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STRESS INTENSITY FACTOR GAUGING BY 

DIGITAL IMAGE CORRELATION: 

APPLICATION IN CYCLIC FATIGUE 

 

by  
 

Rami HAMAM, François HILD and Stéphane ROUX 

 

Abstract: 

A fatigue crack in steel (CCT geometry) is studied via digital image correlation.  The 

measurement of the stress intensity factor change during one cycle is performed using a 

decomposition of the displacement field onto a tailored set of elastic fields.  The same 

analysis is performed using two different routes, namely, the first one consists in computing 

the displacement field using a general correlation technique providing the displacement field 

projected onto finite element shape functions, and then analysing this displacement field in 

terms of the selected mechanically relevant fields.  The second strategy, called integrated 

approach, directly estimates the amplitude of these elastic fields from the correlation of 

successive images.  Both procedures give consistent results, and offer very good 

performances in the evaluation of the crack tip position (uncertainty of about 20 μm for a 

14.5-mm crack), stress intensity factors (uncertainty less than m MPa1 ) and opening 

properties.    

 

Keywords: 

Correlation algorithm, crack opening, identification technique, integrated approach, 

Photomechanics. 
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1. Introduction 

One of the commonly encountered mechanical failures is fracture dominated.  It usually 

occurs before large scale yielding.  In many materials, small scale yielding arises in the 

vicinity of the crack tip.  Therefore, the classical elastic solutions [1] are only first order 

idealizations of the practical situation.  Elastic-Plastic Fracture Mechanics (EPFM) aims at 

analysing more complex situations for which plasticity needs to be accounted for with global 

quantities.  Other routes are also developed following local approaches to fracture [2].  They 

are not discussed herein. 

 Different quantities are introduced to describe cracks in a small scale yielding regime.  

The crack opening displacement was proposed as a fracture parameter to analyze propagation 

under quasi-static [3] and cyclic [4] loading conditions.  However, the critical values of crack 

opening displacements were not always easy to evaluate.  Rice [5] considered the potential 

energy changes induced by crack growth in a non-linear elastic material.  This author 

introduced a path-independent contour integral, the J-integral.  It is used to predict the 

inception of crack propagation.  The so-called HRR fields [6,7] were also introduced to 

describe more locally the stress and strain fields in non-linear elastic materials. 

With the development of full-field measurement techniques, some of the aspects 

discussed above are assessed experimentally with or without having to use numerical 

simulations.  Under these circumstances, the measurable quantities are usually displacement 

fields [8].  Among various techniques, Digital Image Correlation (DIC) has already been 

applied to analyze cracks in homogeneous and heterogeneous materials [9].  Least squares 

techniques are used to post-process displacement fields to extract stress intensity factors by 

using one or more elastic fields [10,11].  This simple extraction method will be used herein.  

An alternative technique to determine stress intensity factors is to evaluate directly the J-

integral along a given contour [12] or an interaction integral [13] to use more measurement 
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points.  By measuring crack opening displacements, stress intensity factors are evaluated for 

brittle materials [14] and crack closure was studied in fatigue [15] by using a long-distance 

microscope.  In the present case, stress intensity factors will be used to analyse opening 

properties in fatigue. 

In this paper, it is proposed to introduce an enriched crack kinematics in cyclic fatigue 

by using two types of DIC techniques applied to the measurement of stress intensity factors.  

It generalizes the approaches proposed by the authors [16] to account for non-linear effects 

close to the crack tip.  It can be noted that more local quantities (e.g., near-tip displacements 

[17]) are also used to analyse crack opening/closure.  Section 2 is devoted to the presentation 

of a new enriched crack kinematics in small scale yielding to avoid numerical simulations 

[17] or to use HRR fields [13].  It is based upon “supersingular” and subsingular displacement 

fields.  The first supersingular field is used to evaluate the crack tip position as opposed to the 

method that consists in considering the position as one of the minimisation parameters 

[10,11].  In Section 3, an a posteriori identification technique allows for the analysis of one 

loading/unloading cycle by using supersingular and subsingular displacement fields.  An 

integrated approach is presented in Section 4.  It consists in a coupled and a priori way of 

dealing with measurement and identification [16].  In both cases, the opening load is 

determined from the stress intensity factor history. 

2. Enriched crack kinematics 

Linear Elastic Fracture Mechanics (LEFM) has proven to capture the most salient 

features of fracture, in spite of the fact that it is based on an elastic description of the solid.  

The reason for this success is the fact that the elastic singular crack field captures the 

mechanical behaviour outside the confined crack tip zone where non-linear processes (e.g., 

plasticity, damage) are taking place [1]. As such, it allows one to bridge the far-field (possibly 

complicated) elastic loading to the local crack tip through few meaningful loading parameters, 
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namely the stress intensity factors [18].  This type of analysis is applied herein to cyclic 

fatigue for an elasto-plastic material, where at the level of the stress intensity factors, no major 

change is expected past the first loading cycle.   

To address this question, let us follow the basic philosophy underlying LEFM, 

namely, outside the confined process zone where plasticity occurs, the mechanical behaviour 

of many solids remains linear elastic.  Moreover, it is through this elastic field that the crack 

tip “communicates” with the external loading applied to the solid.  Thus the approach is based 

on a characterization of elastic fields radiating from the crack tip.  To tackle the problem, one 

cuts out of the studied crack a domain D containing the crack tip process zone, and substitute 

to it an equivalent loading applied to the boundary ∂D.  The elastic field outside D is identical 

to the elasto-plastic solution of the medium with its initial (i.e., complete) geometry.  The 

difficulty is that the loading on ∂D to be applied is at this stage unknown.  At this level of 

generality, one still proceeds and solves the elastic problem for an arbitrary loading.  Such a 

task is easily performed within the framework of plane elasticity resorting to complex 

potentials [19].  A closed-form solution for the displacements is derived from the Kolossov-

Muskhelishvili potentials ϕ and ψ, holomorph functions of the complex variable z = x + iy 

 )()(')()(2 zzzzzU ψϕκϕμ −−=  (1) 

where μ is the Lamé shear modulus, κ a dimensionless elastic (or Kolossov) coefficient related 

to the Poisson’s ratio ν according to (3 − ν) / (1 + ν) for plane stress conditions or 3 − 4ν for 

plane strain conditions, and U = Ux + iUy the displacement field. 

The crack tip is assumed to lie at the origin of the coordinate z = 0, and the crack is the 

negative real axis,  and 0)( <ℜ z 0)( =ℑ z .  Such a formulation is very convenient for 

analyzing (semi-)infinite crack geometries since no characteristic scale is involved.  This 

implies that ϕ and ψ are homogeneous functions of z, i.e., zα.  The crack face boundary 

condition (i.e., traction free) thus remains to be exploited to select all possible solutions.  The 
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fulfilment of the boundary condition for a non-trivial solution immediately selects the 

exponent α for the two potentials as a half-integer α = n / 2.  Let us treat separately the cases 

where a displacement discontinuity is involved, i.e., n = 1 − 2m, and where the displacement 

is continuous, i.e., n = − 2m. 

2.1. Eigen modes 

Let us postulate the form of the two potentials as  and m−= 2/1)( Azzϕ

m−= 2/1)( Bzzψ .  For m = 0, the standard singular solution is recovered [18].  In the 

following, the fields that are less singular (m < 0), are termed “subsingular” and those such 

that m > 0 are referred to as “supersingular.”  The traction-free crack faces imply 

 AAB +−−= )2/1( m  (2) 

Thus one has two modes (namely,  and )(Aℜ )(Aℑ ) for each m exponent.  To identify the 

“modes,” one may note that the displacement along the (upper) crack face, θ = π is along the 

iA direction, thus mode I is for real A whereas mode II is associated with a purely imaginary 

A.  Let us introduce the eigenfunctions Ωn for mode I, (resp. Υn, for mode II), the 

displacement field obtained for exponent n and π2/)1( m−=A  (resp. π2/)1( mi −=A ).  

Thus 
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The standard elastic field corresponds to n = 1.  The factor π2  is introduced to match the 

usual definitions of the stress intensity factors KI and KII, which are thus equal respectively to 

the amplitudes ω1 and υ1 associated with the fields Ω1 and Υ1. 
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2.2. Non-Singular solutions 

The case of an even exponent n = − 2m is considered.  The boundary conditions along the 

crack faces give 

 AAB −= m  (5) 

Thus two modes are again encountered (namely, )(Aℜ  and )(Aℑ ) for each m exponent.  The 

displacement along the upper crack face, θ = π, reads 

 mm rr −+−== AU )1()1(),(2 κπθμ  (6) 

Thus the displacement is along the A direction.  For a real A, (this case shares the same y to 

−y symmetry as “mode I”), one obtains the “generalized T-stress” mode in polar coordinates 

(the T-stress is obtained for n = 2 (m = −1) [20]), whereas a purely imaginary iA gives a 

contribution that follows the same anti-symmetry as mode II (e.g., a rigid body rotation is 

obtained for n = 2 (or m = −1)).  Conversely, rigid body translations are obtained for n = 0.   

2.3. Interpretation 

Traditionally, the supersingular fields are ignored because their asymptotic behaviour near the 

crack tip is non-physical (i.e., diverging energy density).  However, for the present purpose, 

since the crack tip process zone is cut out from the domain of analysis, one does not have to 

reject these solutions.  The most general field is thus looked for as 

 [ ]∑ +=
n

nnnn )()()( zΥzΩzU υω  (7) 

where ωn and υn are real numbers.   

Under pure mode I, the crack opening discontinuity  at x = − r is ]][[ U

 ∑+
=
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whereas in mode II,    
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2.4. Subsingular fields 

Let us first note that the status of the fields Ωn and Υn is very different for n less than or 

greater than 1. For n > 1, the fields are called here subsingular.  They have no impact on the 

crack tip.  Conversely, the attached stress fields increase with the distance to the crack tip.  

Such functions are thus useful to match the singular fields with the remote geometry, or 

boundary conditions.  However, since their impact on the crack tip process zone is negligible, 

one does not insist here on the structure of these fields.  

All elastic fields that fulfil the crack face boundary conditions (i.e., the traction on this 

boundary vanishes) are easily obtained.  Moreover, they are naturally ranked.  A basis for 

such space of elastic fields is constructed from functions that have a power law dependence 

with the distance r to the crack tip, with exponent αn for the n-th field.  Sorting out these 

functions with respect to the exponent αn allows one to rank them according to their far-field 

influence.  Among these fields, one will find the usual mode I and mode II displacement 

fields.  Looking for an enriched description, it suffices to browse through this library of 

functions and keep only the lowest orders, at a level that will be judged satisfactory.  This 

point will be addressed later on.  The result of this analysis is that a description of the crack is 

completed from the usual stress intensity factors (SIF) description, by a few additional 

parameters that are the dominant corrections in the elastic field due to the non-linearity 

occurring in the process zone.  In the case of cyclic loading where a small amount of plastic 

flow at the crack tip is taking place at each cycle, one will see that even for a periodic SIF 

evolution, these additional “enriched” parameters may follow a non-periodic change, leading 

to fatigue.   
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2.5. Equivalent crack tip position   

One follows the hierarchy of fields through a differentiation of the fields with respect to the 

crack tip position along the x direction. The above singular solutions Ωn (respectively Υn) are 

also obtained from derivatives of Eq. (3) (resp. (4)) along the x direction.  To establish such a 

connection, it is useful to first relate consecutive order functions    
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Since the position z is counted from the crack tip position, , the derivative of the field with 

respect to the crack tip position is the opposite of the above expression 
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A simple recurrence thus provides    
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The same expression holds for the mode II functions.   

If one uses the expression of the expansion (7) together with the derivation property 

that has been above reported, one notes that     
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This expression is seen as a first order Taylor expansion of a usual crack field whose tip 

would be located at a position r1, where    

 
1

1
1 2

ω
ω−=r  (14) 

It is important to note that since the crack tip vicinity is affected by the plastic flow of the 

process zone, the exact position of the tip is only obtained from an extrapolation of the far 

elastic field.  An offset in the crack tip position generates essentially an Ω-1 correction.  
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Consequently, one defines the crack tip position such that ω-1 = 0.  Once this position is 

prescribed, one sees that the first non-trivial correction is a quadrupolar term 
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which is here unambiguously defined.  Let us also note that the ratio 
1

32
2 8

ω
ω−−=r is 

interpreted as proportional to the square of the extent of the process zone, r2.  

2.6. Summary of the approach 

With the above results, one addresses the analysis of elasto-plastic kinematic fields.  First, the 

core of the process zone has to be defined and omitted from any subsequent analysis.  The 

outside displacement field is then decomposed over the basis of functions Ωn (mode I) and Υn 

(mode II).  The effective crack tip position is estimated from the relative importance of the ω-1 

and ω1 (or υ-1 and υ1) amplitudes.   

3. A posteriori identification of SIFs 

3.1. Experimental configuration and kinematic measurements 

The studied material is an XC48 (or C45) steel with a Young’s modulus of 190 GPa, a 

Poisson’s ratio of 0.3.  The cyclic yield stress (offset: 0.2 %) is equal to 210 MPa.  The 

sample has a CCT geometry (Fig. 1a) and is subjected to cyclic tension with a load ratio 

R = 0.4.  In the present analysis, only one loading/unloading history is considered after about 

300,000 cycles for which the crack size 2a = 14.5 mm.  First, a loading part is applied where 

the remote tensile stress is progressively increased to 147 MPa (leading to a theoretical mode 

I SIF KI equal to 22.9 MPa m  for a purely elastic behaviour) in 23 steps. In a second stage, 

the stress is decreased down to 0 MPa, in 7 steps.  At the end of each step, a picture is taken 

by using a long distance microscope and a CCD camera (resolution: 1024 × 1280 pixels, 
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dynamic range: 12 bit) so that the physical size of one pixel is 2.08 µm.  At this 

magnification, the raw surface is observed (Fig. 1b).  Contrary to other materials (e.g., 

aluminium alloy [15]) no special surface preparation was used. 

 The displacement field is measured by using a Q4-DIC algorithm [21].  Therefore, a 

functional basis of bilinear functions for each component of the displacement field is sought 

over square elements (i.e., Q4P1-shape functions in the language of the finite element method 

[22]).  Even though the displacement uncertainty is the lowest for large element sizes, the 

heterogeneity of the displacement prompts one to use small sizes [23].  To achieve a 

displacement uncertainty less than 2.5 × 10-2 pixel (or 52 nm), elements of size 12 × 12 pixels 

(or 623 µm2) are used in this section.  The latter is obtained by creating artificial images 

constructed from the true reference one (Fig. 1a) by using a sub-pixel translation in the range 

0 to 1 pixel.  (This is conveniently performed in Fourier space.)  Then the correlation 

algorithm is applied to this pair of images, thus allowing for an evaluation of the standard 

displacement uncertainty.  The average value over the studied interval defines the 

displacement uncertainty. 

3.2 Analysis of the maximum load level 

This preliminary study aims at choosing the relevant parameters to identify stress intensity 

factors.  It is performed for the maximum load level of the cycle.  Figure 2 shows a map of the 

two components of the displacement field, where the discontinuity of displacements appears 

clearly, mainly in mode I, although the crack does not propagate along the horizontal 

direction, had the experimental conditions been perfect. Consequently, an identification based 

on “perfect” boundary conditions, which is usually assumed by using finite element 

simulations, is not secure in the present case.   
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To identify the amplitudes ωn and υn, a first approach is based on minimising 

displacements determined from the closed-form solution (7) compared to measured 

displacements  at  points , in the least squares sense meU meN mez

 ( ){ } ( ){ }[ ]∑ ∑ −−+−=Θ
me

me
n

i
menn

i
mennnn ee

2

0000
2 00),,,( UzzΥzzΩz ϕϕ υωϕυω  (16) 

where .  is the classical norm 2.  In the present case,  = 10788.  The quantity  defines 

the location of the crack tip in the reference picture, and 

meN 0z

0ϕ−   the angle of the crack face wrt. 

a reference direction in the picture.  These last two parameters are critical to evaluate SIFs. 

 For each given location ( ,0z 0ϕ ) of the crack, the values of the amplitudes, ωn and υn, 

is computed by minimising Θ.  The dimensionless residual error is measured as the ratio of 

the standard deviation of the displacement difference at convergence to that of the measured 

displacement.  In the present case, there is no need to account for modes II (i.e., Υ1 and Υ3 are 

discarded) since the values of the stress intensity factor KII is less than 3 % that in mode I and 

the influence on the identification error is vanishingly small.  When 13 ≤≤− n , 

m MPa5.18max =K  and a residual error of 0.15 is found; when 23 ≤≤− n , 

m MPa0.18max =K  for a residual error of 0.13 and when 33 ≤≤− n , 

m MPa6.20max =K  with almost the same residual error (i.e., convergence is obtained).  

Since the residual error remains approximately identical, the 7 displacement fields are deemed 

sufficient to capture the crack kinematics in the present case.  Figure 3 shows a map of the 

two components of the identified displacement field in very good agreement with the 

measured data (Fig. 2).  

 In the analysis of supersingular terms, the main emphasis is put on the first one, 

namely ω-1.  One defines the crack tip position such that ω-1 = 0 (see Section 2.5).  Figure 4 

shows that when the assumed crack tip position moves, the corresponding position r1 also 
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moves and a quasi perfect proportionality (of slope −1) is observed between the two quantities 

when a ± 10 pixel variation is analyzed.  This result validates the proposed definition of the 

crack tip position by using the first supersingular term. 

In the previous analyses, all the measured data were considered, apart from an inner 

core of radius  equal to 35 pixels (or 73 µm) and points located at a distance  less than 

12 pixels (or 25 µm) from the crack faces (these values were taken equal to element size l of 

the DIC procedure, since the elements are then traversed by the crack and the corresponding 

displacement evaluation is uncertain).  Let us first define an outer radius  from the crack 

tip in which the measurement points are considered.  Figure 5a shows the sensitivity of the 

value of the mode-I SIF on that of  for a fixed crack tip position.  When  pixels 

(or 2.5 mm), some of the points located far from the crack tip are not considered.  When the 7 

fields are considered and  pixels (or 1 mm), the value of  remains constant as 

well as the identification quality.  Therefore, the number of chosen displacement fields is 

sufficient to identify the SIF value.  In Fig. 5b, the change of the identified value of  is 

shown as a function of the inner radius  for the same crack tip position.  As long as  

remains less than 160 pixels (or 330 µm), the residual does not change significantly, while the 

variation of is less than 

iR id

oR

oR 1200<oR

500>oR maxK

maxK

iR iR

maxK m MPa2.0±  (to be compared with a mean value of the order 

of m MPa4.20 ).  The minimum identification error is reached for an interpolated value 

equal to 75 pixels (or 160 µm).  It is to be noted that the extent of the plastic zone size under 

cyclic loadings [4] reads 
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and is of the order of 340 µm (or 164 pixels) for the studied material when R = 0.4 and 

m MPa9.22max =K .  Its effect on the identification appears clearly in Fig. 5b where the 

identification quality degrades for values of  greater than 180 pixels (or 370 µm). iR

 From all the results obtained in this section, the following parameters are considered in 

the sequel.  Seven displacement fields are chosen (i.e., 33 ≤≤− n ).  All the measurement 

points are used apart those such that 0)( <ℜ z  and 12)( =<ℑ idz  pixels (i.e., intersecting the 

crack faces), as well as =< iRz  75 pixels (or 156 µm).  The position  and the angle 0z 0ϕ  

are those determined for the maximum level (see Fig. 4).  They will be kept constant for the 

whole cycle analysis.  The parameter r1 will enable for crack tip adjustments. 

3.3 Analysis of a loading/unloading cycle 

The sequence of 30 steps is now studied.  Figure 6 shows the value of the SIF as a function of 

the applied load level P.  Two regimes are observed.  First, for small load levels (i.e., 

P < 6.5 kN), the value of the SIF is equal to zero (i.e., the crack remains closed).  Second, 

above the value of 6.5 kN, there is a linear dependence of the SIF with the applied load.  The 

dashed lines correspond to the following expression for the SIF IK  

 2/1bw

PP
ZK op

I
−

=  (18) 

where  kN, b = 5 mm, w = 30 mm, and Z = 0.49 a dimensionless parameter.  The 

root mean square (RMS) error in terms of SIF between this expression and the raw 

measurements is less than 

5.6=opP

m MPa.50 .   

 The threshold  corresponds to the effect of small scale yielding.  As first proposed 

by Elber [24,25], there exists a first regime for which, because of plastic flaw, the crack does 

not open.  Beyond a critical value, the crack opens and there is linear relationship between the 

opP
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applied load and the corresponding SIF.  Instead of an effective SIF, one may rather consider 

an effective load level defined by opPP − . The so-called opening SIF  is thus 

expressed as 

opK

 2/1bw

ZP
K op

op =  (19) 

and is estimated equal to m0.5MPa3.7 ±  (Fig. 6). 

 If plasticity is neglected, the SIF factor for a CCT sample reads 

 2/1bw
ZPKI =  (20) 

where Ζ is a dimensionless parameter defined by [26] 
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In the present case, Ζ = 0.45.   This value is to be compared with the parameter Z found equal 

to 0.49, i.e., with a 10 % difference compared with the theoretical value.  This result validates 

the approach followed herein; in particular, the use of supersingular displacement fields. 

 Figure 7 shows the change of the offset parameter r1 as a function of the applied load 

when the latter is greater than 15 kN.  The higher the applied load, the smaller the offset.  For 

values of the effective load greater than 75 % of the maximum value, the RMS variation of r1 

is of the order of 10 pixels (or 21 µm).  This result shows that the location of the crack tip is 

determined within a 10-pixel standard uncertainty for the considered level range.  As the 

effective load decreases, r1 increases and the effective crack tip position moves away from its 

extreme position obtained for the maximum load level. 

4. Integrated DIC 

In the following, an alternative route is followed.  It consists in using the 

displacements derived in Section 2.1 directly at the measurement stage.  Therefore there is no 

  15 



decoupling between the measurement and identification stages.  It is referred to as integrated 

DIC (or I-DIC [16,23]).  As for classical DIC, one considers a reference image, defined as f, 

e.g., a grey level distribution.   An in-plane displacement field u(x) is defined.  The passive 

advection of the texture f by the displacement field creates a “deformed image,” g, such that  

 )()()( xxux ε+=+ fg   (22) 

where ε(x) is noise induced by image acquisition.  In the following, it is assumed that the 

noise level, ε, is neglected either because of its low amplitude with respect to those of f and g, 

or because of its scale separation with significant components of the displacement field.  

Equation (22) is the integral form of the “optical flow conservation.”  The problem to address 

is the determination of the displacement field u from the exclusive knowledge of f and g. As 

such, the problem is ill-posed, unless additional assumptions are made on the regularity of the 

displacement field so that the information is sufficient to determine u with a reasonable 

accuracy [27].   

4.1. General formulation 

Let us introduce the following objective functional Φ  operating on displacement fields v  

 [ ]∫∫ −+=Φ xxvxv dfg 22 )()()(   (23) 

In the absence of noise, this functional reaches its minimum value, 0, for v = u [see 

equation (22)].  The trial displacement v may be any choice.  To fulfil a smoothness 

assumption on u, v are either low-pass filtered or chosen in a subspace of suited functions.  

Let us first assume that f and g are sufficiently smooth at a small scale, and the displacement 

small enough in amplitude so that a Taylor expansion of g up to the first order is introduced in 

equation (23) 

 [ ]∫∫ ∇+−=Φ xxxvxxv dgfg 22 )().()()()(   (24) 
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Equation (24) corresponds to the objective functional associated with the linearised optical 

flow equation.  The displacement field is decomposed as a linear combination of (chosen) 

basis functions ηj(x) 

 j
j

j v∑= )(xηv  (25) 

so that Φ2 becomes a quadratic form in the amplitudes vj. The extremality condition thus 

dictates, for all j,   

   (26) ( ) ( )[ ] [ ]∫∫∫∫ ∇−=⊗∇⊗∇ xxηxxxvxxηηx dggfdgg jkkj )().()()()(:)(

where ⊗ denotes the dyadic product and ‘:’ the contraction with respect to two indices.  This 

system is written in a matrix form as  

 [ ]{ } { }mwM =   (27) 

where {w} is a vector containing all the unknown components vj, [M] and {m} are known 

quantities dependent upon f, g, and η.  One can note that the dyadic product  by 

itself cannot be inverted (it has always a zero eigenvalue in the direction normal to the 

gradient of g), and hence this formula cannot be used to determine v

gg ∇⊗∇

j, if ηj tends to a Dirac 

distribution, as anticipated from the remark on the necessary regularity of v.  However, if the 

functions ηj are chosen to be restricted to wavelengths much greater than the correlation 

length of the texture, the left-hand side operator becomes a genuine definite positive operator. 

4.2. Application to the analysis of a crack 

The results derived in Section 4.1 allow us to propose an integrated approach to the 

measurement and the identification problems.  By choosing a priori a basis of functions ηi(x) 

relevant to an experiment, the identification of the unknown amplitudes vj not only provides 

information on the displacement features but also yields quantities to be identified from a 
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mechanical point of view.  This type of technique was used to decompose the displacement 

field with linear functions, sines and cosines [28] for 1D signals.  The same type of procedure 

was extended to 2D situations in which a spectral decomposition is assumed [29], to identify 

elastic parameters [23] or to measure stress intensity factors in brittle materials [16]. 

In the present case, the chosen basis consists of the eigenfunctions Ωn and Υn (Section 

2.1).  The unknown amplitudes are then the components ωn and υn.  For each assumed crack 

tip position, the decomposition is performed, but more importantly, a global quality factor is 

obtained, and even a local map of non-resolved differences [equation (24)].  This feature is in 

turn utilised to identify the best location in the sense of lowest global error .  In the 

following, the seven displacement fields used in Sections 3.2 and 3.3 are also used in the 

present analysis. 

Φ

4.3. Application to a loading/unloading cycle 

The same type of analysis as in Section 3.3 is performed with the integrated approach.  Only 

one element of size 512 × 512 pixels (or 1.13 mm2) is used.  All the pixels are used apart from 

those such that 0)( <ℜ z  and 12)( =<ℑ idz  pixels (to be consistent with the a posteriori 

analysis), as well as 75=< iRz  pixels (or 156 µm). 

 The detailed procedure to estimate the amplitude of the displacement field is quite 

similar to that presented in Ref. [12].  First, a gross determination of the displacement field is 

searched for using coarse-grained images, where superpixels are defined as averages of the 

true pixel values on squares of size 2n × 2n pixels with n = 3 to start off with.  After a first 

determination of the mean displacement, the strained image is corrected for using a linear 

interpolation.  The process is repeated until convergence.  Then a similar determination is 

carried out on a finer image where the coarse-graining is performed for n = 2, and similarly 

down to the original images.  This provides a faster convergence, but more importantly, it 
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avoids spurious trapping into secondary minima when the displacement amplitude is large.  

Each determination at any scale is performed using the above formulation (26) for assembling 

the linear system.  Small variants are however introduced to obtain a more robust and reliable 

scheme.  The gradient of the image is computed over the average of the reference and strained 

image to symmetrise the problem.  Those gradients are evaluated using an FFT routine.  The 

latter provides us with a convenient tool to interpolate the image at subpixel resolution.  

However, FFT suffers from discontinuity effects at the boundary (it implicitly assumes 

periodic fields).  To minimize this effect, an artificial treatment on the image is introduced by 

substituting the actual grey level values at each edge by the average of the left and right (or 

top and bottom) columns (resp., rows).  This elementary modification reduces very 

significantly the spurious edge effects.  Very few iterations at each scale are needed to 

achieve convergence.  

First, the most likely crack tip position is determined by analyzing the maximum load 

level.  A 25 pixel (or 52 µm) difference is observed when compared with that given by the a 

posteriori analysis.  In the present case, the unresolved differences are measured in terms of 

grey levels [see equation (24)].  When the map of Φ  is analysed and related to the dynamic 

range of the considered region of interest, a maximum value of the order of 1 % is obtained 

(Fig. 8).  It follows that the displacement evaluation is deemed secure and the corresponding 

SIF value is trustworthy.  Many unresolved differences are masked, in particular along the 

crack mouth.  It can be noted that the remaining unresolved and unmasked differences are 

uncorrelated, thereby indicating that the basis of considered displacements is sufficient to 

describe the present experiment.  Figure 9 shows the map of displacements for the highest 

load level.  It is very close to those of Figs. 2 and 3.   

The loading/unloading cycle of Section 3.3. is studied again.  Figure 10 shows the 

result to be compared with Fig. 6 for the a posteriori analysis.  The same general trends are 
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observed, namely, two distinct regimes are obtained.  The opening load level  is here 

equal to 9 kN instead of 6.5 kN, and the dimensionless constant Ζ = 0.45.  This value is in 

excellent agreement with Eqn. (21).  The RMS difference between the measured SIFs and the 

approximation (18) is now about 

opP

m MPa.60 .  The opening SIF is here estimated at 

m MPa.606.4 ± .  All these results (cross)validate the two approaches discussed herein.   

5. Summary and perspectives 

The analysis of crack displacement fields based on digital image correlation has been 

described in terms of a post-processing analysis, and an integrated approach.  In both cases, 

the definition of a suited library of displacement field reveals a key ingredient to a precise and 

reliable evaluation of the crack geometry and stress intensity factor.  When applied to a 

complete loading and unloading cycle, it is shown that a finite load is required to open the 

crack.  Past this threshold, the stress intensity factor is a linear function of the load, with a 

proportionality that is consistent with a purely elastic behaviour.  Moreover, no systematic 

increases of the residual error map are detected neither close nor remote to the crack tip, so 

that stress field inhomogeneity, or crack tip plasticity seem negligible within one loading 

cycle (taking place after a first load history of 300,000 cycles). 

Let us also stress the interest of using the first supersingular elastic field in order to 

locate very precisely the equivalent crack tip position, as demonstrated by the consistent 

estimate of the actual crack tip position obtained for different initial trial values (Fig. 4).  

Furthermore, the integrated approach is also seen as yet another way of using the concept of 

“diffuse stress gauging” [30,23].  It refers to the fact that the support of the “stress” gauge is 

diffuse on the sample face.  In that sense, it is a very good “cracking gauge” to measure stress 

intensity factors. 
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The methodology used in this paper is directly applicable to a broad class of different 

materials (brittle to ductile) and test geometries.  This study illustrates the level of accuracy 

that is obtained on the stress intensity factor and crack geometry using a high quality long-

distance microscope, but otherwise a quite common equipment.  Let us underline for instance 

that the crack opening discontinuity at maximum load and at the most remote point of the 

crack tip is of order 10 μm.  

It would be of interest to extend the analysis to more complex loading conditions so as 

to address for instance mixed mode crack loading, or the initial stage of fatigue where plastic 

yielding is more developed in comparison with the crack size.  Investigating three 

dimensional fatigue cracks using X-ray tomography constitutes also a very challenging 

direction for future investigation. 
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Figure captions 

 

Figure 1: -a-Reference picture of the CCT test (12-bit digitisation, 1024 × 1280 pixel 

resolution).  -b-CCT geometry. 

Figure 2: Vertical (a) and horizontal (b) displacement fields expressed in pixels (1 pixel is 

equal to 2.08 µm) in a CCT experiment measured by using a Q4-procedure with 

an element size l = 12 pixels. 

Figure 3: Vertical (a) and horizontal (b) displacement fields expressed in pixels (1 pixel is 

equal to 2.08 µm) in a CCT experiment identified by using 7 displacement fields 

( 33 ≤≤− n ) when 12== ldi  pixels and =iR  35 pixels. 

Figure 4: Estimated offset r1 vs. assumed crack tip position.  A linear fit (dashed line) with 

a slope of -1 is also shown. 

Figure 5: -a-Identified stress intensity factor and residual vs. outer radius  when 

 35 pixels.  -b-Identified stress intensity factor and residual vs. inner radius 

 when  1024 pixels.  The dashed lines correspond to a piece-wise linear 

interpolation.  In both cases, 7 displacement fields are considered. 

oR

=iR

iR =oR

Figure 6: Identified stress intensity factor vs. applied load.  The dashed lines correspond to 

the expression (18).  The value of the opening SIF and load is depicted. 

Figure 7: Offset position vs. applied load.  The dashed lines correspond to a quadratic 

interpolation. 

Figure 8: Map of the residuals in grey levels at convergence for the integrated approach 

with l = 512 pixels.  The dynamic range of the region of interest is 3052 grey 

levels.  The dashed lines depict the masked areas. 
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Figure 9: Vertical (a) and horizontal (b) displacement fields expressed in pixels (1 pixel is 

equal to 2.08 µm) measured by using an integrated approach with l = 512 pixels.  

The displacements are not plotted in the masked areas. 

Figure 10: Measured stress intensity factor vs. applied load.  The dashed lines correspond to 

the expression (18).  The value of the opening SIF and load is shown. 
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