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Abstract

It is proposed to develop a digital image correlation procedure that is suitable

for beams whose kinematics is described by an Euler-Bernoulli hypothesis. As a

direct output, the degrees of freedom corresponding to flexural and axial loads are

directly measured. The performance of the correlation algorithm is evaluated by

using a picture of a cantilever beam experiment. One load level is analyzed with the

present algorithm. The latter is validated by comparing the displacement field with

that given by a finite element based correlation algorithm. It is also shown that a

locally buckled zone is detectable with the present procedure.
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freedom, integrated approach, post-processing

1 Introduction

The evaluation of damage states of buildings, bridges, off-shore platforms or

other civil engineering structures is of paramount importance either in-service

or after having experienced an earthquake, since the safety of people is con-

cerned. To perform this task, numerical tools are utilized more and more fre-

quently, yet different routes are followed. The finite element method [1] is one

of the classical tools to analyze civil engineering structures. 2D [2,3] or even

3D [4,5] codes are run. Furthermore, to be realistic, non linear damage mod-

els are considered [6,7]. From a numerical stand point, different strategies are

developed to analyze damage localization and crack propagation, namely, by

using eXtended FEM [8] applied to cohesive models [9], embedded models [10]

or cohesive segments [11]. Last, the ground motion allows one to evaluate the

boundary conditions. Various techniques are used to solve the elastodynamic

wave propagation, namely the finite difference method [12,13], the boundary

element method [14,15], the finite element method [16] or both [17,18] when

the whole interaction between the structure and its foundation is sought.

Simplified or semi-global analyses are another class of methods in which the

kinematic fields are described by generalized degrees of freedom (e.g., dis-

placements and rotations in beams or plates). For beams, Euler-Bernoulli or

Timoshenko [19] kinematics is classically assumed. The non linear constitu-

tive laws are then integrated over the height of the element. Special, co-called

∗ Corresponding author, Email: francois.hild@lmt.ens-cachan.fr
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multi-fiber, beam elements are then implemented [20–23]. Lumped damage

mechanics (LDM) is another way to determine the damage state of this type

of structures [24–26]. It is based on an extension of the concept of plastic

hinges in beam calculations. It is able to account for softening as in other

damage theories [27] or due to local buckling [28]. Up to now, the parameters

of the constitutive law of hinges, and more generally of beams, relied upon

global data such as displacements at few prescribed measurement points [29].

It is proposed to develop and use full-field measurement techniques tailored

for the description of these structures as a set of beams and joints.

Digital Image Correlation (DIC) allows one to estimate full displacement fields

based on a series of digital images of the surface of a specimen subjected to

a specific loading history [30]. Recent advances have been achieved through a

novel formulation that enables one to decompose the searched displacement

field onto a suited library of such fields [31]. The latter are either finite element

shape functions [32], which open the way to a further identification step, or

mechanically significant fields suitable for the modeling of frames. The interest

of this experimental tool is that it provides full kinematic fields. This type of

technique is used to study cracks in brittle materials (e.g., in ceramics [33])

or in brittle structures (e.g., bridges [34]). It is worth noting that enriched

kinematics (e.g., à la X-FEM [35]) is also possible. For experiments on beams

or frames, it thus gives access to a wealth of data that may be exploited, for

example, to identify hinge models at different scales. In the present case, only

global degrees of freedom are sought. A first route is given by post-processing

measured displacement fields with a standard least squares technique. An al-

ternative route consists in using the relevant displacement basis directly at

the measurement stage. Therefore there is no decoupling between the mea-
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surement and identification stages in terms of global degrees of freedom.

In the following, the procedure is illustrated with the analysis of a flexural test

on a steel beam. In Section 2, the basic kinematic hypotheses are introduced.

They consist of Euler-Bernoulli flexure coupled with tension / compression

modes. The measurement procedures used herein are introduced in Section 3.

They are based upon a linearized version of the optical flow conservation.

Two tools are used, namely a “finite element” procedure and a so-called Euler-

Bernoulli procedure. The first one is generic and is utilized as a validation tool

for the second one, which is specialized to beam analyses. The performances in

terms of displacement uncertainties are evaluated for both of them. A practical

case is analyzed in Section 4. By comparing the results obtained by following

the two routes, the new measurement technique is validated and its advantages

are discussed.

2 Beam kinematics

In the framework of LDM, frames and buildings are modeled as a set of joints,

hinges and beams whose kinematics is described by generalized degrees of free-

dom [19]. In the following, the kinematics of a single beam is addressed. Let

us consider a straight bar (i.e., a beam element) of uniform cross section and

length ℓ, which is loaded by axial forces and bending moments about one axis

of its cross section. Six degrees of freedom are considered for the bar, namely,

two axial displacements, two vertical displacements and two rotations about

one axis of the cross section (Figure 1). The local coordinate system (x, y, z)

coincides with the principal axes of the cross section, with the x-axis repre-

senting the centroidal axis of the beam element, and the z-axis corresponding
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to the direction of the bending moment.

2.1 Tension / compression

Since there are only two nodal displacements q1 and q4 along the longitudi-

nal direction, a linear variation of the displacement ũ is assumed with the

conditions (Figure 1)

ũ(x = 0) = q1 and ũ(x = ℓ) = q4 (1)

so that

ũ(x) = [Ñ(x)]{q̃} with q̃t = {q1 , q4} and [Ñ(x)] =
[

1 − x

ℓ
,

x

ℓ

]

(2)

and the longitudinal strains read

ε̃xx = [B̃]{q̃} with [B̃] =
[

−1

ℓ
,

1

ℓ

]

(3)

The axial strains induced by the axial displacements are therefore uniform.

2.2 In plane flexure

Let us consider four degrees of freedom q2, q3, q5, and q6, a cubic displacement

model results classically from Euler-Bernoulli kinematics [19] for a cantilever

beam, so that the transverse displacement field v̂ is such that (Figure 1)

v̂(x = 0) = q2 and
dv̂

dx
(x = ℓ) = q3

v̂(x = ℓ) = q5 and
dv̂

dx
(x = ℓ) = q6 (4)
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The vertical displacement field is then expressed as

v̂(x) = [N̂(x)]{q̂} (5)

where q̂t = {q2 , q3 , q5 , q6} and [N̂(x)] = [N2(x) , N3(x) , N5(x) , N6(x)], with

N2(x) = (2x3 − 3ℓx2 + ℓ3)/ℓ3 , N3(x) = (x3 − 2ℓx2 + ℓ2x)/ℓ2

N5(x) = −(2x3 − 3ℓx2)/ℓ3 , N6(x) = (x3 − ℓx2)/ℓ2 (6)

and the rotations, with an Euler-Bernoulli kinematics, read

θ(x) =
dv̂

dx
(x) =

[

dN̂

dx
(x)

]

{q̂} (7)

The corresponding horizontal displacement becomes

û(x, y) = −yθ(x) (8)

and the longitudinal strains read

ε̂xx(x, y) =
∂u

∂x
(x, y) = −y

dθ

dx
(x) = [B̂(x, y)]{q̂} (9)

where [B̂(x, y)] = [B2(x, y) , B3(x, y) , B5(x, y) , B6(x, y)], with

B2(x, y) = − y

ℓ3
(12x − 6ℓ) , B3(x, y) = − y

ℓ2
(6x − 4ℓ)

B5(x, y) =
y

ℓ3
(12x − 6ℓ) , B6(x, y) = − y

ℓ2
(6x − 2ℓ) (10)

With the chosen kinematics, the axial strain field induced by flexure is a

bilinear function of the horizontal and vertical coordinates.
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2.3 Summary

From the above mentioned analysis, the displacement field in a beam element

reads

uuu(xxx) = [NNN eb(xxx)]{q} (11)

where NNN eb are the shape functions associated with the chosen kinematics (i.e.,

N1, . . . N6, B2, . . . B6), and {q}t = {q1, . . . q6}. The rotation field is only caused

by flexure [Equation (7)]. Last, the longitudinal strain field is expressed as

εxx(x, y) = [Beb(x, y)]{q} (12)

where Beb = {B1, . . . B6}. Therefore, the generalized degrees of freedom {q}

enable for expressing the displacement, rotation and strain fields.

3 Kinematic measurements by using DIC

Let us consider a reference image, defined as f , i.e., a gray level distribution.

An in-plane displacement field uuu(xxx) is defined. The passive advection of the

texture f by the displacement field creates a “deformed image,” g, such that

g(xxx + uuu(xxx)) = f(xxx) + b(xxx) (13)

where b(xxx) is noise induced by image acquisition. In the following, it is assumed

that the noise level, b, can be neglected either because of its low amplitude with

respect to those of f and g, or because of its scale separation with significant

components of the displacement field. Equation (13) is the local form of the

“optical flow conservation.”

The problem to address is the determination of the displacement field uuu from
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the exclusive knowledge of f and g. As such, the problem is ill-posed, un-

less additional assumptions are made on the regularity of the displacement

field so that the information is sufficient to determine u with a reasonable

accuracy. Let us introduce the following objective functional Φ operating on

displacement fields vvv

Φ2(vvv) =
∫∫

[g(xxx + vvv(xxx)) − f(xxx)]2dxxx (14)

In the absence of noise, this functional reaches its minimum value, 0, for vvv = uuu

[see Equation (13)]. The trial displacement vvv may be any choice as will be

discussed below. To fulfill a smoothness assumption on uuu, vvv may be low-pass

filtered or chosen in a subspace of “suited” (i.e., slowly varying) functions.

Let us first assume that f and g are sufficiently smooth at a small scale, and

the displacement small enough in amplitude so that a Taylor expansion of g

up to the first order is introduced in Equation (14)

Φ2

lin(vvv) =
∫∫

[g(xxx) − f(xxx) + vvv(xxx).∇∇∇g(xxx)]2dxxx (15)

Equation (15) corresponds to the linearized objective functional associated

with the optical flow conservation. The displacement can only be measured

along the direction of the intensity gradient. Consequently, additional hy-

potheses have to be proposed to solve the problem. A strategy consists in

decomposing the displacement field as a linear combination of (chosen) basis

functions ηηηi(xxx)

vvv(xxx) = viηηηi(xxx) (16)

where Einstein’s convention is used, so that Φ2
lin becomes a quadratic form in

the amplitudes vi. The extremality condition thus dictates, for all j,

[
∫∫

(∇∇∇g.ηηηj)(xxx)(∇∇∇g.ηηηk)(xxx)dxxx
]

vk =
∫∫

(f − g)(xxx)(∇∇∇g.ηηηj)(xxx)dxxx (17)
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This system is written in a matrix form as

[M ]{v̌} = {m} (18)

where {v̌} is a vector containing all the unknown components vi, [M ] and

{m} are known quantities dependent upon f , g, and ηηη. The use of a Taylor

expansion (15) requires that the displacement be small when compared with

the correlation length of the texture. For a fine texture and a large initial dis-

placement, this requirement appears as inappropriate to converge to a mean-

ingful solution. Thus one may devise a generalization to arbitrarily expand the

correlation length of the texture. This is achieved through a coarse-graining

step. Many ways may be considered, such as a low pass filtering in Fourier

or Wavelet spaces. A rather crude, but efficient way, is to resort to a simple

coarse-graining in real space [36,32] obtained by forming super-pixels of size

2n × 2n pixels, by averaging the gray levels of the pixels contained in each

super-pixel. The procedure is then applied first to the coarsest picture and

then more and more details are added.

3.1 “Finite Element” displacements: Q4-DIC

The general method presented in equations (17)-(19) can be applied to a large

variety of test functions. Q4-elements defined on a square grid (bi-linear func-

tions of x and y) are chosen here [32] for comparison purposes. The number of

pixels in each element is λ×λ. The displacement decomposition (16) is partic-

ularized to account for the shape functions of a finite element discretization.

The basis functions ηηηi(xxx) are decomposed into components N e
ij(xxx) associated
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with different directions eeej

ηηηi(xxx) = N e
ij(xxx)eeej (19)

Generally, the shape functions are such that N e
ij(xxx) = N e(xxx)δij, where δ is the

Kronecker delta and N e is the scalar shape function, here given for bilinear

elements

N e(x, y) =
1

4

(

1 ± 2x

λ

) (

1 ± 2y

λ

)

(20)

when −λ/2 ≤ x ≤ λ/2, −λ/2 ≤ y ≤ λ/2, and e = 1, 2, 3, 4. The sought

amplitudes vi are thus the different components of all the nodal displacements.

In the present case, the only parameter the user has to set is the element size

λ. It is worth noting that Equation (15) allows one to evaluate the overall

quality of the measurement, as well as local deviations since the quantity is

evaluated for each considered pixel. The latter may occur when plastic hinges

or cracks appear during the experiment. An example will be discussed in the

sequel. When the degrees of freedom q1, . . . q6 are sought, the measured (Q4P1)

displacement has to be post-processed.

3.2 Euler-Bernoulli Kinematics: Beam-DIC

The results derived in Section 2 allow us to propose a direct approach to the

measurement of the degrees of freedom q1, . . . q6 for each beam element. By

choosing a priori a basis of functions ηηηi(xxx) relevant to an experiment, the iden-

tification of the unknown amplitudes vi not only provides an information on

the displacement features but also yields quantities to be used for mechanical

modeling, say LDM. In the present case, the previous example is analyzed by

using an integrated approach. Since the basis function is richer, the number

of elements is reduced (it is as low as one) and its size is larger (in the present
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case up to ℓ = 2048 pixels). The chosen basis consists of the displacement field

induced by axial and flexural loadings [see Equation (11)]. Consequently, the

six unknown degrees of freedom of each beam element are directly identified,

instead of evaluated by post-processing the measured displacements. A global

quality factor is obtained, and even a local map of non-resolved differences

[Equation (15)]. This feature is in turn utilized to identify the best degrees of

freedom in the sense of lowest global error Φlin.

In practice, a region of interest (ROI) is chosen by the user. The ROI is

then subdivided into smaller elements, referred to as zones of interest (ZOIs).

The proposed approach is based upon a first order Taylor expansion (15).

When the (vertical) displacements are large, it will not be robust. Therefore,

a first evaluation of the vertical displacement field is obtained by performing

a classical correlation analysis in which, for each ZOI, a uniform displacement

is sought. An FFT algorithm is used and a sub-pixel value is determined by

interpolating the correlation function in the vicinity of its maximum [36]. At

least four ZOIs are used so that the displacement field is interpolated by a

cubic polynomial, or equivalently by using the decomposition (5). Each pixel

of the ROI is then moved by the estimated displacement. The subsequent

displacement residuals are small so that the first order decomposition (5) is

robust enough. The linear system (18) is implemented and solved. An iterative

scheme is possible for which the displacement of each row of pixels is updated.

Convergence is obtained when the global error estimator reaches a stationary

value.
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3.3 Analyzed pictures

Figure 2a shows a reference picture of a cantilever beam loaded at its end sec-

tion by an actuator. The beam has a length of 1.28 m, a square cross-section

of outer size 120 mm and inner size 112 mm. It is made of a conventional

construction steel (ASTM-A-500). The picture was shot with a digital CMOS

camera (resolution: 3888 × 2592 pixels, digitization: 8 bits). Figure 2b corre-

sponds to a deformed shape of the considered beam. A random texture was

applied onto the observed surface of the beam prior to the experiment to im-

prove the measurement uncertainty by creating local gray level fluctuations.

The latter are the key to extract displacement fields from pictures.

3.4 Baseline study for Q4-DIC

The performance of the correlation algorithm is evaluated by recording a pic-

ture prior to the experiment (Figure 2a) and applying artificial (i.e., known)

displacements. The considered ROI has a size of 256 × 2048 pixels. The dis-

placement uncertainty is estimated when the correlation parameters are modi-

fied. A constant displacement varying between 0 and 1 pixel, with an increment

of 0.1 pixel is applied artificially by using the shift / modulation property of

Fourier transforms. In the present study, the reference picture of Figure 2a

is considered. The displacement uncertainty σu, defined as the mean of the

standard displacement uncertainties, is plotted as a function of the element

size in Figure 3. A power law with an exponent α of the order 2 is obtained

for the displacement uncertainty σu up to an element size λ = 32 pixels

σu =
Aα+1

λα
(21)
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with A = 1 pixel, thereby indicating that the displacement uncertainty σu

and the spatial resolution λ are the result of a compromise. By using the

displacement interpolation (20), the average strain in one element is easily

computed. The standard strain uncertainty σε is then expressed as

σε = B
σu

λ
(22)

where the constant B is of the order of
√

2 [37]. A lower bound is obtained

by using the results of Equation (21). When an element size of 16 pixels is

chosen, the standard strain uncertainty is of the order of 3.5×10−4. Therefore,

local strain levels less than 3σε ≈ 10−3 cannot be measured accurately with

the chosen element size.

3.5 Baseline study for Beam-DIC

The same type of analysis is performed with the integrated algorithm. There

are however some differences. In the present case, the element height is fixed

(here equal to 256 pixels, i.e., less than the height of the beam) and the num-

ber of elements along the axial direction is changed. The length of the elements

is denoted by ℓ. Since there are more degrees of freedom related to transverse

displacements, namely 4 out of 6 unknowns, constant transverse displacements

varying between −0.5 and 0.5 pixel, with an increment of 0.1 pixel is applied.

The displacement uncertainty is measured on each component of the displace-

ment field. The maximum value between the two directions is recorded and

plotted as a function of the element length in Figure 4. A power law with an

exponent of 0.6 is obtained for element lengths greater than or equal to 16

pixels. Since only one direction is affected by the size variation, the decrease

is not as steep as in the previous case (Figure 3). However, the overall level
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is comparable to that observed with a Q4 interpolation, and reaches similar

values for large element sizes. For smaller lengths (≤ 8 pixels), a divergence

occurs, indicating that the chosen basis is too rich to capture accurately a

uniform displacement. Globally, prescribing a genuine kinematics allows one

to reduce significantly the standard uncertainty for moderate element sizes.

4 Analysis of an experiment

In the following, the two pictures of Figure 2 are analyzed. The ROI is centered

along the centroid direction and occupies the left part of the picture. Its size is

equal to 256×2048 pixels. First, the Q4-algorithm is used. Having been tested

on several situations [31,38,32], it is believed that it is sufficiently reliable in

the present situation. Second, the direct approach will be tested. Being new,

it will be compared with the Q4 technique for validation purposes.

4.1 Q4 approach

As mentioned above, the only parameter the user has to choose is the element

size. In the present case, ℓ = 16 pixels. It is believed to be a good compromise

between uncertainty and spatial resolution (Figure 3). The displacement maps

are shown in Figure 5. A dominant flexural loading is observed (Figure 5a),

even though some axial loading is applied (Figure 5b). The latter is induced by

a coupling that cannot be avoided between tensile / compressive and flexural

contributions. For comparison purposes, the degrees of freedom q1 to q6 are

needed. They are provided directly by the integrated approach. However, they

are to be identified in the present case. The beam kinematics developed in
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Section 2 is used to post-process the measured fields. The difference between

measured displacements at points xxxme and those determined from the closed-

form solution (11) is minimized in the least squares sense

Θ2({q}) =
∑

me

‖NNN be
i (xxxme)qi − uuume‖2 (23)

where ‖.‖ is the classical 2-norm. In the present case, me = 2312, or 4624

degrees of freedom to be compared with the 6 degrees of freedom associated

with Euler-Bernoulli kinematics. The post-processed displacement maps are

shown in Figure 6. A good agreement is observed when compared with the

original results. The displacement uncertainties do not allow for a direct eval-

uation of the strain field (see Section 3.4). However, when the displacements

are post-processed, the strain field is a straightforward evaluation [by using

Equations (3) and (9)]. The axial strain map is shown in Figure 7. As expected

from the analysis of the displacement maps, combined axial and flexural com-

ponents are observed. An average axial strain of −2.1×10−4 is identified. Even

though the strain uncertainty does not allow for a direct analysis of the strain

field derived from the raw displacement field, the corresponding mean value is

found to be equal to −2 × 10−4, in good agreement with that obtained after

post-processing the displacement field.

4.2 Direct approach

To avoid the previous two-step procedure, the direct approach is used. First,

only one beam element is chosen (its size is therefore equal to 256×2048 pixels).

The initial residual map [when vvv = 000 in Equation (14)] is shown in Figure 8a.

An average value of 28 gray levels is obtained. At the end of the calculation

that required two iterations of the direct algorithm, the corresponding average
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is less than 7 gray levels. The map is shown in Figure 8b. It is worth noting

that its distribution is spatially uniform. The results are deemed trustwor-

thy according to the chosen criterion. The displacement maps are shown in

Figure 9. They are very similar to those directly measured by using the Q4-

algorithm (Figure 5) or post-processed (Figure 6). This result constitutes yet

another validation of the direct approach. By using Equations (7) and (12),

the section rotation and the axial strains are obtained directly by using the six

degrees of freedom. Figure 10 shows the corresponding maps. As expected, a

small rotation occurs on the left end of the considered ROI. An average axial

strain of −2.2 × 10−4 is measured. This value is in good agreement with that

found in the previous subsection (i.e., −2.1 × 10−4).

The number of elements is now changed. Figure 11 shows the mean residual as

a function of the number of elements. As the number of elements increases, so

does the number of degrees of freedom, yet the residuals are virtually constant.

From this result, it is concluded that the measurements obtained with one

element is accurate and only 6 degrees of freedom are sufficient to characterize

the whole displacement field. The simple kinematics chosen herein is thus

validated for the analyzed load level.

The effect of the number of elements on the evaluation of the degrees of free-

dom corresponding to the left and right ends of the ROI is shown in Figure 12.

The values of the six degrees of freedom are very close even though the total

number of degrees of freedom increases and its evaluation may become less

secure. It is not the case herein because the number of pixels in each element

is still very large compared to the number of measured degrees of freedom.

When the strains are evaluated, the average value only varies less than 10% of
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the observed level with one element for the cases considered. Let us underline

the stability of these determinations as a function of the chosen bases, even

when using Q4 results. However, two regions appear in terms of standard

deviation (Figure 13). When more than one element is used, the continuity

of the strain field is not prescribed with the chosen beam kinematics (i.e.,

only translations and rotation are continuous). Therefore, the analysis of the

strain fluctuations is an indication of the overall quality of the measurement.

For a number of elements less than or equal to 8, the strain fluctuations are

very close. Beyond that number, the latter is more affected by the change of

the number of elements. It is an indirect consequence of the results shown in

Figure 4.

When average quantities of various maps are analyzed, the effect of the number

of elements is not significant (Figure 14). It is less than 10−3 pixel. The error

bars correspond to the fluctuations of the considered field. Let us underline the

very good stability of these determinations as functions of the chosen basis.

All these results validate the direct approach proposed herein.

4.3 Detection of locally-buckled zone

A second case is considered when the applied load level is significantly higher

(see Figure 2-b) than in the previous analysis. The same ROI is considered in

the present situation. First, the residual error map is analyzed. In Figure 15,

the initial map prior to any correlation analysis and at convergence are shown.

As expected, the initial error level is very high. At convergence, the average

level is comparable to the case analyzed previously, except in the left part of

the ROI (dashed box), in which the average error is twice that in the other
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part. This result constitutes a first warning that the chosen kinematics is not

able to capture the actual kinematics in that zone.

Second, the longitudinal displacement and rotation fields are shown in Fig-

ure 16. In the left zone (dashed box) deemed inaccurate according to the

residual error level (Figure 15-b), the displacement field does not correspond

to classical results, namely, one would assume a constant longitudinal dis-

placement along the height of the sample near the weld. This is not the case.

Furthermore, the rotation field is also biased since one would expect very small

rotation levels close to the weld, and not about one half of that at the other

end of the ROI. All these results confirm that the chosen (i.e., Euler-Bernoulli)

kinematics is not able to describe the displacement field in the left part of the

beam.

The phenomenon occurring in that zone corresponds to local buckling that

is not accounted for by the simple kinematics assumed herein. To analyze

accurately the kinematics in that zone, one would need to resort to a full 3D

evaluation of the displacement field by using, for instance, stereovision [41,42].

If the present means are used, the kinematics of the hinge, lumped at the base

of the weld, may be evaluated by discarding the incriminated zone in the

correlation analysis and then extrapolating the rotation field at the point of

interest, namely, the base of the weld. This procedure would then give the

information needed to determine the plastic hinge behavior in the pre- and

post-buckled regimes for a subsequent use in frame calculations [43]. This work

is underway.
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5 Summary

The analysis of Euler-Bernoulli displacement fields based on digital image

correlation has been described in terms of a post-processing analysis, and a

direct approach. In both cases, the definition of a suited library of displacement

field reveals to be a key ingredient for an accurate and reliable evaluation of

the beam kinematics in terms of generalized degrees of freedom. When applied

to a real experiment, the feasibility is demonstrated by using two pictures

obtained with a pocket camera. The direct approach was validated thanks to

the Q4 algorithm. It was also shown that when one departs from the kinematic

hypotheses made herein, the correlation residuals are a good error indicator.

In present case, it allows for the detection of local buckling.

The methodology used in this paper is directly applicable to a broad class of

different test geometries. This study illustrates the level of accuracy that is

obtained on the displacement and strain fields, with a very low cost equipment,

and low additional test constraints (simple surface preparation is required,

and good lighting condition is sufficient). Let us underline for instance that

the maximum axial displacement is less than 0.7 mm, and the corresponding

transverse displacement is less than 3.5 mm for a beam of length 1.28 m and

height 120 mm. The maximum absolute strain level is about 6 × 10−4. It was

shown that by moving artificially pictures, a displacement uncertainty of the

order of 3.5 µm is achieved with the chosen parameters.

It would be of interest to extend the analysis to more complex situations

to study, for instance, the behavior of hinges. The corresponding kinematics

may be implemented, but also more local and detailed analyses are possible
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by using the algorithm presented herein. By considering the kinematics of

joints, it would then be possible to analyze the behavior of frames in terms

of global and local degrees of freedom. Last, if a distributed damage field is

sought, either in terms global parameters or local ones, different identification

techniques are available. One of them, the equilibrium gap method [39], allows

for the identification of elastic property and damage fields as well as growth

laws [40]. A suited adaptation to the chosen scale and kinematics introduced

herein is currently in progress.

Acknowledgements

This work is part of an ECOS-Nord / CNRS project entitled “Detection and

prediction of the damage state in frames subjected to earthquakes.”

References

[1] O. C. Zienkievicz and R. L. Taylor, The Finite Element Method , (McGraw-Hill,

London (UK), 4th edition, 1989).

[2] H. G. Kwak and F. C. Filippou, Nonlinear FE analysis of R/C structures under

monotonic loads, Comput. Struct. 65 [1] (1997) 1-16.

[3] N. Ile, J. M. Reynouard and J. F. Georgin, Non-linear response and modelling

of RC walls subjected to seismic loading, ISET J. Earthqu. Technol. 39 [1-2]

(2002) 2002.

[4] J. Y. R. Rashid, R. A. Dameron and R. S. Dunham, Finite element analysis of

reinforced concrete in bridge seismic design practice, in: Modeling of inelastic

20



behavior of RC structures under seismic loads, P. B. Shing and T. Tanabé, eds.,
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Fig. 2. Cantilever beam in its reference (a) and deformed (b) state. The picture

resolution is 3888 × 2592 pixels with an 8-bit digitization.
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Fig. 3. Standard displacement uncertainty as a function of element size λ using Q4

finite elements. The dashed line corresponds to a power law fit [Equation (21)] with

an exponent close to 2.
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Fig. 4. Standard displacement uncertainty as a function of beam element length ℓ.

The dashed line corresponds to a power law fit with an exponent of the order of

0.6.
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Fig. 5. Displacement maps in pixels (1 pixel ≡ 0.35 mm) along the longitudinal and

transverse directions measured with a Q4-algorithm. Elements of size ℓ = 16 pixels

were considered.
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Fig. 6. Post-processed displacement maps using one beam element along the longi-

tudinal and transverse directions. The same color scales as in Figure 5 are chosen.
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Fig. 7. Axial strain map obtained from post-processed displacements using one beam

element (Figure 6)

34



a)
0

50

100

150

x (pixels)

y
 (

p
ix

e
ls

)

Residual

500 1000 1500 2000

500

1000

1500

2000

b)
0

50

100

150

x (pixels)

y
 (

p
ix

e
ls

)

Residual

500 1000 1500 2000

500

1000

1500

2000

Fig. 8. Residual error map in gray levels prior to (a) and after (b) performing the

correlation. One beam element of length ℓ = 2048 pixels is considered.
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Fig. 9. Displacement maps along the longitudinal and transverse directions. One

beam element of length ℓ = 2048 pixels is considered. The same color scales as in

Figure 5 are chosen.
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Fig. 10. Rotation (a) and axial strain (b) maps (the same color scale as in Figure 7

is chosen). One beam element of length ℓ = 2048 pixels is considered.
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Fig. 11. Average residual (in gray levels) as a function of number of beam elements.

The average initial residual (i.e., the picture difference) is equal to 28 gray levels.
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Fig. 12. Degrees of freedom as functions of number of beam elements.
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Fig. 13. Average axial strain as a function of number of beam elements. The error

bars correspond to the root mean square values.
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Fig. 14. Average displacements as functions of number of beam elements. The error

bars correspond to the root mean square values.
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Fig. 15. Residual error maps prior to correlation (left) and after convergence (right)

for the deformed picture shown in Figure 2. The dashed box shows the zone where

the correlation result is not accurate. One beam element of length ℓ = 2048 pixels

is considered.
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Fig. 16. Displacement map along the longitudinal direction and corresponding ro-

tation map. The dashed box shows the zone where the measured kinematics is not

trustworthy. One beam element of length ℓ = 2048 pixels is considered.
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