begin{equation*}
x \star B_{d}(y)=B_{d}(x * y) . \tag{1}
\end{equation*}
$$

Let $t_{1}, t_{2}, t_{3}=B_{d}\left(F_{3}\right) \in \mathcal{T}_{P}^{\mathcal{D}}$. Then, using (1):

$$
\begin{aligned}
t_{1} \star\left(t_{2} \star t_{3}\right) & =t_{1} \star B_{d}\left(t_{2} * F_{3}\right) \\
& =B_{d}\left(t_{1} *\left(t_{2} * F_{3}\right)\right) \\
& =B_{d}\left(\left(\left(t_{1} * t_{2}\right) * F_{3}\right)\right. \\
& =B_{d}\left(\left(t_{2} * t_{1}\right) * F_{3}\right) \\
& =B_{d}\left(t_{2} *\left(t_{1} * F_{3}\right)\right) \\
& =t_{2} \star\left(t_{1} \star t_{3}\right) .
\end{aligned}
$$

So \star is a non-associative permutative product on $\mathcal{B} r(\mathcal{D})$.

2.3 Freeness of $\mathcal{B} r(\mathcal{D})$ as a non-associative permutative algebra

We now assume that \mathcal{D} is finite, of cardinal d. We can then assume that $\mathcal{D}=\{1, \ldots, d\}$.
Theorem $9(\mathcal{B} r(\mathcal{D}), \star)$ is a free non-associative permutative algebra.
Proof. We graduate \mathcal{D} by putting $\mathcal{D}(1)=\mathcal{D}$. Then $\mathcal{B} r(\mathcal{D})$ is graded, the degree of a tree $t \in \mathcal{T}_{P}^{\mathcal{D}}$ being the number of its vertices. By lemma 6 , as the Poincaré-Hilbert series of \mathcal{D} is $F_{\mathcal{D}}(x)=d x$, the Poincaré-Hilbert series of $\mathcal{B} r(\mathcal{D})$ is:

$$
\begin{equation*}
F_{\mathcal{B} r(\mathcal{D})}(x)=\sum_{i=1}^{\infty} t_{i}^{\prime} x^{i}=\frac{1-\sqrt{1-4 d x}}{2} . \tag{2}
\end{equation*}
$$

We consider the following isomorphism of vector spaces:

$$
B:\left\{\begin{aligned}
\left(K\left\langle\mathcal{T}_{P}^{\mathcal{D}}\right\rangle\right)^{d} & \longrightarrow \mathcal{B} r(\mathcal{D}) \\
\left(F_{1}, \ldots, F_{d}\right) & \longrightarrow \sum_{i=1}^{d} B_{i}\left(F_{i}\right) .
\end{aligned}\right.
$$

Let us fix a minimal vector space of generators of $\mathcal{B} r(\mathcal{D})$. Because $\mathcal{B} r(\mathcal{D})$ is a graded, connected non-associative permutative algebra (that is to say $\mathcal{B} r(\mathcal{D})(0)=(0)$), we can choose a graded complement V of the graded subspace $\mathcal{B} r(\mathcal{D}) \star \mathcal{B} r(\mathcal{D})$ in $\mathcal{B} r(\mathcal{D})$. By (1), $\mathcal{B} r(\mathcal{D}) \star \mathcal{B} r(\mathcal{D})=$ $B\left(\left(\mathcal{T}_{P}^{\mathcal{D}} * K\left\langle\mathcal{T}_{P}^{\mathcal{D}}\right\rangle\right)^{d}\right)$.

Let us then consider $\mathcal{T}_{P}^{\mathcal{D}} * K\left\langle\mathcal{T}_{P}^{\mathcal{D}}\right\rangle$, that is to say the ideal of $\left(K\left\langle\mathcal{T}_{P}^{\mathcal{D}}\right\rangle, *\right)$ generated by $\mathcal{T}_{P}^{\mathcal{D}}$. It is well known that $\left(K\left\langle\mathcal{T}_{P}^{\mathcal{D}}\right\rangle, *\right)$ is isomorphic to a symmetric algebra: hence, there exists a graded subspace W of $K\left\langle\mathcal{T}_{P}^{\mathcal{D}}\right\rangle$, such that $\left(K\left\langle\mathcal{T}_{P}^{\mathcal{D}}\right\rangle, *\right) \approx S(W)$ as a graded algebra. We can assume that W contains $K \mathcal{T}_{P}^{\mathcal{D}}$. As a consequence:

$$
\begin{equation*}
\frac{K\left\langle\mathcal{T}_{P}^{\mathcal{D}}\right\rangle}{\mathcal{T}_{P}^{\mathcal{D}} * K\left\langle\mathcal{T}_{P}^{\mathcal{D}}\right\rangle} \approx \frac{S(W)}{S(W) \mathcal{T}_{P}^{\mathcal{D}}} \approx S\left(\frac{W}{K \mathcal{T}_{P}^{\mathcal{D}}}\right) \tag{3}
\end{equation*}
$$

We denote by w_{i} the dimension of $W(i)$ for all $i \in \mathbb{N}$. Then, the Poincaré-Hilbert formal series of $S\left(\frac{W}{K \mathcal{T}_{P}^{\mathcal{D}}}\right)$ is:

$$
\begin{equation*}
F_{S\left(\frac{W}{K \mathcal{T}_{P}^{D}}\right)}(x)=\prod_{i=1}^{\infty} \frac{1}{\left(1-x^{i}\right)^{w_{i}-t_{i}^{\prime}}} \tag{4}
\end{equation*}
$$

Moreover, the Poincaré-Hilbert formal series of $K\left\langle\mathcal{T}_{P}^{\mathcal{D}}\right\rangle \approx S(W)$ is, by (2):

$$
\begin{equation*}
F_{S(W)}(x)=\frac{1}{1-F_{\mathcal{B} r(\mathcal{D})}(x)}=\frac{1-\sqrt{1-4 d x}}{2 d x}=\frac{F_{\mathcal{B} r(\mathcal{D})}(x)}{d x}=\prod_{i=1}^{\infty} \frac{1}{\left(1-x^{i}\right)^{w_{i}}} \tag{5}
\end{equation*}
$$

So, from (3), using (4) and (5), the Poincaré-Hilbert series of $\mathcal{T}_{P}^{\mathcal{D}} * K\left\langle\mathcal{T}_{P}^{\mathcal{D}}\right\rangle$ is:

$$
\begin{aligned}
F_{\mathcal{T}_{P}^{\mathcal{D}} * K\left\langle\mathcal{T}_{P}^{\mathcal{D}}\right\rangle}(x) & =F_{S(W)}(x)-F_{S\left(\frac{W}{K \mathcal{T}_{P}^{\mathcal{D}}}\right.}(x) \\
& =\prod_{i=1}^{\infty} \frac{1}{\left(1-x^{i}\right)^{w_{i}}}\left(1-\prod_{i=1}^{\infty}\left(1-x^{i}\right)^{t_{i}^{\prime}}\right) \\
& =\frac{F_{\mathcal{B} r(\mathcal{D})}(x)}{d x}\left(1-\prod_{i=1}^{\infty}\left(1-x^{i}\right)^{t_{i}^{\prime}}\right) .
\end{aligned}
$$

As B is homogeneous of degree 1, the Poincaré-Hilbert formal series of $\mathcal{B} r(\mathcal{D}) \star \mathcal{B} r(\mathcal{D})$ is:

$$
F_{\mathcal{B} r(\mathcal{D}) \star \mathcal{B} r(\mathcal{D})}(x)=d x F_{\mathcal{T}_{P}^{\mathcal{D}} * K\left\langle\mathcal{T}_{P}^{\mathcal{D}}\right\rangle}(x)=F_{\mathcal{B} r(\mathcal{D})}(x)\left(1-\prod_{i=1}^{\infty}\left(1-x^{i}\right)^{t_{i}^{\prime}}\right)
$$

Finally, the Poincaré-Hilbert formal series of V is:

$$
F_{V}(x)=F_{\mathcal{B} r(\mathcal{D})}(x)-F_{\mathcal{B} r(\mathcal{D}) \star \mathcal{B} r(\mathcal{D})}(x)=F_{\mathcal{B} r(\mathcal{D})}(x) \prod_{i=1}^{\infty}\left(1-x^{i}\right)^{t_{i}^{\prime}}
$$

Let us now fix a basis $\left(v_{i}\right)_{i \in I}$ of V, formed of homogeneous elements. There is a unique epimorphism of non-associative permutative algebras:

$$
\Theta:\left\{\begin{array}{rll}
\operatorname{Perm}(I) & \longrightarrow \mathcal{B} r(\mathcal{D}) \\
\cdot_{i} & \longrightarrow & v_{i}
\end{array}\right.
$$

We give to $i \in I$ the degree of $v_{i} \in \mathcal{B} r(\mathcal{D})$. With the induced gradation of $\mathcal{P e r m}(I), \Theta$ is a graded epimorphism. In order to prove that it is an isomorphism, it is enough to prove that the Poincaré-Hilbert series of $\mathcal{P e r m}(I)$ and $\mathcal{B} r(\mathcal{D})$ are equal. By lemma 3, the formal series of $\mathcal{P e r m}(I)$, or, equivalently, of $\mathcal{P} \mathcal{L}(I)$, is:

$$
\begin{equation*}
F_{\mathcal{P e r m}(I)}(x)=\sum_{n=1}^{\infty} t_{i} x^{i}=\frac{F_{V}(x)}{\prod_{i=1}^{\infty}\left(1-x^{i}\right)^{t_{i}}}=F_{\mathcal{B} r(\mathcal{D})}(x) \prod_{i=1}^{\infty}\left(1-x^{i}\right)^{t_{i}^{\prime}-t_{i}} \tag{6}
\end{equation*}
$$

Let us prove inductively that $t_{n}=t_{n}^{\prime}$ for all $n \in \mathbb{N}$. It is immediate if $n=0$, as $t_{0}=t_{0}^{\prime}=0$. Let us assume that $t_{i}=t_{i}^{\prime}$ for all $i<n$. Then:

$$
\prod_{i=1}^{\infty}\left(1-x^{i}\right)^{t_{i}-t_{i}^{\prime}}=1+\mathcal{O}\left(x^{n}\right)
$$

As $t_{0}^{\prime}=0$, the coefficient of x^{n} in (6) is $t_{n}=t_{n}^{\prime}$. So $F_{\mathcal{P} \operatorname{erm}(I)}(x)=F_{S(W)}(x)$, and Θ is an isomorphism.

3 Freeness of $\mathcal{B} r(\mathcal{D})$ as a prelie algebra

3.1 Main theorem

Theorem 10 Let \mathcal{D} be a finite set. Then $\mathcal{B r}(\mathcal{D})$ is a free prelie algebra.
Proof. We give a \mathbb{N}^{2}-gradation on $\mathcal{B r}(\mathcal{D})$ in the following way:

$$
\mathcal{B} r(\mathcal{D})(k, l)=\operatorname{Vect}\left(t \in \mathcal{T}_{P}^{\mathcal{D}} / t \text { has } k \text { vertices and the fertility of its root is } l\right) .
$$

The following points are easy:

1. For all $i, j, k, l \in \mathbb{N}, \mathcal{B} r(\mathcal{D})(i, j) \star \mathcal{B} r(\mathcal{D})(k, l) \subseteq \mathcal{B} r(\mathcal{D})(i+k, l+1)$.
2. For all $i, j, k, l \in \mathbb{N}, t_{1} \in \mathcal{B r}(\mathcal{D})(i, j), t_{2} \in \mathcal{B r}(\mathcal{D})(k, l),\left\langle t_{1} ; t_{2}\right\rangle-t_{1} \star t_{2} \in \operatorname{Br}(\mathcal{D})(i+k, l)$.

Let us fix a complement V of $\mathcal{B} r(\mathcal{D}) \star \operatorname{Br} r(\mathcal{D})$ in $\mathcal{B} r(\mathcal{D})$ which is \mathbb{N}^{2}-graded. Then $\mathcal{B} r(\mathcal{D})$ is isomorphic as a \mathbb{N}-graded non-associative permutative algebra to $\operatorname{Perm}(V)$, the free non-associative permutative algebra generated by V.

Let us prove that V also generates $\mathcal{B r} r(\mathcal{D})$ as a prelie algebra. As $\mathcal{B} r(\mathcal{D})$ is \mathbb{N}-graded, with $\mathcal{B} r(\mathcal{D})(0)$, it is enough to prove that $\mathcal{B r}(\mathcal{D})=V+\langle\mathcal{B} r(\mathcal{D}) ; \mathcal{B} r(\mathcal{D})\rangle$. Let $x \in \mathcal{B} r(\mathcal{D})(k, l)$, let us show that $x \in V+\langle\mathcal{B} r(\mathcal{D}) ; \mathcal{B} r(\mathcal{D})\rangle$ by induction on l. If $l=0$, then $t \in \mathcal{B} r(\mathcal{D})(1)=V(1)$. If $l=1$, we can suppose that $x=B_{d}(t)$, where $t \in \mathcal{T}_{P}^{\mathcal{D}}$. Then $x=\left\langle t ; \cdot{ }_{d}\right\rangle \in\langle\mathcal{B} r(\mathcal{D}) ; \mathcal{B} r(\mathcal{D})\rangle$. Let us assume the result for all $l^{\prime}<l$. As V generates $(\mathcal{B} r(\mathcal{D}), \star)$, we can write x as:

$$
x=x^{\prime}+\sum_{i} x_{i} \star y_{i},
$$

where $x^{\prime} \in V$ and $x_{i}, y_{i} \in \mathcal{B} r(\mathcal{D})$. By the first point, we can assume that:

$$
\sum_{i} x_{i} \otimes y_{i} \in \bigoplus_{i+j=k} \mathcal{B} r(\mathcal{D})(i) \otimes \mathcal{B} r(\mathcal{D})(j, l-1) .
$$

So, by the second point:

$$
\begin{aligned}
x-x^{\prime}-\sum_{i}\left\langle x_{i} ; y_{i}\right\rangle & =\sum_{i} x_{i} \star y_{i}-\left\langle x_{i} ; y_{i}\right\rangle \\
& \in \sum_{i+j=k} \mathcal{B} r(\mathcal{D})(i+j, l-1) \\
& \in V+\langle\mathcal{B} r(\mathcal{D}) ; \mathcal{B} r(\mathcal{D})\rangle,
\end{aligned}
$$

by the induction hypothesis. So $x \in V+\langle\mathcal{B r}(\mathcal{D}) ; \mathcal{B} r(\mathcal{D})\rangle$.
Hence, there is an homogeneous epimorphism:

$$
\left\{\begin{array}{rll}
\mathcal{P} \mathcal{L}(V) & \longrightarrow & \mathcal{B} r(\mathcal{D}) \\
v \in V & \longrightarrow & v .
\end{array}\right.
$$

As $\mathcal{P} \mathcal{L}(V), \mathcal{P e r m}(V)$ and $\mathcal{B} r(\mathcal{D})$ have the same Poincaré-Hilbert formal series, this is an isomorphism.

We now give the number of generators of $\mathcal{B} r(\mathcal{D})$ in degree n when $\operatorname{card}(\mathcal{D})=d$ for small values of n, computed using lemmas 3 and 6 :

1. For $n=1, d$.
2. For $n=2,0$.
3. For $n=3, \frac{d^{2}(d-1)}{2}$.
4. For $n=4, \frac{d^{2}(2 d-1)(2 d+1)}{3}$.
5. For $n=5, \frac{d^{2}\left(31 d^{3}-2 d^{2}-3 d-2\right)}{8}$.
6. For $n=6, \frac{d^{2}\left(356 d^{4}-20 d^{3}-5 d^{2}+5 d-6\right)}{30}$.
7. For $n=7, \frac{d^{2}\left(5441 d^{5}-279 d^{4}-91 d^{3}-129 d^{2}-22 d-24\right)}{144}$.

3.2 Corollaries

Corollary 11 Let \mathcal{D} be any set. Then $\mathcal{B} r(\mathcal{D})$ is a free prelie algebra.
Proof. We graduate $\mathcal{B} r(\mathcal{D})$ by putting all the $\cdot{ }^{d}$'s homogeneous of degree 1 . Let V be a graded complement of $\langle\mathcal{B} r(\mathcal{D}), \mathcal{B} r(\mathcal{D})\rangle$. There exists an epimorphism of graded prelie algebras:

$$
\Theta:\left\{\begin{array}{rll}
\mathcal{P} \mathcal{L}(V) & \longrightarrow \mathcal{B} r(\mathcal{D}) \\
\cdot v & \longrightarrow & v .
\end{array}\right.
$$

Let x be in the kernel of Θ. There exists a finite subset \mathcal{D}^{\prime} of \mathcal{D}, such that all the decorations of the vertices of the trees appearing in x belong to $\mathcal{B} r\left(\mathcal{D}^{\prime}\right)$. By the preceding theorem, as $\mathcal{B} r\left(\mathcal{D}^{\prime}\right)$ is a free prelie algebra, $x=0$. So Θ is an isomorphism.

Corollary 12 Let us assume that K is a field of characteristic zero. Let \mathcal{D} be a graded set, satisfying the conditions of lemma 3. There exists a graded set \mathcal{D}^{\prime}, such that $\left(\mathcal{H}_{P R}^{\mathcal{D}}\right)_{a b}$ is isomorphic, as a graded Hopf algebra, to $\mathcal{H}_{R}^{\mathcal{D}^{\prime}}$.

Proof. $\left(\mathcal{H}_{P R}^{\mathcal{D}}\right)_{a b}$ is isomorphic, as a graded Hopf algebra, to $\mathcal{U}(\mathcal{B} r(\mathcal{D}))^{*}$. For a good choice of $\mathcal{D}^{\prime}, \mathcal{B} r(\mathcal{D})$ is isomorphic to $\mathcal{P} \mathcal{L}\left(\mathcal{D}^{\prime}\right)$ as a prelie algebra, so also as a Lie algebra. So $\mathcal{U}(\mathcal{B} r(\mathcal{D}))$ is isomorphic to $\mathcal{U}\left(\mathcal{P} \mathcal{L}\left(\mathcal{D}^{\prime}\right)\right)$. Dually, $\left(\mathcal{H}_{P R}^{\mathcal{D}}\right)_{a b}$ is isomorphic to $\mathcal{H}_{R}^{\mathcal{D}^{\prime}}$.

Corollary 13 Let us assume that K is a field of characteristic zero. Let \mathcal{D} be graded set, satisfying the conditions of lemma 3. Then $\left(\mathcal{H}_{P R}^{\mathcal{D}}\right)_{a b}$ is a cofree coalgebra. Moreover, $\mathcal{B} r(\mathcal{D})$ is free as a Lie algebra.

Proof. It is proved in [5] that $\left(\mathcal{H}_{R}^{\mathcal{D}^{\prime}}\right)^{*}$ is a free algebra, so $\operatorname{Prim}\left(\left(\mathcal{H}_{R}^{\mathcal{D}^{\prime}}\right)^{*}\right)=\mathcal{P} \mathcal{L}\left(\mathcal{D}^{\prime}\right)$ is a free Lie algebra and $\mathcal{H}_{R}^{\mathcal{D}^{\prime}}$ is a cofree coalgebra. So $\operatorname{Prim}\left(\left(\mathcal{H}_{P R}^{\mathcal{D}}\right)^{*}\right)=\mathcal{B} r(\mathcal{D})$ is a free Lie algebra and $\mathcal{H}_{P R}^{\mathcal{D}}$ is a cofree coalgebra.

References

[1] Marcelo Aguiar, Infinitesimal bialgebras, pre-Lie and dendriform algebras, Hopf algebras, Lecture Notes in Pure and Appl. Math., vol. 237, Dekker, 2004, arXiv:math/02 11074, pp. 1-33.
[2] Frédéric Chapoton, Un théorème de Cartier-Milnor-Moore-Quillen pour les bigèbres dendriformes et les algèbres braces, J. Pure Appl. Algebra 168 (2002), no. 1, 1-18, arXiv:math/00 05253.
[3] Frédéric Chapoton and Muriel Livernet, Pre-lie algebras and the rooted trees operad, Internat. Math. Res. Notices 8 (2001), 395-408, arXiv:math/00 02069.
[4] Alain Connes and Dirk Kreimer, Hopf algebras, Renormalization and Noncommutative geometry, Comm. Math. Phys 199 (1998), no. 1, 203-242, arXiv:hep-th/98 08042.
[5] Loïc Foissy, Finite-dimensional comodules over the Hopf algebra of rooted trees, J. Algebra 255 (2002), no. 1, 85-120, arXiv:math.QA/01 05210.
[6] Le_ Les algèbres de Hopf des arbres enracinés, I, Bull. Sci. Math. 126 (2002), no. 3, 193-239, arXiv:math.QA/01 05212.
[7] Le_ Les algèbres de Hopf des arbres enracinés, II, Bull. Sci. Math. 126 (2002), no. 4, 1249-288, arXiv:math.QA/01 05212.
[8] Les algèbres de Hopf des arbres enracinés, II, Bull. Sci. Math. 126 (2002), no. 4, 1249-288, arXiv:math.QA/01 05212.
[9] Robert L. Grossman and Richard G. Larson, Hopf-algebraic structure of families of trees, J. Algebra 126 (1989), no. 1, 184-210, arXiv:0711.3877.
[10] , Hopf-algebraic structure of combinatorial objects and differential operators, Israel J. Math. 72 (1990), no. 1-2, 109-117.
[11] Michael E. Hoffman, Combinatorics of rooted trees and Hopf algebras, Trans. Amer. Math. Soc. 355 (2003), no. 9, 3795-3811.
[12] Ralf Holtkamp, Comparison of Hopf algebras on trees, Arch. Math. (Basel) 80 (2003), no. 4, 368-383.
[13] Muriel Livernet, A rigidity theorem for pre-lie algebras, J. Pure Appl. Algebra 207 (2006), no. 1, 1-18, arXiv:math/05 04296.
[14] Jean-Louis Loday and Maria O. Ronco, Hopf algebra of the planar binary trees, Adv. Math. 139 (1998), no. 2, 293-309.
[15] Florin Panaite, Relating the Connes-Kreimer and Grossman-Larson Hopf algebras built on rooted trees, Lett. Math. Phys. 51 (2000), no. 3, 211-219.
[16] Maria Ronco, A Milnor-Moore theorem for dendriform Hopf algebras, C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), no. 2, 109-114.

