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A probabilistic two-scale model was recently developed to describe high-cycle fatigue (HCF) properties of steels associated with an identification method of the scatter based on thermal measurements. Up to now, this theoretical framework was used for uniaxial load histories. It is proposed to modify the probabilistic two-scale model to account for the effect of a multiaxial and proportional load histories on HCF properties. This modification consists in the introduction of an equivalent activation stress in the process controlling the plasticity kinetics.

Thermal measurements are performed under biaxial tensioncompression load histories to identify and validate an HCF criterion.

Introduction

Components of engineering structures such as car chassis or steering knuckles are subjected to multiaxial load histories. The multiaxial fatigue behavior of materials and structures, which depends on the loading-path, is still difficult to describe. Because fatigue data are usually scattered, classic identification techniques of fatigue properties (e.g., by using the staircase test [START_REF] Bathias | La fatigue des matériaux et des structures[END_REF]) are difficult and require the use of use many specimens. This is even more difficult if one wants to study HCF fatigue of materials under multiaxial loadings. Because the methods based on the staircase tests are time consuming and expensive, other procedures are sought to have a good understanding of the effect of multiaxial load histories on fatigue response. In the present paper, thermal measurements are used to evaluate endurance properties under multiaxial states of stresses.

Several authors have worked on a rapid estimation of the mean fatigue limit [START_REF] Luong | Infrared thermography of fatigue in metals[END_REF][START_REF] Bérard | Détermination de la limite d'endurance des matériaux par thermographie infrarouge[END_REF][START_REF] Krapez | Application of lock-in thermography to a rapid evaluation of the fatigue limit in metals[END_REF][START_REF] Rosa | Thermographic methodology for rapid determination of the fatigue limit of materials and mechanical components[END_REF][START_REF] Mabru | Dissipation et couplages accompagnant la fatigue de matériaux métalliques[END_REF][START_REF] Galtier | Influence de la microstructure des aciers sur leurs propriétés mécaniques[END_REF][START_REF] Doudard | Identification of the scatter in high cycle fatigue from temperature measurements[END_REF]. It is based upon temperature measurements of the studied specimen under mechanical cyclic loadings. The results of so-called "heating tests" (i.e., thermal effects associated with cyclic loading) by plotting the change of the mean steady-state temperature with the stress amplitude applied to the specimen. A correlation is obtained between the fatigue limit of some materials and the stress level beyond which an increase in the specimen temperature can be observed by using thermocouples [START_REF] Galtier | Influence de la microstructure des aciers sur leurs propriétés mécaniques[END_REF][START_REF] Doudard | Identification of the scatter in high cycle fatigue from temperature measurements[END_REF] or infrared (IR) cameras [START_REF] Luong | Infrared thermography of fatigue in metals[END_REF][START_REF] Bérard | Détermination de la limite d'endurance des matériaux par thermographie infrarouge[END_REF][START_REF] Krapez | Application of lock-in thermography to a rapid evaluation of the fatigue limit in metals[END_REF][START_REF] Rosa | Thermographic methodology for rapid determination of the fatigue limit of materials and mechanical components[END_REF][START_REF] Mabru | Dissipation et couplages accompagnant la fatigue de matériaux métalliques[END_REF].

If the dissipated energy is induced by microplasticity, which does not have an influence on the macroscopic (and elastic) behavior of the specimen, and if high-cycle fatigue (HCF) failure is caused by microplasticity, correlation between the two tests (i.e., "heating test" and classical fatigue tests) can be obtained [START_REF] Doudard | A probabilistic two-scale model for high cycle fatigue life predictions[END_REF].

A probabilistic model based on afore-mentioned hypotheses was recently developed and an identification method of the scatter proposed by using the analysis of thermal effects [START_REF] Doudard | Identification of the scatter in high cycle fatigue from temperature measurements[END_REF]. However, the latter were only studied for stresses uniaxial states. The main goal of the present work is to propose a new mechanical test associated with the measurement of temperature to identify a multiaxial HCF criterion. The method consists in measuring temperatures for different proportional loading-paths in the stress plane (the test are performed on a cruciform specimen under biaxial tension-compression load histories). Special care is paid to the definition of the specimen geometry so that the temperature and the stress fields in the central part of the specimen are uniform.

The paper is divided into four main sections. In the first one, the probabilistic two-scale model for HCF and the analysis of thermal effects under mechanical cyclic loading are presented (a more detailed presentation can be found in Ref. [START_REF] Doudard | A probabilistic two-scale model for high cycle fatigue life predictions[END_REF]). This HCF model is based on a multi-scale approach where microplasticity occurs on sites described as a Poisson point process. Within the weakest link theory [START_REF] Freudenthal | Statistical Approach to Brittle Fracture[END_REF], this proposed model corresponds to a Weibull law for the fatigue limits. In the new version of the model presented herein, an equivalent activation stress (i.e., an equivalent fatigue stress) is introduced in the Poisson point process to account for the influence of the multiaxial state of stress on the endurance limits.

The second section deals with the development of a "heating test" under multiaxial cyclic loadings. The strategy for uniaxial, mechanical and cyclic loadings is generalized to the case of biaxial tension-compression loadings. The first experimental results are presented. The latter are used in the third section to identify an equivalent activation stress for HCF fatigue under multiaxial loadings. In the last section, the identification procedure is applied to a dual-phase steel. To be used in industry, the knowledge of the multiaxial fatigue properties are needed [START_REF] Doudard | A probabilistic two-scale model for high cycle fatigue life predictions[END_REF][START_REF] Speich | Structure and properties of dual phase steels[END_REF][START_REF] Li | Low-cycle fatigue investigations and numerical simulations on dual phase steel with different microstructures[END_REF][START_REF] Gustavsson | Variable-amplitude fatigue of a dual-phase sheet steel subjected to prestrain[END_REF][START_REF] Lei | Dislocation substructures in ferrite of plain carbon dual-phase steels after fatigue fracture[END_REF][START_REF] Hashimoto | Fatigue life studies in carbon dual-phase steels[END_REF][START_REF] Nakajima | The influence of microstructural morphology and prestrain on fatigue crack propagation of dual-phase steels in the near-threshold region[END_REF][START_REF] Sarwar | Fatigue crack propagation behaviour in dual phase steel[END_REF][START_REF] Wang | Fatigue of martensite-ferrite high strength low alloy dual steels[END_REF][START_REF] Haque | ANN based prediction model for fatigue crack growth in DP steel[END_REF]. Different choices of equivalent activation stresses are presented and it is shown that one of them yields better results.

Probabilistic two-scale model to describe thermal effects and HCF life

In the present paper, only loading cases with no mean stress are studied. Let and be the amplitude and frequency of the stress history. It is assumed that HCF damage is localized at the microscopic scale and is induced by microplastic activity. To describe this activity, a set of elasto-plastic inclusions, called sites, randomly distributed within an elastic matrix is considered. These sites of volume V 0 Σ r f 0 become active when plasticity occurs (i.e., when the von Mises equivalent stress level is greater than the microscopic yield stress of the considered site y σ ). In metals, the onset of microplasticity is random (i.e., the sites become active for different equivalent stress levels). It is therefore assumed that the probability of finding k active sites within a domain Ω of volume follows a

Poisson distribution [START_REF] Gulino | Weibull Strength Statistics for Graphite Fibres Measured from the Break Progression in a Model Graphite/Glass/Epoxy Microcomposite[END_REF][START_REF] Jeulin | Modèles morphologiques de structures aléatoires et changement d'échelle[END_REF]]
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where is equal to the average number of active sites. The intensity of the Poisson point process λ (i.e., the average density of active sites) reads ( )
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The intensity of the process depends on an equivalent activation stress a Σ ( )
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where and m are two parameters depending on the considered material.

m 0 0 S V

The stress tensor σ in an inclusion is related to the macroscopic stress tensor Σ and the corresponding plastic strain tensor p ε by
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given by the Eshelby analysis of a spherical inclusion, μ and ν the shear modulus and Poisson's ratio of the dual-phase steel, respectively [START_REF] Eshelby | The Determination of the Elastic Field of an Ellipsoidal Inclusion and Related Problems[END_REF][START_REF] Berveiller | An extension of the self-consistent scheme to plastically flowing polycrystals[END_REF][START_REF] Kröner | On the plastic deformation of polycristals[END_REF]. A linear kinematic hardening is assumed for the elasto-plastic behavior. Consequently, the back stress rate X can be related to the plastic strain rate tensor p ε in the inclusion by
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)
where C is a material-dependent parameter, and a dotted variable corresponds to its first derivative with respect to time [START_REF] Lemaitre | Mécanique des matériaux solides[END_REF]. The direction of the plastic strain rate tensor is given by a classic normality rule
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with the usual Kuhn-Tucker conditions, ( )

I σ trace 3 1 σ S - =
is the deviatoric stress tensor, I the unit second order tensor, λ the plastic multiplier and f the yield surface given by ( )
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where J 2 is the second stress invariant, i.e., ( ) ( ) ( )
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, σ y the initial yield stress of a site and ':' the tensorial product contracted with respect to two indices.

The intrinsic dissipated energy D site in one site over a loading cycle for a given yield stress σ y and a von Mises equivalent stress amplitude can be expressed as eq 0 Σ ( )
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where corresponds to the mean number of inclusions activated for an equivalent stress amplitude ranging from Σ and (Σ + dΣ) in a domain of volume V Ω , i.e., the number of sites whose mean fatigue limit lies between Σ and (Σ + dΣ), and whose dissipated energy during a load cycle is

h = C + 3 μ (1-β)
( ) Σ , Σ D eq 0 site
. The global dissipated energy density Δ per cycle is given by
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The temperature is determined by integrating the heat conduction equation in which the mean microplastic dissipation (i.e., the cyclic dissipation multiplied by the load

frequency ) is included r f ρc f τ θ θ r eq Δ = + , (10) 
where is a time constant that depends on the heat transfer boundary condition, ρ the mass density, c the specific heat capacity and θ the temperature [START_REF] Doudard | A probabilistic two-scale model for high cycle fatigue life predictions[END_REF]. The corresponding steady-state temperature eq τ θ reads
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To integrate Eq. ( 11), the equivalent activation stress must be related to the von Mises

equivalent stress. If , eq 0 a Σ Σ = θ is given by ( )( ) ( ) ( ) m 0 1/m 0 2 m eq 0 0 S V 2 m 1 m m V η θ + Σ + + = , (12) 
with . Equation [START_REF] Li | Low-cycle fatigue investigations and numerical simulations on dual phase steel with different microstructures[END_REF] shows a gradual change of the steady-state temperature with the equivalent stress amplitude in agreement with experimental results [8, c /hρ τ 4f η eq r = 9]. Another choice can be made for the equivalent activation stress. The latter can be related to the first and second invariants of the stress amplitude
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where α is a material-dependent parameter. This expression accounts for the well-known influence of hydrostatic stress ( )
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on fatigue properties. With this second equivalent activation stress [Eq. ( 13)], the steady-state temperature then reads
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The experimental results under biaxial tension-compression loadings, presented hereafter, enable us to discriminate between the two propositions for the equivalent activation stress. This is the main goal of the last section of the paper.

For a uniaxial test with a stress amplitude 0 Σ , the steady-state temperature reads
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Equation [START_REF] Hashimoto | Fatigue life studies in carbon dual-phase steels[END_REF] shows that the temperature history can be used to identify the material parameter m characterizing the random microstructure of the studied material [START_REF] Cugy | Microplasticity ant temperature increase in low carbon steel[END_REF].

By using the same framework, the proposed model can be used to describe HCF results. Within the weakest link theory that is usually considered in HCF [START_REF] Freudenthal | Statistical Approach to Brittle Fracture[END_REF], the failure probability of a domain Ω, of volume V, under uniform stress is equal to the probability of finding at least one active site
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In the present case, it is assumed that initiation occurs within the volume of the materials.

By using the intensity λ expressed as a power law of the equivalent stress of activation (see Eq. ( 3)), the proposed model corresponds to a Weibull model [START_REF] Weibull | A Statistical Theory of the Strength of Materials[END_REF][START_REF] Weibull | A Statistical Distribution Function of Wide Applicability[END_REF] 
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Equation [START_REF] Sarwar | Fatigue crack propagation behaviour in dual phase steel[END_REF] shows that corresponds to the equivalent fatigue stress. The HCF life prediction is often characterized by the mean fatigue limit a Σ ∞ Σ and the coefficient of variation CV (i.e., the standard deviation divided by the mean fatigue limit) given by, respectively
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Equation [START_REF] Haque | ANN based prediction model for fatigue crack growth in DP steel[END_REF] shows that the scatter in fatigue only depends on m, the Weibull modulus, whereas the mean fatigue limit and the corresponding standard deviation is a volumedependent.

To model the Wöhler (S-N) curve associated with a failure probability for a tensile fatigue test, it is assumed that crack initiation is associated to a critical value of the cumulative dissipated energy for a site whose yield stress is equal to the fatigue limit
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where N is the number of cycles to failure (i.e., the propagation stage is neglected with respect to the initiation stage). The number of cycles leading up to crack initiation can then be deduced
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is a material-dependent parameter. From multiaxial fatigue tests, the previous expression is extended
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The proposed model depends only on the choice of the equivalent activation stress and four material parameters, namely, 

Development of a biaxial test

The material studied herein is a ferrite-martensite steel (approximately 15wt% of martensite, Arcelor designation: DP60) in its cold-rolled state. The chemical composition of the dual-phase steel is given in Table 1. The mechanical properties obtained from monotonic tensile tests on samples in the rolling direction are given in Table 2. This steel has a good capacity of strain hardening. Consequently, the dual-phase steels are used in the automotive industry where metal forming processes need these types of properties.

The basic idea of the multiaxial test is to load a cross-shaped specimen in tensioncompression along two perpendicular directions. An ad hoc cruciform specimen has been designed for this study. The latter is made of a stacking of three metal sheets (Fig. 1). A particular attention is paid to the uniformity of the temperature field in the gauge section (i.e., central part of the cruciform specimen). Consequently, the stress field must also be uniform (so will be the dissipation due to microplasticity), and the heat transfer boundary conditions adequate (i.e., the spatial variation of the temperature due to heat conduction must be minimized). The size of the gauge region is close to the size of the gauge section of the uniaxial specimen. Its shape is circular ended by a fillet. Three plates (Fig. 1) are machined separately and then glued together with epoxy resin to create the gauge region.

The orientations of the different plates are 0° or 90° with respect to the rolling direction because of the quasi isotropy of the sheet steel. Slots are machined to minimize "crosslink" between the two axes of loading. The values of the minimum thickness of the fillet, e (Fig. 2), of the minimum distance, φ , and of the location of the slots in the connecting (LabVIEW TM [START_REF] Cottet | LabVIEW Programmations et applications[END_REF]). The digital controller combined with this software package provides a highly versatile capability where numerous custom-made tests can be developed. The digital controller allows each actuator to be controlled independently or in centroid control.

The centroid control mode uses a relationship between two actuators along the same load axis to maintain the center of the specimen motionless. The digital controller enforces centroid control by using special algorithms to operate the valve driver of each actuator.

Figure 4 illustrates how the centroid control algorithms work for a load controlled test. For each axis pair (e.g., Y + and Y -), the controller uses the sum of the forces and the difference of displacements along the considered axis. This centroid control has been used in all the biaxial tests presented hereafter. The main difficulty of this test is to prevent the specimen from bending. To meet this requirement, the specimen is placed horizontally and an accurate vertical positioning of each actuator must be achieved.

The main goal of the first series of tests is to check the uniformity of the temperature field. First, an equibiaxial and cyclic tension-compression test was performed.

This load-controlled test had a 40 kN amplitude and a 5 Hz frequency. The temperature field is monitored using an infrared camera (JADE IRFPA, resolution: 320 × 256 pixels, medium wave with a 3-5μm spectral range) at the frequency of one frame per second. The sample has been painted in matt black, on the one hand, to increase the emissivity of the sample, and on the other hand, to decrease the influence of the environment. Movies are shot until steady state is reached. Figure 5 shows the temperature of 9 different points in a 44 × 33 mm² rectangle of the tested region. Post-processing of the IR movies shows the uniformity of the temperature field in the gauge region despite stress concentrators around fillets and slots. The temperature change due to heat conduction can be neglected since it is the same at each examined point up to an additive constant. Consequently, since the temperature field is uniform, in the sequel the temperature is monitored by using a single copper/copper-nickel thermocouple installed on the center of the gauge region.

To monitor the load history, two perpendicular strain gauges (Micro Measurement EP-08-062TT-120) are installed on each side of the specimen. When the actuators are not correctly positioned, an important bending strain is observed during clamping. Moreover, asymmetric strains appear during loading and a different behavior is observed between tensile and compressive load histories. When an accurate positioning of the actuators is obtained, the strains due to clamping are of the order of 5×10 -5 , i.e., corresponding to a 10 MPa stress level and a symmetric behavior follows (e.g., for an equibiaxial load history as shown in Fig. 6a). The stress can be regarded as uniform in thickness. The phase shift between the axes was studied for an equibiaxial load. Figure 6b shows that the load history is validated (i.e., the load path is nearly proportional).

Experimental identification of an "activation surface" under biaxial loadings

The main goal of this section is to present a series of tests to identify an "equivalent activation stress" under biaxial tension-compression loadings in HCF by using temperature measurements. One single cruciform sample is used to identify the equivalent activation stress.

Different proportional loading paths (Fig. 7a) are successively applied to the sample. For each path, the load is of the same type. It consists in applying successive series of 3,000 cycles for different increasing stress amplitudes Σ 0 (Fig. 7b). For each stress amplitude, the temperature of the sample θ is recorded (Fig. 7c). The mean temperature becomes stable after about 1,000 cycles and equals ( )

0 Σ θ
. Figure 7d shows the change of the mean steady-state temperature ( )

0 Σ θ
with the stress amplitude for a dual-phase steel. When the stabilized temperature reaches a given offset, the loading path changes to the next one. For each load path, the stress amplitude is depicted by a line in the stress plane (Fig. 7e), i.e., the line represents the stress amplitude. It is therefore possible to evaluate an "activation surface" showing the different stress amplitudes leading to the same temperature offset associated with each load history. Figure 8 shows the result obtained for a dual-phase steel with a 1°C offset. The curve is convex, nearly symmetric with respect to the first bisector. This is related to the quasi isotropy of the material.

The equibiaxial load history appears twice during the series of proportional loads presented before so that the load history effect can be studied. The equibiaxial load is performed a first time on the specimen and a second time after nearly 96,000 cycles (i.e., 12,000 cycles multiplied by 8 paths). The two responses are reported in Fig. 9a and are almost identical. The stress levels corresponding to a 1°C offset show a difference of 4 MPa, i.e., 2.5% of their value. The load history effect can therefore be neglected. To analyze the influence of the offset value on the shape of the "activation surface", four series of tests were performed using different offset values, namely, 0.4°C, 0.6°C, 0.8°C and 1°C. Figure 9b shows the shape of the "activation surfaces". The greater the offset, the larger the "activation surface". Yet the shape of the "activation surface" is not affected by the offset value (Fig. 9b).

Identification procedure

This section shows how to identify the different parameters, namely, characterizes the level of the mean fatigue limit [Eq. ( 18)], ηV ( ) m / 1 0 0 V S 0 is a material dependent parameter to describe the temperature changes [Eq. ( 12)], m measures the scatter of the fatigue limits [Eq. ( 19)], and A characterizes the initiation criterion [Eq. ( 21)]. First, the two parameters A and ∞ Σ (i.e., parameter for a given volume [Eq. ( 18)] of Stromeyer's law [START_REF] Stromeyer | The determination of fatigue limits under alternating stress conditions[END_REF]) are determined from the analysis of the classical Wöhler curve obtained in cyclic tension/compression

( ) m / 1 0 0 V S ∞ ∞ Σ 〉 Σ Σ 〈 = - A N 0 , (23) 
where 15 samples are usually needed (Fig. 10a). Then the values for m and ηV 0 are identified by using the temperature measurements [Eq. [START_REF] Hashimoto | Fatigue life studies in carbon dual-phase steels[END_REF]] for which an additional specimen is used in a cyclic tension/compression test. The results of the identification are shown in Fig. 10b. The proposed model gives a good description of the temperature measurements, especially it accounts for the gradual change in temperature with the applied stress. The classic approach used for the analysis of this test [START_REF] Luong | Infrared thermography of fatigue in metals[END_REF][START_REF] Bérard | Détermination de la limite d'endurance des matériaux par thermographie infrarouge[END_REF][START_REF] Krapez | Application of lock-in thermography to a rapid evaluation of the fatigue limit in metals[END_REF][START_REF] Rosa | Thermographic methodology for rapid determination of the fatigue limit of materials and mechanical components[END_REF][START_REF] Mabru | Dissipation et couplages accompagnant la fatigue de matériaux métalliques[END_REF] cannot describe this transition regime [START_REF] Doudard | A probabilistic two-scale model for high cycle fatigue life predictions[END_REF]. Consequently, 16 (i.e., 15+1) samples are needed to identify the four parameters.

To identify the equivalent activation stress, the "activation surface", which is obtained with one additional sample, is used. Figure 11a shows the comparison between the experimental results and the prediction of the present model with [i.e., when utilizing Eq. ( 12)]. The model is fitted by using the results of path no. 3 (Fig. 7a). The difference between experiments and predictions is about 13% in the case of shear. If the second choice for the equivalent activation stress is considered [Eq. ( 13)], the prediction is better (Fig. 11b). The difference between experimental results and predictions is about 3% when α = 0.39. This result shows that the equivalent activation stress has to be related both to the first and second invariants of the stress amplitude for the steel studied herein.

This procedure allows for the determination of an equivalent stress activation, which is validated for each path in the stress plane. Consequently, 17 (i.e., 15+1+1) samples are needed to identify the four parameters of the model and the equivalent activation stress. eq 0 a

Σ Σ =

Two fatigue results are generally used to identify classic fatigue criteria (namely, a torsion test, which corresponds to path no. 1 for this study and a bending test, which corresponds to path no. 3). The proposed identification method makes identification faster (17 samples instead of 60-100 samples), but also validation of identification for any direction in the stress plane.

Summary

A probabilistic two-scale model accounting for the effect of multiaxial proportional loadings on high-cycle fatigue properties was proposed. It is based upon a Poisson point process that allows one to relate the temperature changes under multiaxial loadings to HCF properties in a unified way.

A new configuration under biaxial tension-compression cyclic loadings is presented. A first (positive) check on the uniformity of the temperature and stress fields was performed. By using different proportional loading paths, an activation surface was identified from temperature measurements. By using the probabilistic model described herein, an equivalent activation stress based on a first/second invariant (I 1 -J 2 ) criterion of the stress amplitude leads to the best agreement with experimental data.

The next step of the study deals with the introduction in the model of the effects of the non-proportionality of the load history on HCF properties. This work is still in progress. 
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Table 1 .

 1 Doudard et al. 

	C	Mn Si Cr Ti	S	Fe
	90 1000 250 200 10 < 5 Balance

Table 2 .

 2 Doudard et al. 

	Ys	UTS	Ys / UTS	El
	> 300 MPa > 600 MPa	< 0.6	25 %
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