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Abstract

Two limestones are studied to compare the fragmentation pattern induced by dy-
namic loads. A quasi-static characterization allows one to determine the basic me-
chanical properties and to compare the two rocks in terms of Weibull parameters,
indicators of microstructural differences. Edge-on impacts are performed and show
the important role of the Weibull modulus in the fragmentation pattern. Simula-
tions of these experiments are performed and validate the simple model proposed
for rocks.

Key words: Damage model, Dynamic fragmentation, Poisson Point process,
Weibull parameters

1 Introduction

A consequence of intense pulses or blasts on brittle materials is their fragmen-
tation into discrete domains. For example, ceramics are multiply fragmented
when impacted [1]. This class of materials has received some attention when
used as a front layer of an armor [2,3]. Similarly, glass is used in armored
windshields and experiences multiple fragmentation when impacted by debris
or bullets [4,5]. Furthermore, since the pioneering work of Rinehart [6], it is
known that the ultimate strength of rocks under so-called dynamic loading
conditions exceeds the static strength by as much as one order of magnitude.
The distinct zones resulting from rock blasting were identified by Kutter and
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Fairhurst [7], namely a comminuted area (or crushing zone) in the vicinity
of the explosive followed by a damaged zone in which dense microcracking
is observed and finally a zone where few long cracks develop. Later, it was
recognized that inherent flaws are activated, grow and eventually coalesce to
form macrocracks [8]. Similarly, concrete experiences multiple fragmentation
when hit by a striker [9]. Yet, when loaded in tension or flexure under quasi-
static conditions, all these materials usually experience single fragmentation
and their failure strength is no longer deterministic.

The fragmentation process is discrete by essence. In the theory developed
by Mott [10], the fragmentation of a rapidly expanding ring was studied. It
contains some key ingredients (i.e., the randomness of the process is clearly
stated and accounted for) to analyze the distribution of fragments in 2D ex-
periments [11]. From a numerical point of view, discrete models are also pro-
posed [12–15] when the fragment size is greater than or equal to the size
of a representative element. Espinosa et al. [16] have developed a contin-
uum/discrete multi-scale model in which the finer scale is discrete and al-
lows for the derivation of a continuum description on a higher scale. Alter-
natively, Continuum Damage Mechanics is used with an isotropic [17–19] or
anisotropic [20] damage description to account for multiple fragmentation.
Consequently, in the numerical simulations, the medium is assumed to be con-
tinuum on the scale of a finite element in which numerous cracks are expected
to form. However, crack densities may strongly vary over the structure and
the analysis of fragmentation through a continuum modeling may be delicate
when one or a few cracks are nucleated or propagate in certain zones. As an
alternative, a multi-scale model has been developed in which the probabilistic
aspect is treated within a damage model [21,22].

The paper focuses on the study of two different limestones, namely, a crinoidal
limestone and the so-called “blanche de Beaucaire.” These rocks are extracted
from quarries. The mining and quarrying industries aim at controlling the
block size distribution, namely, a big block cannot go through the crusher,
while comminuted rock is inexploitable. An analysis and prediction of the
fragmentation of blasted rocks is therefore desirable. The aim of the paper is
to predict the dynamic fragmentation of two limestones. The parameters of
the model are identified with quasi-static experiments. It will be shown that
a simple identification procedure is sufficient to describe dynamic fragmen-
tation. The Weibull model is used to describe different microstructures, and
the Weibull parameters allow for the prediction of the crack density when
dynamically loaded. Section 2 introduces the two rocks and their mechanical
properties. This section also discusses how the microstructure is described by
a Poisson-Weibull model. Then, dynamic experiments have been performed.
Edge-on impacts are carried out and analyzed in Section 3. Based upon a
fragmentation theory, a damage model [22] is summarized in Section 4. The
experiments are then simulated.
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2 Quasi-static experiments and microstructure characterization

Beaucaire limestone is quarried in southern France and used in cement work.
Crinoidal limestone comes from Belgium, and is utilized for gravestone or
sculpture. These rocks have been chosen, first because of their availability,
and also their significant difference, namely, Beaucaire limestone is porous
and friable whereas crinoidal limestone is a hard rock. A microanalysis (Energy
Dispersive Spectroscopy) of the two studied rocks shows different elements. A
matrix of lime is observed. Inclusions made of silica, magnesia, sulphur, ferrous
sulphide and potassium oxides are present in crinoidal limestone. Beaucaire
limestone contains several inclusions of silica and alumina. This section aims
at studying mechanical properties to compare the two rocks. The main results
are gathered in Table 1. Only elementary tests are performed and reported
herein. The following measurements were performed:

• mass density of eight samples by using Archimede’s principle. A volume of
the order of 3 cm3 is prepared. The mass is measured in open air m1 and in
demineralized water m2. The density of demineralized water ρW is known.
The mass density ρ then reads

ρ =
m1

m1 − m2

ρW (1)

• open porosity. Samples of volume ca. 10 cm3 have been put in water. The
volume of fluid that infiltrates the sample is measured. The porosity of
Beaucaire limestone is 14±1 %. For crinoidal limestone, the porosity is less
than 1 %.

• Young’s modulus E, Poisson’s ratio ν and compressive strength σc by per-
forming uniaxial compression experiments. Four specimens (50 mm × 50
mm × 100 mm) are tested. Two strain rosette are installed.

• longitudinal cL and transverse cT wave velocities evaluated on an ultrasound
bench. The same Young’s modulus and Poisson’s ratio of crinoidal limestone
are found from velocity measurements

E = ρc2
T

3c2
L − 4c2

T

c2
L − c2

T

and ν =
c2
L − 2c2

T

2(c2
L − c2

T )
(2)

Conversely, the Young’s modulus and Poisson’s ratio of Beaucaire limestone
do not follow equations (2) because of porosity.

• Weibull parameters by using three-point bend experiments. To model ran-
dom failure of the two limestones, which are brittle materials, a Weibull
law [23] is used. As rock failure is a random phenomenon, numerous exper-
iments are needed to determine the Weibull parameters. Forty experiments
(gauge volume: 50 mm × 50 mm × 150 mm) for each limestone are carried
out. The outer span is equal to 150 mm and a special flexural setup was used
to control the boundary conditions [24]. The failure probability is written
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as PF (i) = (i − 0.5)/N , where N is the specimen number (N = 40) and i
is the number of the specimen corresponding to the ith lowest failure stress.
The failure probability is then compared to that given by a Weibull law

PF = 1 − exp
[

−
Veff

V0

(

σF

σ0

)m]

(3)

where m is the Weibull modulus, σ0 the scale parameter associated with a
reference volume V0, σF the failure stress

σF = max
Ω

(〈σ1(x)〉) (4)

and Veff the effective volume [25]

Veff =
∫

Ω

(

〈σ1(x)〉

σF

)m

dx (5)

associated with the maximum principal stress σ1 when positive (〈•〉 denotes
the Macauley brackets). For three-point flexural tests, the effective volume
is Veff = V/2(m + 1)2, where V is the loaded volume of the specimen. By
using Equation (3) and the expression of the effective volume in three-point
flexure, the failure probability PF and the failure stress σF are related by

ln (− ln (1 − PF )) = m ln (σF ) + ln

(

V

2(m + 1)2 V0 σm
0

)

(6)

Figure 1 allows one to determine the Weibull moduli and scale parameters
for the two studied materials. The slope of ln(ln(−(1−PF ))) vs ln(σF ) is m.
There is a large difference of Weibull modulus between the two limestones,
which means that fracture scatter of crinoidal limestone is less than that of
Beaucaire limestone.

In the following, the difference in Weibull parameters is analyzed in terms
of microstructural differences. From this analysis, a model of microstructure
is introduced to describe microstructural defects that are the cause of quasi-
static failure and the crack pattern observed under dynamic loading condi-
tions. The Weibull parameters are representative of the material microstruc-
ture, and more precisely on the defect distribution and local toughness proper-
ties [26,27]. The Weibull modulus is mainly related to the decay for large defect
sizes of the probability density function, which is usually described by a power
law whose exponent is a linear function of the Weibull modulus. Consequently,
different Weibull moduli, as observed for the two studied rocks, is an indica-
tion of different defect populations, in particular for the largest defect sizes,
i.e., the ones likely to initiate failure under quasi-static loading conditions.
For a given reference volume V0, different stresses σ0 are mainly induced by
different toughnesses and average defect sizes. Different defect populations will
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therefore lead to different Weibull parameters. Conversely, different Weibull
parameters are indicators of different defect distributions. When dealing with
dynamic fragmentation, the Weibull model itself can no longer be used since a
weakest link hypothesis does not apply. However, the following microstructure
model using Weibull parameters is considered.

A microstructure model is now introduced to account for random distributions
of defects. It has to be valid for describing single and multiple fragmentation
regimes. Its advantage then lies in the fact that quasi-static experiments may
be used to identify the material parameters. Once they are determined, they
are used in a situation in which single fragmentation no longer occurs (e.g.,
dynamic fragmentation). The material is assumed to contain point defects
of density λt. Such hypotheses are those of a Poisson point process of inten-
sity λt [28,29,20]. Consequently, the probability of finding δ defects within a
uniformly loaded domain Ω of volume V reads

P (δ, Ω) =
(Λt)

δ

δ!
exp (−Λt) (7)

so that Λt corresponds to the average number of defects within Ω. By def-
inition, Λt is related to the density λt by Λt = λtV for a uniformly loaded
domain. Let us now assume that λt is a function of the applied stress σ1. The
larger the applied stress, the greater the number of defects that will initiate
cracks. One possible choice to account for this trend is given by a power law
function of the maximum principal stress

λt(σ1) =
1

V0

(

〈σ1〉

σ0

)m

(8)

where m and σm
0 V0 are interpreted as the Weibull parameters when single

fragmentation occurs. By using the weakest link framework [30], the failure
probability PF is the probability of finding at least one defect within Ω when
σ1 ≡ σF > 0

PF = P (δ ≥ 1, Ω) = 1 − P (δ = 0, Ω) = 1 − exp
[

−
V

V0

(

σF

σ0

)m]

(9)

when a uniform stress is applied. If the stress field is heterogeneous, Λt is
related to λt by

Λt =
∫

Ω

λt(x)dx (10)
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the failure probability is described by Equation (3), i.e., a Weibull law, and
the mean failure stress σF is then expressed as

σF = σ0

(

V0

Veff

)

1

m

Γ
(

1 +
1

m

)

(11)

and describes the fact that the larger the volume the smaller the mean failure
stress, Γ denotes the gamma function

Γ(a) =

+∞
∫

0

ta−1 exp(−t)dt (12)

with Γ(n) = (n−1)! for integers. The Poisson-Weibull model allows one to re-
late the Weibull parameters to microstructural properties describing the pop-
ulation of initiation sites. The latter is the key for understanding probabilistic
features related to the fragmentation of brittle materials.

From the previous results, it is concluded that there is a large difference of
Weibull modulus between the two limestones, which means that fracture scat-
ter of crinoidal limestone is less than that of Beaucaire limestone. Figure 1
and Table 1 also show the difference in mean strength. A significant differ-
ence of mechanical properties between the two limestones is observed and due
to different defect distributions and local toughnesses. Contrary to Beaucaire
limestone, crinoidal limestone has high mechanical properties and a low frac-
ture scatter. These differences will have an impact on fragmentation patterns
under dynamic load histories as is shown in the next section.

3 Edge-on impact

To observe real-time or post-mortem crack patterns under dynamic loading
conditions, rocks are loaded by ballistic impact called “Edge-On Impact”
(EOI) experiments [1,4,31]. During these tests, a cylindrical striker hits a slab
on the edge generating an incident wave. In the wake of the incident wave, due
to the radial motion of the medium, tensile hoop stresses are induced with a
high-strain rate (hundreds or thousands of s−1, depending on striker velocity,
thickness of the target, diameter of striker and on the mechanical properties of
target and striker materials). Two types of EOI experiments may be performed
(Figure 2):

• edge-on impact with observations thanks to an ultra-high speed camera;
• edge-on impact with a sarcophagus to maintain the fragments in place.
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With the first configuration, it is possible to observe the kinetics of the dam-
age process. The inter-frame time needed for the ultra-high speed camera is
ca. a few microseconds with ceramic [31] or glass [32] tiles, or few tens of
microseconds for rock and concrete slabs. The second configuration allows for
a characterization of the crack density in the target at macroscopic or micro-
scopic scales [20,33].

More recently, a new configuration of EOI tests was proposed for an ultra-
high-strength concrete [34,35]. With such a material, the compressive strength
(about 200 MPa in uniaxial compression) is not as high as in SiC ceramics
or glass. Therefore, a special device (called dynamic confinement since it acts
only during the few microseconds that follow the impact time) was used to
avoid or to limit compressive damage. As shown in Figure 2, the device is
made of a steel half-cylinder and a tungsten half-shell that are applied to the
lateral faces close to the impact point. When the striker hits the target, the
lateral expansion due to the Poisson’s ratio is prevented in this area inducing a
strong increase of pressure. Therefore, the dynamic confinement system allows
one to benefit from the strength increase with hydrostatic pressure [36–38],
and from the plastic behavior of geomaterials under high confinement level.
No confinement is used beyond the area delimited by the half-cylinders to
keep a 2D stress state associated with edge-on impacts [39] and to allow for
real-time observations.

3.1 Observation with an ultra-high speed camera

The striker speed is measured thanks to two diodes located up stream of the
target and separated by 50 mm. The flashlight begins with the second diode
signal. A conducting film is put on the point of impact to trigger the camera.
Test parameters are gathered in Table 2. Pictures do not allow us to observe
all cracks that are visible after the test in crinoidal limestone, presumably
because their openings are too small. Yet, few radial cracks are visible in Fig-
ure 3(a) when t ≥ 40 µs. Moreover, few circular-front cracks centered on the
impact point are seen to emerge 30 µs after impact when the material beyond
the confinement is ejected from the lateral face (observed face). These cracks
also called “emerging crack” or “shell cracking” were previously observed dur-
ing EOI tests performed on ultra-high strength concrete [35]. This cracking
pattern is due to unconfined compression beyond the confined area similar
to splitting observed in uniaxial compression tests performed on concretes or
rocks.

Damage pattern of Beaucaire limestone during EOI test is shown in Fig-
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ure 3(b). As observed with crinoidal limestone, it is composed of radial cracks
and emerging cracks visible 10 µs after impact (Figure 3(b)). However, radial
cracks are stopped at this stage and a second large emerging crack is observed
30 µs after impact (see sketch in Figure 4).

After the experiments, a reconstitution of the impacted tiles enables one to
observe the three post-mortem patterns of the three tested configurations,
namely, C1

CUR, C2
CUR and B1

CUR (Figures 5(a), 5(b) and 5(c)). As a consequence
of the wide extension of the emerging crack (compressive damage) in Beaucaire
limestone, only one radial crack is observed. The fragmentation process was
restricted to a small area close to the confinement and the radial cracks did not
propagate farther. Conversely, several radial cracks are observed in crinoidal
limestone. They correspond to a small extension of emerging cracks in C2

CUR

or the absence of compressive damage concerning the thick tile (C1
CUR with

no emerging cracks).

3.2 Post-mortem study

Edge-on impact fully comminutes rocks next to the point of impact. Post-
mortem studies of this type of impact has to use a so-called sarcophagus to
keep the fragments in their initial place. The sarcophagus used for rocks is the
same as that used for ceramics [20] and concrete [34] (Figure 2(b)). After the
experiments, fragments are coated with an epoxy resin in vacuum. The slabs
are cut, then polished to be analyzed with a binocular magnifier or an optical
microscope. Few microcracks in test C1

SARCO appear in crinoidal limestone.
There are almost only macrocracks as what is observed when rebuilding the
tile (Figure 5(a)). Emerging cracks are observed in the communited area for
Beaucaire limestone (Figure 6). Numerous microcracks in test C2

CUR appear
in crinoidal limestone. Their openings are so small that they are difficult to
observe. An analysis with an optical microscope allows one to see preferred
directions, namely, radial and hoop directions (Figure 7).

Edge-on impact experiments show a significant crushing zone in Beaucaire
limestone, then only one crack leads to fracture. Conversely, in crinoidal lime-
stone there is a crushing zone for higher loads and then a multiple fragmen-
tation zone.

3.3 First summary

The two main observations are the presence of emerging cracks in the crushing
zone for the two rocks and a difference of fragmentation pattern after this area.
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Two reasons may explain this last point. First, this may be due to difference of
tensile loading that depends on tile thickness, striker velocity and compressive
behavior of the specimen close to the impact point. The second reason may
be the effect of microstructure of the two limestones. To analyze these two
assumptions, models and simulations are discussed in the next part.

4 Numerical simulations

To account for sliding cracks, i.e., when compressive stresses are dominating
such as in zones close to the impact point, the overall material behavior is
described by plasticity-like models [40–42]. In the present case, it is proposed
to use the simplest of them, namely, perfect plasticity. The drawback is that
it does account for the pressure effect only indirectly by the value of the yield
stress σY , which will be identified by analyzing the size of the comminuted
zone. This is the only parameter that will be identified; all the others are
directly obtained from the experiments reported in Section 2. The advantage
is its simplicity and will allow to compare the identified value to that obtained
in uniaxial compression test.

Moreover, material parameters characterized with quasi-static experiments
will be used for dynamic simulations. Rate sensitivity of brittle materials un-
der dynamic and uniaxial compression was reported by numerous authors. In
particular, beyond strain rate levels of ca. few s−1, a sharp increase of the
ultimate strength is observed in rocks [43–45] and concrete materials [46–48].
However, the reason for the increase in strength is not clearly demonstrated
and may be due to the radial confinement induced by inertia effects and/or by
the intrinsic rate sensitivity of the material. The lateral expansion associated
with a non-zero Poisson’s ratio is restrained under dynamic loading by inertia
effects [49–51]. To explore the confined behavior of geomaterials avoiding the
previous phenomenon, confined 1D-strain compression tests (also called quasi-
oedometric compression) were performed on geomaterials [46,52,53] and more
recently on a micro-concrete (MB50) [54–56]. During these tests, a cylindrical
specimen is encased in a confinement steel ring and is axially loaded. The
radial displacement is considerably reduced by the confinement ring and the
radial pressure due to inertia is not acting. Tests performed at strain rates up
to 220 s−1 showed none significant influence of loading rate on the deviatoric
strength (maximum stress difference) and a limited influence of loading rate
on the hydrostatic response [56]. Therefore, no strain rate effect is considered
to model compressive damage.

To describe the fragmentation due to tensile stresses, the previous part is
coupled with a damage model based upon a fragmentation analysis [20]. The
general framework is the same as in Section 2, namely, the Poisson-Weibull
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model describing the material microstructure. The main difference is that in
the present case, a weakest link hypothesis does not necessarily apply, even
though the Weibull parameters are going to be used. The latter are identified
by quasi-static experiments (Table 1).

4.1 Analysis of loading with an elasto-plastic model

An elasto-plastic model is used in this section. Different configurations of edge-
on impact tests are simulated to identify geometrical or material parameters
that influence loading. The different material parameters used in the simula-
tions (mass density, Young’s modulus, Poisson’s ratio and yield stress), are
obtained from the earlier rock characterization (Table 1).

4.1.1 Constitutive model

The elastic law is first used

σelastic = λtr(ǫ)I + 2µǫ (13)

where σ and ǫ are the stress and strain tensors, λ and µ Lamé’s parameters
and I the identity tensor. Then, the von Mises criterion is tested to know if
plastic flow occurs. In the present case, one uses a perfect plasticity model
whose yield function is

f = σeq − σY = 0 (14)

where σY is the yield stress and σeq is the equivalent von Mises stress

σeq =

√

3

2
σ

D
: σ

D
(15)

where σ
D

is the deviatoric stress tensor. To define the crushing zone and the
fragmentation zones that are observed experimentally, one assumes in the sim-
ulations that this transition is the same as between elasticity and plasticity.
To evaluate the yield stress, the ultimate compressive strength in quasi-static
experiments (here uniaxial compression) is not sufficient because of the dif-
ference of strength in uniaxial and confined compression of geomaterials. It
follows that, the higher the pressure, the higher the yield strength. Rocks are
confined close to the area of impact, that is why the yield stress is tuned by
analyzing numerically edge-on impact tests.
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4.1.2 Simulations

A first series of simulations consists in comparing the loading between the
three tests to know if the difference of fragmentation may be due to differ-
ence of loading. Then a yield strength will be tuned in comparison with the
experiments. The elasto-plastic parameters used in simulations are gathered
in Table 3. The simulations have been performed with the explicit version of
the finite element code Abaqus. The elements used are 8-node cubic elements
with reduced integration. Only one quarter of the slab is modeled because
of symmetry. Three elements are used in the thickness, 40 along the axis of
the striker and 80 in the perpendicular direction. The loading is simulated by
considering the initial velocity of the striker and Coulomb friction (f = 0.2)
is added between the striker and the slab. A penalization method is used to
simulate contact.

4.1.2.1 Stress history Figures 8(a) and 8(b) show that the radial stress
is nearly the same between test C1 and test C2 for a distance of two striker
diameters from the impact point. At that distance, the behavior is elastic.
In addition, the plastic zone is also equivalent for these two tests. Loading is
driven by the yield strength. For a given material, even if the geometry and
striker velocity are different (e.g., tests C1 and C2), the compressive stress
levels are very close. Yet, the loading rate and the level of the tensile stress
are different. For a distance of two striker diameter, the maximum hoop stress
rate is ca. 20 MPa/µs for test C1, 50 MPa/µs for test C2 and 2 MPa/µs for
test B1. Let us note that the (tensile) levels of the hoop stresses (Figure 8(b))
are very high compared with the quasi-static failure stresses reported in Sec-
tion 2. Therefore, multiple fragmentation is likely to occur as will be shown
in Section 4.2.4.

4.1.2.2 Yield strength Figure 9 compares the radial stress of test C2

for a distance of one striker diameter from the impact surface for two differ-
ent yield strengths. At that distance, the behavior is plastic. The first value
of yield strength is equal to the compressive strength and the second one to
twice the compressive strength. One observes that the radial stress is doubled
(in the same way as the yield strength). This proves again that the stress level
is driven by the yield strength. As one observes for a point in the plastic zone,
the steady state value of the radial stress is close to the yield strength. The ra-
dial stress also increases in the elastic zone when the yield strength increases.
The same observation applies for the hoop stress.

To determine the yield strength, the simulated crushing zone is assumed to
be the plastic zone. Thus, the crushing zone is represented by the area where
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the von Mises stress reaches the yield strength (in confined compression). A
comparison between experimental and simulated crushing zones indicates that
twice the uniaxial compressive strength is a good approximation (Figures 10
and 11) to describe confined damage. A ratio of 3 between the compressive
strength and the yield strength decreases by 50 % the simulated crushing zone
for crinoidal limestone, whereas a ratio of 1.5 increases this area of 20 % for the
same material. These percentages are smaller for Beaucaire limestone because
of the low level of the compressive strength.

4.2 Fragmentation law

Fragmentation is now described by a damage law based on a obscuration
mechanism. The Weibull parameters are considered and the other material
parameters used to describe damage of the rocks in tension.

4.2.1 Constitutive model

When slabs are impacted, damage in tension is observed due to positive hoop
stresses induced by the radial motion. Cracks are initiated on defects. Their
distribution is described by the Poisson-Weibull model introduced in Section 2.
The underlying assumption is that the initiation sites are the same for any load
history, be it quasi-static or dynamic. Yet, all defects do not initiate cracks
(Figure 7). Close to propagating cracks the stresses are relaxed. One assumes
that no cracks are initiated in this obscuration zone [20]. The measure of the
obscuration zone is defined as

Zo(T − t) = S [kC(T − t)]n (16)

where T is present time, t the time when the crack appears, S is a shape factor,
C is the longitudinal wave velocity, n is the space dimension and k a constant.
New cracks will be initiated only outside any of this zone. Therefore, the total
flaw density λt(σ(t)) is split into two parts, namely, λb(σ(t)), the crack density
and the obscured flaw density. The increment of the crack density λb(σ(t)) is
related to that of the total flaw density λt(σ(t)) by

dλb

dt
(σ(t)) =

dλt

dt
(σ(t)) [1 − Po(T )] (17)
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where Po(T ) is the obscuration probability. The obscuration probability is
written as [20]

Po(T ) = 1 − exp



−

t=T
∫

t=0

dλt

dt
(σ(t))Zo(T − t)dt



 (18)

The obscuration probability P0 is the fraction of relaxed zone. That is why one
assumes that the obscuration probability corresponds to damage associated
with a given propagation direction. Cracking occurs normal to three directions.
The compliance S

D
is then expressed as [22]

S
D

=
1

E



































1
1−D1

−ν −ν 0 0 0

−ν 1
1−D2

−ν 0 0 0

−ν −ν 1
1−D3

0 0 0

0 0 0 1+ν
(1−D2)α(1−D3)α

0 0

0 0 0 0 1+ν
(1−D3)α(1−D1)α

0

0 0 0 0 0 1+ν
(1−D1)α(1−D2)α



































(19)

where α = St/Sn ≈ 1/2, with St and Sn are shape factors that describe
the obscuration zone of tangential and normal stresses. The growth of each
damage variable Di is based upon the defect density λt and derived by using
equation (18)

dn−1

dtn−1

(

1

1 − Di

dDi

dt

)

= λt (σi(t)) n!S (kC)n (20)

when dσi/dt ≥ 0 and σi ≥ 0, where no index summation is used, and σi are
the principal stresses.

4.2.2 Closed-form solutions

Closed-form solutions for the obscuration probability, the crack density and
ultimate tensile strength are briefly recalled [20] by assuming that the stress
rate σ̇ is constant. A dimensionless flaw density (λ = λ/λc), time (t = t/tc),
space measure (Z = Z/Zc) and stress (σ = σ/σc) are such that

λc = λ(tc) Zc = Zo(tc) σc = σ(tc) = σ̇tc (21)
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The characteristic zone Zc contains on average a flaw that may break at the
characteristic time tc, namely λcZc = 1. The characteristic parameters are
given by

tc =

[

λ0

(

σ̇

σ0

)m

S (kC)n

]

−
1

m+n

, σc =

[

σm
0 σ̇n

λ0S (kC)n

]
1

m+n

(22)

λc =

[

λ0σ̇
m

(σ0kC)mSm/n

]
n

m+n

The obscuration probability is derived from Equation (18)

Pobs(T ) = 1 − exp
{

−B(m,n)T
m+n

}

(23)

where B is a modified Euler (beta) function of the first kind

B(m,n) = m

1
∫

0

tm−1(1 − t)ndt =
Γ(m + 1)Γ(n + 1)

Γ(m + n + 1)
(24)

As mentioned above, the variable Pobs is used to define a damage variable
in the framework of Continuum Damage Mechanics. Under dynamic loading
conditions, there is a gradual damage growth. Pobs is assumed to be equal to
a damage variable D. The change of the damage parameter is then given by
Equation (23). One observes that D(T = 1) ∼= 0 and D(T = 2) ∼= 1 (i.e.,
most of the damage growth occurs during a time interval equal to tc). During
tc, the horizon is limited by Zobs(tc) = Zc therefore the minimum measure of
the representative zone to consider for the evaluation of the damage variable
is Zc. Table 4 compares the characteristic times tc for the three tests. For test
C2, only 0.47 µs are needed to damage the considered volume element whereas
1.1 µs are necessary for test C1. This difference is only due to the stress rate
that is greater for test C2. Furthermore, tc = 3.4 µs for test B1; the stress rate
is ten times less than that of test C1. The Weibull modulus has a significant
influence on the fragmentation characteristics. The higher the Weibull modu-
lus, the higher damage kinetics.

By integrating Equation (17) for a constant stress rate, a dimensionless crack
density (where only the space dimension n, the Weibull modulus m and a
dimensionless time T are involved) reads

λb(T ) =
m

m + n
[B(m,n)]−

m

m+n γ
[

m

m + n
,B(m,n)T

m+n
]

(25)
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where γ(a, T ) is the incomplete gamma function

γ(a, T ) =

T
∫

0

ta−1 exp(−t)dt (26)

so that γ(a, T → +∞) ≡ Γ(a). The crack density at saturation λb∞ (i.e.,
when T tends to infinity) reads

λb∞ = [B(m,n)]−
m

m+n Γ
[

m

m + n
+ 1

]

(27)

By using this result, an estimation of the number of cracks in edge-on impacts
is performed. The chosen location from the impact point is two striker diam-
eters where the stress rate has been evaluated in Section 4.1.2.1. The crack
density is estimated by assuming that the value at saturation is reached. As
cracking occurs during tc, if the raise duration of the hoop stress is greater
than tc, the crack density at saturation is reached. Figure 8(b) shows that the
time increment for the hoop stress to increase is ca. 5 µs for test C1, and 3
µs for test C2, which is greater than tc (Table 4). It is also the case for test
B1. The crack density is the product of the normalized crack density at satu-
ration λb∞ with the characteristic crack density λc calculated in Table 4. The
crack density is ca. 15 cracks per mm3 for test C1, 170 mm−3 for test C2 and
0.019 mm−3 for test B1. The higher the Weibull modulus, the higher the num-
ber of cracks at saturation. This result explains the difference of fragmentation
pattern for the two rocks (Figures 5(a), 5(b) and 5(c)).

An additional study is now carried out to determine the ultimate strength
properties. Under quasi-static loading condition, a Weibull model applies and
the mean failure stress depends on the Weibull parameters and the effective
volume [see Equation (11)]. These quantities are the key parameters for low
stress rates. In particular, no stress rate effect is obtained. Under dynamic
loadings, the previous result no longer holds and the afore mentioned damage
model applies. By noting that, in pure tension, the macroscopic stress Σ is
related to the local (or effective) stress σ by σ = Σ/(1−D) [57], the ultimate
tensile strength (dΣ/dσ = 0), denoted by Σmax, is expressed as

Σmax

σc

= [e (m + n) B(m,n)]
−1

m+n (28)

The normalized ultimate strength only depends upon the Weibull modulus m
and the space dimension n. The ultimate strength itself is then proportional to
σ̇n/(m+n). This result is in agreement with experimental data of oil shale [17],
microconcrete [34,58,59], ceramics and glass [59].
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4.2.3 Single and multiple fragmentation regimes

Equations (11) and (28) define two different regimes. The first one is obtained
when a weakest link hypothesis is made. It corresponds to single fragmenta-
tion. The second one assumes multiple fragmentation. Figure 12 shows the
change of the tensile strength with the stress rate for an effective volume Veff

(n = 3) equal to a volume of an element in FE simulations for the two studied
materials.

The transition between “quasi-static” and “dynamic” strength is estimated
by the intersection between the weakest link and the multiple fragmentation
solutions (Figure 12)

σF = Σmax(σ̇) (29)

The transition defined by Equation (29) leads to the following inequalities

σ̇











< σ̇t single fragmentation

≥ σ̇t multiple
(30)

with

σ̇t = σ0kC0(λ0S)
1

n (Veffλ0)
−

m+n

mn

[

e (m + n) B(m,n) Γm+n
(

1 +
1

m

)]

1

n

(31)

This transition does not only depend on material parameters but also involves
the measure Veff of the considered element. The response of a large structure
is “dynamic” for low stress rates even if the material follows a weakest link
hypothesis for the same loading applied on a smaller domain.

The “quasi-static” strength σF (Table 3) is higher for crinoidal limestone than
for Beaucaire limestone. σF is nearly the same for test C1 and test C2, even
if the effective volume is different. This is due to the high Weibull modulus
of crinoidal limestone. Consequently, only one plot represents the two tests in
Figure 12. The slope in the log-log plot is 3/(m+3). This means that the stress
rate has a higher influence when the Weibull modulus is low. When the stress
rate increases from 10 MPa/µs to 100 MPa/µs, the strength is multiplied by
ca. 2.6 for Beaucaire limestone, and 1.3 for crinoidal limestone. Figure 12 shows
the different stress rates of each test for distance of two striker diameters. One
observes that for this distance, single fragmentation occurs for test B1, which
is another reason for the presence of only one macrocrack. The weakest link
hypothesis is valid in this area. Conversely, multiple fragmentation occurs in
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tests C1 and C2.

4.2.4 Simulations

Simulations are performed with the explicit finite element code Abaqus via
a VUMAT routine in which the model is implemented. Table 3 shows the
parameters used. Different quantities are now analyzed.

4.2.4.1 Damage Figure 13 shows that damage is equal to 1 in a smaller
zone next to the impact point in Beaucaire limestone than in crinoidal lime-
stone. A larger experimental damage zone is observed in crinoidal limestone,
namely, the multiple fragmentation zone. In Beaucaire limestone, the damage
zone is only the crushing zone. The simulations predict nearly the same dam-
age zone for test C1 and C2, namely the same multiple fragmentation zone.

4.2.4.2 Crack density Simulations show that the crack density is higher
in crinoidal limestone than in Beaucaire limestone. This was observed in the
experiments and is related to the Weibull modulus (mB = 3.8, mC = 22.3).
The higher the Weibull modulus, the lower the scatter of failure stresses, the
more cracks are observed for the same scale parameter. The crack density is
around 6.8 mm−3 for test C1, and 14 mm−3 for test C2 at a distance of two
diameters of striker. The density ratio is around two, whereas it is around ten
with the closed-form solution. Moreover the density is lower in simulations.
The maximum stress rate was chosen for the closed-form solution, therefore it
leads to an overestimation of the crack density. Besides, the comparison cannot
be made for Beaucaire limestone because no crack is found at a distance of two
diameter of striker in the simulation. Experimental crack density is hard to
measure because not all the cracks are visible. Yet experiments and simulations
show that the crack density is higher for test C2 than test C1. Moreover a
significant difference is also observed between tests C1 and B1.

4.2.4.3 Principal stress This stress has to be compared with the mean
failure stress σF (Figure 12 and Table 3). Simulations show that the principal
stress is greater than 22 MPa in the whole tile of crinoidal limestone. Moreover,
this stress is of the order of the “dynamic” strength when the stress rate is
greater than 10 MPa/µs. This means that fragmentation may occur in the
whole tile as was observed in experiments. It is not the case with Beaucaire
limestone where the principal stress is rapidly less than 14 MPa; experiments
and simulations are thus consistent.
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4.3 Discussion

Experiments show that striker velocity and slab geometry have a more im-
portant influence on the size of the crushing zone than on the fragmentation
pattern (tests C1 and C2). However, these properties do not change signif-
icantly the radial stress levels. Yet, the stress rate is higher when the slab
thickness is smaller and the striker travels faster. Stresses are influenced by
the yield strength, the higher the yield strength, the higher the stresses. A
comparison of the experimental and the simulated crushing zone allows one to
identify the best yield stress equivalent to twice the quasi-static compression
strength.

Observations of edge-on impacts show that fragmentation is not very different
between tests C1 and C2 whereas simulations find a ratio of around 2 in
crack densities in the slab. Yet, experiments show that fragmentation is higher
for test C2 than test C1. The difficulty is to measure experimentally crack
densities. However by comparing tests C1 and B1, experiments and simulations
are in good agreement, namely, the higher the Weibull modulus, the higher
the crack density. When the Weibull modulus is high, the failure stress scatter
is low, defects break and initiate cracks nearly at the same time before slab
failure. Conversely, when the Weibull modulus is low, the failure stress scatter
is large, few defects break and initiate cracks before slab failure. Moreover, one
observes that, contrary to crinoidal limestone, stress rates are too low in the
slab of Beaucaire limestone for multiple fragmentation to occur. Consequently,
the crack density is lower.

5 Summary

Two limestones have been characterized by performing quasi-static mechan-
ical tests. Their behavior is significantly different, crinoidal limestone needs
high loads to be cracked and has a high Weibull modulus (i.e., a low scat-
ter in failure stress is observed). Conversely, Beaucaire limestone, which is
very porous, has low mechanical properties and a low Weibull modulus. The
Weibull parameters are therefore the key quantities for characterizing quasi-
static and dynamic fragmentation of different rocks.

Edge-on impacts allow one to identify a predominant factor in rock fragmen-
tation, namely, the Weibull modulus. Numerous cracks are observed when the
Weibull modulus is high. Moreover, two regimes have been identified, namely,
single and multiple fragmentation. The difference of crack density is also due
to lower stress rates in the Beaucaire limestone slab. It does not permit mul-
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tiple fragmentation to occur. A crushing zone is observed for higher loads in
crinoidal limestone than in Beaucaire limestone, which is consistent with me-
chanical properties. In this area emerging cracks are observed. This zone is
driven by the yield strength accounting for compressive damage.

Simulations of these experiments show that the fragmentation model is able to
capture the experimental observations. Damage and crack densities calculated
are consistent with experimental fragmentation patterns. However, the way
the yield strength is identified is not completely satisfactory. A new model
better accounting for confined damage has to be written to have a better
simulation of energy levels in the crushing zone. Next, blast experiments will
be performed to study the corresponding fragmentation.
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University of Poitiers, 1985).

[6] J. S. Rinehart, Dynamic Fracture Strengths of Rocks, Proceedings 7th Symp.
Rock Mech., (1965).

19



[7] H. K. Kutter and C. Fairhurst, On the Fracture Process in Blasting, Int. J.
Rock Mech. Min. Sci. 8 (1971) 181-202.

[8] D. A. Shockey, D. R. Curran, L. Seaman, J. T. Rosenberg and C. F. Petersen,
Fragmentation of Rocks under Dynamic Loads, Int. J. Rock Mech. Min. Sci.
11 (1974) 303-317.

[9] R. P. Kennedy, A Review of Procedures for the Analysis and Design of Concrete
Structures to Resist Missile Impact Effects, Nucl. Eng. Des. 37 (1976) 183-203.

[10] N. F. Mott, Fragmentation of Shell Cases, Proc. Roy. Soc. Lond A189 (1947)
300-308.

[11] D. E. Grady and M. E. Kipp, Geometric Statistics and Dynamic Fragmentation,
J. Appl. Phys. 58 [3] (1985) 1210-1222.

[12] N. Kusano, T. Aoyagi, J. Aizawa, H. Ueno, H. Morikawa and N. Kobayashi,
Impulsive Local Damage Analysis of Concrete Structure by the Distinct Finite
Element Method, Nuclear Eng. Design 138 (1992) 105-110

[13] G. T. Camacho and M. Ortiz, Computational Modelling of Impact Damage in
Brittle Materials, Int. J. Solids Struct. 33 [20-22] (1996) 2899-2938.

[14] S. Mastilovic and D. Krajcinovic, High-Velocity Expansion of a Cavity within
a Brittle Material, J. Mech. Phys. Solids 47 (1999) 577-600.

[15] F. Zhou and J. F. Molinari, Stochastic Fracture of Ceramics under Dynamic
Tensile Loading, Int. J. Solids Struct. 41 (2004) 6573-6596.

[16] H. D. Espinosa, P. D. Zavattieri and S. K. Dwivedi, A Finite Deformation
Continuum/Discrete Model for the Description of Fragmentation and Damage
in Brittle Materials, J. Mech. Phys. Solids 46 (1998) 1909-1942.

[17] D. E. Grady and M. E. Kipp, Continuum Modeling of Explosive Fracture in
Oil Shale, Int. J. Rock Min. Sci. & Geomech. Abstr. 17 (1980) 147-157.

[18] L. G. Margolin, Elasticity Moduli of a Cracked Body, Int. J. Fract. 22 (1983)
65-79.

[19] A. M. Rajendran, Modeling the Impact Behavior of AD85 Ceramic under
Multiaxial Loading, Int. J. Impact Eng. 15 [6] (1994) 749-768.

[20] C. Denoual and F. Hild, A Damage Model for the Dynamic Fragmentation of
Brittle Solids, Comp. Meth. Appl. Mech. Eng. 183 (2000) 247-258.

[21] W. Benz and E. Asphaug, Impact Simulations with Fracture. I. Method and
Tests. Icarus 107 (1994) 98–116.

[22] C. Denoual and F. Hild, Dynamic Fragmentation of Brittle Solids: a Multi-Scale
Model. European J. Mechanics A/Solids 41 (2002) 105–120.

[23] W. Weibull, A Statistical Theory of the Strength of Materials, (Roy. Swed. Inst.
Eng. Res., Report 151, 1939).

20



[24] J.-M. Robin, Y. Berthaud, N. Schmitt, J. Poirier and D. Themines,
Thermomechanical Behaviour of Magnesia Carbon Refractory Ceramics, Brit.
Ceram. Trans. 97 (1998) 1-10.

[25] D. G. S. Davies, The Statistical Approach to Engineering Design in Ceramics,
Proc. Brit. Ceram. Soc. 22 (1973) 429-452.

[26] A. de S. Jayatilaka and K. Trustrum, Statistical Approach to Brittle Fracture,
J. Mater. Sci. 12 (1977) 1426-1430.

[27] F. Hild and D. Marquis, A Statistical Approach to the Rupture of Brittle
Materials, Eur. J. Mech., A/Solids 11 [6] (1992) 753-765.

[28] R. Gulino and S. L. Phoenix, Weibull Strength Statistics for Graphite Fibres
Measured from the Break Progression in a Model Graphite/Glass/Epoxy
Microcomposite, J. Mater. Sci. 26 [11] (1991) 3107-3118.
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Table 1
Mechanical properties of Beaucaire and crinoidal limestones [60,61].

material Beaucaire limestone crinoidal limestone

designation B C

density: ρ 2230 ± 30 kg.m−3 2700 ± 30 kg.m−3

Young’s modulus: E 6.04 ± 0.05 GPa 77.82 ± 0.04 GPa

Poisson’s ratio: ν 0.343 ± 0.003 0.28 ± 0.02

compressive strength: σ̄c 10.8 ± 0.4 MPa 147 ± 5 MPa

Weibull modulus: m 3.8 ± 0.5 22.3 ± 0.1

Scale parameter: σ0 when V0 = 1 cm3 5 ± 2 MPa 18.6 ± 0.7 MPa

effective volume: Veff 8200 ± 1000 mm3 360 ± 70 mm3

longitudinal wave velocity: cL 3400 ± 200 m.s−1 6300 ± 200 m.s−1

transverse wave velocity: cT 2100 ± 200 m.s−1 3350 ± 200 m.s−1

Table 2
Test parameters. The index CUR indicates that an ultra-high speed camera was
used. A sarcophagus configuration is referred to as SARCO. Two different materials
are tested (crinoidal (C) and Beaucaire (B) limestones).

Test # C1
CUR C1

SARCO C2
CUR C2

SARCO B1
CUR B1

SARCO

TILE

material crinoidal limestone Beaucaire limestone

height (mm) 300

length (mm) 150

thickness (mm) 15 8 12

STRIKER

material aluminum

diameter (mm) 20

length (mm) 50

striker velocity (m.s−1) 102 98 200 204 101 90

CONFINEMENT

material tungsten

diameter (mm) 24

length (mm) 30
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Table 3
Simulation parameters. Two different materials are tested (crinoidal (C) and Beau-
caire (B) limestones). The yield stress σY is the only tuned parameter in the simu-
lations.

Test # C1 C2 B1

material crinoidal limestone Beaucaire limestone

striker velocity (m.s−1) 100 200 100

Elastic properties

E (GPa) 78 78 6

ν 0.28 0.28 0.34

k 0.38 0.38 0.38

S 3.74 3.74 3.74

Weibull properties

m 22.3 22.3 3.8

Veff (mm3) 17 9.1 14

σF (MPa) 21.8 22.4 14

Yield stress

σY (MPa) 294 294 22

Table 4
Characteristic parameters. Two different materials are tested (crinoidal (C) and
Beaucaire (B) limestones).

Test # C1 C2 B1

material crinoidal limestone Beaucaire limestone

σ̇ (MPa/µs) 20 50 2

tc (µs) 1.1 0.47 3.4

σc (MPa) 21 24 6.8

λc (m−3) 1.7 × 107 1.9 × 108 3.2 × 106

λb∞ 910 910 6.1
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Fig. 1. Weibull plot of the two studied limestones by using three-point bend exper-
iments.
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(a) High speed camera observation.

(b) sarcophagus configuration.

Fig. 2. Schematic of half section of the two configurations of edge-on impact.
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(a) Test C2
CUR (crinoidal limestone).

(b) Test B1
CUR (Beaucaire limestone).

Fig. 3. Ultra-high speed camera observations for two tests (see Table 2).
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Fig. 4. Sketch of damage pattern for the two rocks.
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(a) Test C1
CUR (crinoidal limestone).

(b) Test C2
CUR (crinoidal limestone).

(c) Test B1
CUR (Beaucaire limestone).

Fig. 5. Tile fragments observed for three tests (see Table 2).
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(a) Analysis of the complete tile.

(b) Zoom next to the crushing zone.

Fig. 6. Post-mortem observations of Beaucaire limestone (test B1
SARCO).
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Fig. 7. Post-mortem observations of crinoidal limestone close to impact (test
C2

SARCO).
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(a) Radial stress.
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(b) Hoop stress.

Fig. 8. Loading of test C1 and C2 at two striker diameters from the impact point.
At that distance, the behavior is elastic.
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Fig. 9. Radial stress for two yield strength at one striker diameter from the impact
point for test configuration C2. At that distance, the behavior is plastic.
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(a) Post-mortem observation.

(b) Von Mises stress contours 17 µs after impact
(MPa).

Fig. 10. Comparaison of the crushing zone size between experiments (a) and simu-
lation (b) for Beaucaire limestone (test B1). A good agreement is observed.
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(a) Post-mortem observation.

(b) Von Mises stress contours 5.5 µs after impact
(MPa).

Fig. 11. Comparaison of the crushing zone size between experiments (a) and simu-
lation (b) for crinoidal limestone (test C2). A good agreement is observed.
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Fig. 12. Tensile strength vs. stress rate for the two studied limestones. The curves
are obtained by using Equations (11) and (28) where Veff is the volume of an
element. The stress rates for a distance of two striker diameter are noticed.
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(a) Test C1 (crinoidal limestone) (25µs after impact).

(b) Test C2 (crinoidal limestone) (25µs after impact).

(c) Test B1 (Beaucaire limestone) (50 µs after impact).

Fig. 13. Prediction of damage associated with the maximum principal stress for the
three tests at the end of impact.
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