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Abstract

A new micro/macro computational strategy is proposed for the analysis of structures which are
described up to the “micro” level, such as composite structures. This strategy is intended to overcome
standard homogenization techniques coupled with a local re-analysis, at least for several domains of
interest.

The description of micro and macro quantities is performed on the interfaces arising from the
decomposition of the structure into an assembly of sub-structures and interfaces. Two examples of
such a description are detailed; both are built from a kinematic point of view. Lastly, the performance
of this multi-scale computational strategy is shown on an example of a 3D, strongly-heterogeneous
structure.

This is a preprint of the article published in its final form as: Pierre Ladevèze, David Dureisseix.
A micro / macro approach for parallel computing of heterogeneous structures. International Journal
for Computational Civil and Structural Engineering 1:18-28, 2000, Begell House Inc.
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1 Introduction

Structural analysis has become more heavily concerned with material models which are described up
to a scale smaller than the macroscopic structural level. This is the case when dealing with composite
materials, for instance.

For linear analysis, the treatment of such two-level problems is currently performed with techniques
that take into account homogenization, coupled with a local re-analysis. The most mastered technique
is probably the one initiated by Sanchez-Palencia for periodic media [14]. Further developments for
associated computational approaches can be found in [7, 13, 12]. For other techniques, the reader can
refer to [1]. Of course, one “constraint” in the use of this method lies in the fact that the ratio between
the small-scale length and the large-scale length has to be small. Moreover, these techniques are not
really suited to non-linear problems of evolution, in which they are applied to linear problems arising
from successive linearizations related to the computational strategy.

The objectives of the micro/macro approach proposed herein are to avoid several of the limitations
in classical homogenization techniques, and to be suited to the most powerful computing resources in
use today, i.e. parallel-architecture computers. This iterative strategy has a strong mechanical base; it
is built upon characteristic properties which are satisfied by structural models described up to the micro
scale.

The first step is the decomposition of the structure into an assembly of simple constituents: sub-
structures and interfaces. For instance, a sub-structure may gather one or several cells of composite
structures. Each of these components possesses its own variables and equations. An interface transfers
both a distribution of displacement and a distribution of forces.

The novelty, with respect to [8], is the splitting of the unknowns (displacements, forces, stress, strain)
into the form:

s = sM + sm

where sM is the set of the macroscopic quantities and sm is the additive “micro” complement. Several
descriptions are conceivable. Two of them are described in this paper. The first is based on use of a hier-
archical element or super-element for each sub-structure, i.e. with two discretization scales. The second
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is related to a “continuum-medium” point of view and features a general method for homogenization
and local re-analysis.

The second step of the micro/macro strategy is the use of the so-called latin method on the problem
to be solved, expressed as an assembly of sub-structures and interfaces. The latin method is a non-
incremental iterative computational strategy. It deals with the entire studied time interval, [8]. The
resultant micro/macro strategy displays convergence for stable materials under standard assumptions.
In order to focus on the main concepts, this method is described herein only for linear elasticity.

For linear problems, the strategy involves numerical parameters that can be interpreted as interface
stiffnesses. At each iteration, one has to solve a “macro” problem, defined on the entire structure, along
with a family of linear problems, independent of each sub-structure and interface. These are the “micro”
problems, whereas the “macro” problem is related to the homogenized structure.

This overall scheme is well suited to parallel-architecture computers; a numerical example illustrates
the possibilities of this method. It can be considered as a mixed domain decomposition method. An
initial version, suited to slightly heterogeneous structures has been reported in [3]. This version is a
priori less efficient than the current micro/macro computational strategy, yet is nevertheless comparable
to the feti domain decomposition method, which is today the reference within the field of parallelism
[6]. The use of two scales or two grids pertains to other methods as well, such as multigrid methods,
in which the basis is essentially numerical and far away from the “homogenization” background of the
mechanician.

2 Reference problem and its re-formulation

The reference problem is related to the quasi-static behavior of a structure denoted by Ω, for small
perturbations and isothermal evolution. The loadings are:

• a prescribed displacement Ud on a first part of the boundary ∂1Ω,

• a prescribed traction force F d on the complementary part of the boundary ∂2Ω,

• a prescribed body force f
d

on Ω.

For the sake of simplicity, only the case of linear elasticity will be described herein. Therefore, only
the final configuration is of interest, and time is no longer taken into account. The non-linear case is
described in [9].

The current state of the structure is given by the stress field σ at each point M of Ω and the
displacement field U . σ is searched in the corresponding space S, while U is searched in U .

The problem to be solved then is to find s = (U,σ) in U × S, which satisfies:

• kinematic equations: U ∈ U , ε = ε(U), U |∂1Ω= Ud

• equilibrium equations: σ ∈ S,

∀U? ∈ U0

∫
Ω

Tr[σε(U?)]dΩ =

∫
Ω

f
d
· U?dΩ +

∫
∂2Ω

F d · U
?dS

• the constitutive relation: σ = Kε, where K(M) is Hooke’s tensor, characteristic of the local
material behavior.

The first step of the micro/macro strategy is the re-formulation of the problem in terms of a decom-
position of the structure into an assembly of simple constituents: sub-structures and interfaces [8] (see
Figure 1). Each of these components possesses its own variables and equations.

A sub-structure ΩE , E ∈ E, is submitted to the action of its environment (its neighboring interfaces):
a force field FE and a displacement field WE on its boundary ∂ΩE .

An interface ΓEE′ between sub-structures E and E′ transfers both the displacement field and force
field on each side: WE , WE′ and FE , FE′ . The corresponding spaces then are WEE′ and FEE′ .
Extended to all of the interfaces, they become W and F .

Since both the displacements and forces on the interfaces are the unknowns, the resulting approach is
a “mixed” sub-structuring technique, as opposed to the primal sub-structuring [11, 10], or dual approach
[6].
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Figure 1: Sub-structures and interfaces

The solution to the reference problem,

s =
⋃
E∈E

sE with sE = (UE ,WE ,σE , FE)

with the corresponding space being S, must satisfy an initial set of equations, Ad, in order to be
admissible on each sub-structure:

• kinematic equations: UE ∈ UE , εE = ε(UE), UE |∂ΩE
= WE

• equilibrium equations: σE ∈ SE ,

∀U? ∈ UE
∫

ΩE

Tr[σEε(U
?)]dΩ =

∫
ΩE

f
d
· U?dΩ +

∫
∂ΩE

FE · U
?dS

In addition, s must also satisfy a second set of equations, Γ, in order to verify the material and interface
behaviors:

• constitutive relation: σE = KεE ,

• interface behavior: for instance, with a perfect interface, the transmission conditions are WE =
WE′ , FE + FE′ = 0 and the boundary conditions on ∂1Ω and ∂2Ω.

The regularity required for displacement field UE and stress field σE is the classical one; for instance,
with a tridimensional analysis, UE = [H1(ΩE)]3 and SE = [L2(ΩE)]6.

Such a sub-structuring technique is well suited to the case of periodic structures [4], but this approach
has not been used herein: boundary areas and interior areas are treated in the same way.

3 Description on the micro and macro scales

3.1 General description

The state of the structure is expected to possess two parts, related to the micro scale, denoted by m,
and to the macro scale M , each with a different length of variation [3].

The first step is the description of forces and displacements on the interfaces for both scales. For an
interface ΓEE′ from the sub-structure E, the force FE |ΓEE′ and the displacement WE |ΓEE′ are split
into:

FE = FM
E + Fm

E WE = WM
E + Wm

E

A first description consists of defining a projection operator πΓEE′ such that WM
E |ΓEE′ = πΓEE′WE |ΓEE′ .

The micro and macro spaces for the displacement on ΓEE′ are Wm
EE′ and WM

EE′ , respectively. The cor-
responding forces arise from the contribution of work on the interface ΓEE′ of sub-structure E:

(FE ,WE)ΓEE′ ≡
∫

ΓEE′

FE ·WEdS = (Fm
E ,Wm

E )ΓEE′ + (FM
E ,WM

E )ΓEE′ (1)

A second description consists of defining a projection πΓEE′ which operates on forces: FM
E |ΓEE′ =

πΓEE′FE |ΓEE′ , with the micro and macro space for the forces on ΓEE′ denoted by Fm
EE′ and FM

EE′ ,
respectively. For this description, the associated displacements are derived thanks to duality (1).
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Extended to all of the interfaces of sub-structures, the previous splittings leads to: W =WM +Wm

and F = FM + Fm. Other major choices must also be stated: the “micro” displacements and forces
related to sub-structures E and E′ with a common interface ΓEE′ do not have to satisfy the transmission
conditions. On the contrary, the “macro” quantities satisfy these conditions in a weak sense: (WM , FM )
must belong to WM

ad ×FM
ad ; WM

ad and FM
ad will be specified further.

Briefly, the state of the structure s, is given by micro and macro quantities related to (WM , FM ) ∈
WM

ad × FM
ad and (Wm, Fm) ∈ Wm × Fm. In the following sections, we will discuss two examples of

descriptions associated with displacement-oriented projectors.

3.2 A first example of micro/macro description: hierarchical element or
super-element

For the first example proposed herein, an approximation is added to the description of micro and macro
quantities, because the micro/macro description is built on a finite element discretization of the problem.
Let us consider the case where different meshes are used for each scale and, for purposes of simplification,
when the discretization spaces are embedded, as shown in Figure 2-a.

The representation of the displacements on the two scales is performed on the hierarchical basis for
macro and micro variables [15]. We will now denote with a subscript h the different spaces already
mentioned, since they are strongly related to the hierarchical basis arising from the discretization.

Let us consider a common boundary ΓEE′ to sub-structures E and E′. The displacement WE on
ΓEE′ is:

WM
E |ΓEE′ =

m∑
i=1

WM
E (Xi)ϕi |ΓEE′ Wm

E |ΓEE′ =

n∑
j=m+1

Wm
E (Xj)ϕj |ΓEE′

with Wm
E (Xi) = 0 for i ∈ 1, . . . ,m, and ϕ the hierarchical basis functions, see Figure 2-a. These relations

serve to define WM
h and Wm

h . The corresponding projector πΓEE′ is not orthogonal with respect to the
standard scalar product. With the duality properties in (1), one obtains FM

h and Fm
h . In particular,

FM
E |ΓEE′ = πT

ΓEE′FE |ΓEE′ and Fm
E |ΓEE′ = (1 − πT

ΓEE′ )FE |ΓEE′ . The superscript T denotes the

transposition associated to the symmetric form (1). Let us also denote the extension of πΓEE′ to a set
of interfaces by π.

In order to define WM
ad,h, we have elected to enforce the exact transmission and boundary conditions

for the macro displacements WM only:

WM
ad,h =

{
W ∈ WM

h | WM
E |ΓEE′ = WM

E′ |ΓEE′ , WM
E |∂1Ω= πUd

}
In this case, FM

ad,h = FM
h .

ij

WM
E

Wm
E

macro scale

micro scale

ΓEE'ΓEE'

Figure 2: Description of macro and micro displacements on an interface: a) hierarchical description, b)
continuum description

3.3 A second example of micro/macro description: a continuum mechanics
point of view

In this section, we describe a second example of a micro/macro description without introducing any a
priori discretization of the problem. The subscript h will no longer be used.

Once again, let us consider again a common boundary ΓEE′ to sub-structures E and E′. Using
an orthogonal projector πΓEE′ , the macro displacement is WM

E |ΓEE′ = πΓEE′WE |ΓEE′ . For instance,
one can choose the linear part of the field WE |ΓEE′ according to the classical scalar product, see

Figure 2-b. This leads to Wm
E |ΓEE′ = (1−πΓEE′ )WE |ΓEE′ , F

M
E |ΓEE′ = πΓEE′FE |ΓEE′ and Fm

E |ΓEE′ =
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(1− πΓEE′ )FE |ΓEE′ . Here, for the sake of simplicity, we assume that the resultant and the moment of
πΓEE′WE |ΓEE′ and WE |ΓEE′ are the same on ΓEE′ .

Once again, WM
ad is chosen to be the set of displacements in WM that satisfy the displacement

transmission conditions on interfaces and the displacement boundary conditions on ∂1Ω. And once
again, FM

ad = FM .

4 Computational micro/macro strategy: basis aspects

In order to solve the problem related to the assembly of sub-structures and interfaces, a strategy is
developed with the latin method [8]. For the linear elasticity case, the corresponding duality changes:
it is now a work-based duality and no longer a dissipative one.

The latin method is a non-incremental iterative strategy [8]. It successively builds an element s
of the space of admissible fields, Ad (kinematic and equilibrium equations on each sub-structure), and
an element of the second set Γ (constitutive relation and interface behavior) within each iteration. At
iteration n, the element ŝn+1/2 of Γ is defined at the local stage from a previous element sn of Ad, using
the search direction E+. Then, the next element sn+1 of Ad is built using a second search direction E−,
see Figure 3. These search directions are the parameters of the method.

sex

Γ

Ad

E+E-

sn+1 sn

^sn+1/2

Figure 3: One iteration of the latin method

The two examples of micro/macro descriptions fall within the scope of this general framework. For
the hierarchical element-based description, the spaces must be replaced by the same ones, with the
subscript h.

4.1 Local stage at iteration n

At this stage, the material behavior, as well as the interface behavior, are satisfied. The problem consists
of finding ŝn+1/2 ∈ Γ, given sn ∈ Ad. Moreover, ŝn+1/2 − sn must belong to the search direction E+.
This last one is, for all sub-structure E:

(σ̂En+1/2 − σEn) + K(ε̂En+1/2 − εEn) = 0

and for each interface:

∀Wm? ∈ Wm
EE′

(F̂m
E n+1/2 − Fm

E n,W
m?)ΓEE′ − (km(Ŵm

E n+1/2 −Wm
E n),Wm?)ΓEE′ = 0

with a similar equation for the macro scale (with superscript M rather than m).
K is the Hooke’s tensor. km and kM are two parameters of the method which are null or positive

scalars. km is only related to micro quantities and to interface characteristics, while kM is related to
structural characteristics, [3].

For a perfect interface, Γ contains the transmission conditions:

Wm
E = Wm

E′ WM
E = WM

E′

and ∀Wm? ∈ Wm
EE′ ,∀WM? ∈ WM

EE′

(Fm
E + Fm

E′ ,Wm?)ΓEE′ = (FM
E + FM

E′ ,WM?)ΓEE′ = 0

as well as the boundary conditions on ∂1Ω and ∂2Ω.
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4.2 Linear stage at iteration n

The problem now is to find sn+1 ∈ Ad, given ŝn+1/2 ∈ Γ. For each sub-structure E, the stress field must
balance the forces on interfaces:

σE ∈ SE , FM ∈ FM
ad = FM , Fm ∈ Fm,

∀U? ∈ UE
∫

ΩE

Tr[σEε(U
?)]dΩ =

∫
ΩE

f
d
· U?dΩ +

∫
∂ΩE

(FM
E · U

? + Fm
E · U

?)dS (2)

The displacement field must be compatible with the displacements on interfaces:

UE ∈ UE , WM ∈ WM
ad , Wm ∈ Wm, UE |∂ΩE

= (WM
E + Wm

E ) |∂ΩE

In the previous conditions, note that (WM , FM ) has been imposed to belong to WM
ad ×FM

ad .
sn+1 is also defined with the search direction E−: for each sub-structure E:

(σEn+1 − σ̂En+1/2)−K(εEn+1 − ε̂En+1/2) = 0

and for each interface ΓEE′ and sub-structure E:

∀Wm? ∈ Wm
EE′

(Fm
E n+1 − F̂m

E n+1/2,W
m?)ΓEE′ + (km(Wm

E n+1 − Ŵm
E n+1/2),Wm?)ΓEE′ = 0 (3)

Concerning the macro quantities, the search direction must be global:

∀WM? ∈ WM
ad,0

∑
ΓEE′

∑
E

(FM
E n+1 − F̂M

E n+1/2,W
M?)ΓEE′ +

+ (kM (WM
E n+1 − ŴM

E n+1/2),WM?)ΓEE′ = 0 (4)

The resulting problem is then split into two kinds of sub-problems: a global macro problem and a
micro problem on each sub-structure. In the following discussions, subscripts n + 1/2 and n + 1 will be
omitted.

5 A micro/macro strategy based on a hierarchical finite element
description

Let us first consider the hierarchical finite element description. An example of meshes for a tridimensional
beam is described in Figure 4. In order to easily solve the discretized problem, the prolongation of
both the macro and micro parts of the displacement inside each sub-structure E is defined according
to the hierarchical basis of the meshes. An additional approximation is then introduced, after that
related to the discretization on interfaces, and a subscript h will be added in order to recall these
additions. In particular, the interior micro and macro displacement fields will be the displacements
of Um

E,h and UM
E,h, respectively. Therefore, the displacement U is split into: U = Um + UM with

UE ∈ UE,h, Um
E ∈ Um

E,h and UM
E ∈ UM

E,h.

5.1 Micro-scale problem

This problem is defined on a sub-structure E and is related to quantities defined on the micro subspaces,
with all macro quantities considered as fixed. Let us recall that ŝ is given. Using the search direction on
micro quantities, independent of each sub-structure, the problem is:

Um
E ∈ Um

E,h, Wm
E ∈ Wm

EE′,h, Um
E |∂ΩE

= Wm
E |∂ΩE

,

∀Um? ∈ Um
E,h

∫
ΩE

Tr[ε(Um
E )Kε(Um?)]dΩ +

∫
∂ΩE

Um
E · kmUm?dS =

=

∫
ΩE

f
d
· Um?dΩ +

∫
∂ΩE

(F̂m
E + kmŴm

E ) · Um?dS+

−
∫

ΩE

Tr[ε(UM ) |ΩE
Kε(Um?)]dΩ (5)
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a

b

c

d
Substructure
External interface
Internal interface

Figure 4: Meshes of both the large-scale problem (a,b,c,d) with 8-node elements and the sub-structured
problem (assembly of 32 sub-structures and interfaces) with 20-node elements

Due to the definition of π used herein, this problem possesses a unique solution when km ≥ k > 0 (k is
a constant).

In any case, the micro-scale problem (5) is linear. Its solution depends separately on:

• f
d
|ΩE

and (F̂m
E + kmŴm

E ) |∂ΩE
,

• ε(UM ) |ΩE

Therefore, this solution can be written as: Um
E = Ûm

E,d + Ũm
E where Ũm

E is related to ε(UM ) |ΩE
and

where Ûm
E,d involves only known quantities at this stage. More precisely, we have:

Kε(Ũm
E ) = −HEε(U

M ) |ΩE

where HE is a linear operator. Moreover, HE verifies:

Property 1 The operator HE is linear, symmetric and positive definite.

Proof 1 Let us write the problem that defines HE: find Ũm
E ∈ Um

E,h such that

∀Um? ∈ Um
E,h

∫
ΩE

Tr[ε(Ũm
E )Kε(Um?)]dΩ +

∫
∂ΩE

Ũm
E · kmUm?dS =

= −
∫

ΩE

Tr[ε(UM ) |ΩE
Kε(Um?)]dΩ (6)

Let us now consider two macro strains εM1 and εM2 and their corresponding solutions Ũm
E,1 and Ũm

E,2.
From (6) and the symmetry of K, one obtains:∫

ΩE

Tr[ε(Ũm
E,1)Kε(Ũm

E,2)]dΩ +

∫
∂ΩE

Ũm
E,1 · kmŨm

E,2dS =

=

∫
ΩE

Tr[εM1 HEε
M
2 ]dΩ =

∫
ΩE

Tr[εM2 HEε
M
1 ]dΩ (7)

This relation holds for any εM1 and εM2 and hence HE is a symmetric operator. From (7), we also obtain:∫
ΩE

Tr[ε(Ũm
E )Kε(Ũm

E )]dΩ +

∫
∂ΩE

Ũm
E · kmŨm

E dS =

∫
ΩE

Tr[εMHEε
M ]dΩ

Thus, since K is a positive definite operator and km > 0, HE is also positive definite.
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5.2 Macro-scale problem

The macro-scale problem is related to macro quantities defined on the entire structure and arises from
the macro-search direction:

∀WM? ∈ WM
ad,0,h ∑

E∈E

∫
∂ΩE

(FM
E − F̂M

E ) ·WM?dS +

∫
∂ΩE

(WM
E − ŴM

E ) · kMWM?dS = 0 (8)

and WM ∈ WM
ad,h, WM

E |∂ΩE
= UM

E |∂ΩE
, UM ∈ UM

h .
Moreover, for each sub-structure:

∀UM? ∈ UM
E,h

∫
ΩE

Tr[ε(UM
E )Kε(UM?)]dΩ =

=

∫
ΩE

f
d
· UM?dΩ +

∫
∂ΩE

FM
E · U

M?dS −
∫

ΩE

Tr[ε(Um
E )Kε(UM?)]dΩ (9)

Using (8) and (9), the displacement-oriented formulation of the macro-scale problem then becomes:
find UM ∈ UM

h such that

∀UM? ∈ UM
0,h

∑
E∈E

∫
ΩE

Tr[ε(UM
E )Kε(UM?)]dΩ+

+

∫
∂ΩE

UM
E · kMUM?dS =

∑
E∈E

∫
ΩE

f
d
· UM?dΩ +

∫
∂ΩE

(F̂M
E + kMŴM

E ) · UM?dS+

−
∫

ΩE

Tr[ε(Um
E )Kε(UM?)]dΩ (10)

Using the operator HE , this becomes: find UM ∈ UM
h such that

∀UM? ∈ UM
0,h

∑
E∈E

∫
ΩE

Tr[ε(UM
E )(K−HE)ε(UM?)]dΩ+

+

∫
∂ΩE

UM
E · kMUM?dS =

∑
E∈E

∫
ΩE

f
d
· UM?dΩ +

∫
∂ΩE

(F̂M
E + kMŴM

E ) · UM?dS+

−
∫

ΩE

Tr[ε(Ûm
E,d)Kε(UM?)]dΩ (11)

The operator (K −HE) is the homogenized Hooke’s operator. It depends both upon the material
characteristics of the sub-structure E and the choice of the micro/macro description.

Property 2 (K−HE) is still a symmetric positive definite operator.

Proof 2 Using the same notations as in the previous proof and from the equality:∫
ΩE

Tr[εM1 (K−HE)εM2 ]dΩ =

=

∫
ΩE

Tr[(ε(Ũm
E,1) + εM1 )K(ε(Ũm

E,2) + εM2 )]dΩ +

∫
∂ΩE

Ũm
E,1 · kmŨm

E,2dS

we can conclude both symmetry and positive definiteness.

The problem in (10) is thereby a standard finite-element discretized problem with kM = 0 for which
a unique solution exist For kM > 0, rigidities associated with the interfaces are added and the problem
has a unique solution again.

Once UM has been determined, one obtains WM
E = UM

E |∂ΩE
and FM

E with the search direction

∀WM? ∈ WM
EE′ (FM

E ,WM?)ΓEE′ = (F̂M
E + kMŴM

E − kMWM
E ,WM?)ΓEE′

UM is then needed to compute the generalized loading on the micro scale, and thus, the micro-scale
corrections Um

E .
Both problems (5) and (11) involve linear operators which can be factorized once in the case of linear

elasticity problems, while the right hand sides are iteration-dependent.
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6 A continuum mechanics point-of-view description

In this section, we are concerned with the continuum mechanics description that uses an orthogonal
projector.

6.1 Micro-scale problem

Let us consider a sub-structure E. The displacement field UE has been split on the boundary ∂ΩE in
the micro and macro parts. In particular, (1− π)UE |∂ΩE

= Wm
E |∂ΩE

. The micro-search direction (3)
then becomes:

∀Wm? ∈ Wm
EE′

(Fm
E ,Wm?)ΓEE′ = (F̂m

E + kmŴm
E − km(1− πΓEE′ )UE |ΓEE′ ,W

m?)ΓEE′

The admissibility, satisfied in the linear stage (2), along with the previous micro-search direction give
the formulation: find UE ∈ UE such that

∀U? ∈ UE ∫
ΩE

Tr[ε(UE)Kε(U?
E)]dΩ +

∫
∂ΩE

(1− π)UE · km(1− π)U?dS =

=

∫
∂ΩE

(F̂m
E + kmŴm

E ) · U?dS +

∫
∂ΩE

FM
E · U

?dS +

∫
ΩE

f
d
· U?dΩ (12)

The uniqueness of the solution to this problem depends on the choice of projection operator. For
instance, when resultant and moment are preserved, the micro-scale problem has a solution with an
undefined additive rigid body displacement, as soon as FM

E |∂ΩE
balances f

d
|ΩE

(it can be noticed that

F̂m
E + kmŴm

E is always orthogonal to the kernel of the left-hand side of (12)).

Proof 3 Let us consider a force field FM
E |∂ΩE

with a priori two solutions UE,1 and UE,2 on the sub-
structure E. We then have:∫

ΩE

Tr[ε(UE,2 − UE,1)Kε(UE,2 − UE,1)]dΩ+

+

∫
∂ΩE

(1− π)(UE,2 − UE,1) · km(1− π)(UE,2 − UE,1)dS = 0

Due to the positiveness of K and km, we can conclude that (UE,2−UE,1) is a rigid body displacement. In
the case where πΓEE′ preserves both resultant and moment, (1− πΓEE′ )(UE,2 − UE,1) |ΓEE′ = 0 anyway.

Since this problem is linear, its solution depends separately on:

• f
d
|ΩE

and (F̂m
E + kmŴm

E ) |∂ΩE
,

• FM
E |∂ΩE

Therefore, this solution can be written on the boundary as:

πUE |∂ΩE
= ŴM

E,d + LE(FM
E |∂ΩE

−F̂M
E,d)

where F̂M
E,d ∈ FM is a specific macro force field on ∂ΩE that balances the resultant and moment of

f
d
|ΩE

. (FM
E |∂ΩE

−F̂M
E,d) is thus the first part of the right-hand side of (12), with a null resultant and

moment on ∂ΩE . LE is an operator defined on FM
E , whose values are in WM

E . These spaces have the
same dimension.

The remaining part, which is constant for the linear stage, leads to the solution part ŴM
E,d on ∂ΩE .

Property 3 LE is a symmetric positive linear operator from FM
E to WM

E , with a finite dimension. Its
restriction to fields with a null resultant and moment on ∂ΩE is regular. It depends on both material
characteristics of the sub-structure E and the choice of the micro/macro description.

9



Proof 4 Let us consider two force fields with a null resultant and moment, FM
1 and FM

2 , which cor-
respond to two displacement fields, U1 and U2, with an undefined rigid body displacement on the sub-
structure E. Then, on this sub-structure:∫

ΩE

Tr[ε(U1)Kε(U2)]dΩ +

∫
∂ΩE

(1− π)U1 · km(1− π)U2dS =

=

∫
∂ΩE

FM
2 · U1dS =

∫
∂ΩE

FM
2 · LEF

M
1 dS

LE is clearly symmetric and positive, with km ≥ 0. For the uniqueness feature, with FM
1 = FM

2 , we
obtain:∫

ΩE

Tr[ε(U1 − U2)Kε(U1 − U2)]dΩ+

+

∫
∂ΩE

(1− π)(U1 − U2) · km(1− π)(U1 − U2)dS = 0

From the choice of projector πΓEE′ we made, we are able to conclude that U1 − U2 is a rigid body
displacement. If subjected to a null resultant and moment, this leads to U1 = U2. LE is then injective.

LetWM
E

0
(respectively FM

E
0
) be the space of displacements belonging toWM

E (respectively forces belonging
to FM

E ) with a null resultant and moment. They have the same dimension; hence, the restriction of LE

to FM
E

0 7−→ WM
E

0
is regular.

This property allows us to define the Moore-Penrose generalized inverse of LE : L+
E . As a consequence:

FM
E |∂ΩE

−F̂M
E,d = L+

E(πUE |∂ΩE
−ŴM

E,d) (13)

and (FM
E |∂ΩE

−F̂M
E,d) has a null resultant and moment; then, (FM

E |∂ΩE
, f

d
|ΩE

) are globally balanced
(a required condition for a well-posed micro-scale problem).

6.2 Macro-scale problem

The macro search direction has been written in its weak form in (4). Using the form in (13) with
WM

E |ΓEE′ = πΓEE′UE |ΓEE′ , it can be expressed as: find WM ∈ WM
ad such that

∀WM? ∈ WM
ad,0 ∑

ΓEE′

∑
E

(kMWM
E + L+

E(WM
E − ŴM

d ),WM?)ΓEE′ − (F̂M
E + kMŴM

E ,WM?)ΓEE′ = 0

Property 4 This problem possesses a unique solution as soon as kM ≥ 0.

Proof 5 This problem has a finite dimension. With two solutions WM
1 and WM

2 , we obtain:

∀WM? ∈ WM
ad,0 ∑

ΓEE′

∑
E

(kM (WM
1 −WM

2 ) + L+
E(WM

1 −WM
2 ),WM?)ΓEE′ = 0

with (WM
1 −WM

2 ) ∈ WM
ad,0. Due to the previous positiveness and regularity of L+

E, this leads to WM
1 =

WM
2 .

The macro-scale problem thus has a unique solution, and its finite dimension leads to the existence
of this solution, even when kM = 0.

7 Convergence

Following the convergence proof of the mono-level strategy given in [8], with standard assumptions for
elasticity, convergence is reached if the search directions are such that: ∞ > k2 ≥ km |ΓEE′≥ k1 > 0

10
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Figure 5: Comparison of methods – error versus iterations

and ∞ > k2 ≥ kM |ΓEE′≥ 0 (where k1 and k2 are constants). In particular, if sex denotes the solution
to the reference problem (which belongs to both Ad and Γ, see Figure 3), lim

n→∞
‖sn − sex‖ = 0 and

lim
n→∞

‖ŝn+1/2 − sex‖ = 0, where (in the case kM > 0):

‖s‖2 =
∑
E∈E

∫
ΩE

(Tr[σEK−1σE ] + Tr[εEKεE ])dΩ+

+

∫
∂ΩE

(Fm
E · km

−1Fm
E + Wm

E · kmWm
E + FM

E · kM
−1

FM
E + WM

E · kMWM
E )dS

8 Comparison with the FETI method

This first example uses a previous version of the micro/macro approach suitable for slightly heterogeneous
structures, with a hierarchical description of scales [3]. It is a priori less efficient than the full micro/macro
approach described above.

The micro-scale problems (5) and the macro-scale problem (11) are not decoupled. The reference
problem is solved herein by building a staggered solution method with only one iteration per latin
iteration [3]. This approach has proved to be efficient for slightly heterogeneous cases, in which it
performs similarly to the dual multi-level feti method [6].

We report herein a comparison test, with the meshes in Figure 4, submitted to a terminal parabolic
transverse loading. For the large scale, the influence of the discretization with 8-node cubic elements is
studied: the different meshes correspond to cases (a), (b), (c) and (d). Figure 5 shows the error (with re-
spect to the monolithic direct resolution) versus iterations, for the feti method without preconditioning,
then with lumped preconditioning, and finally with optimal Dirichlet preconditioning, [6]. These three
computations have been performed by F.-X. Roux with a 32-processor paragon machine at onera-
Châtillon, France. The hierarchical micro/macro approach has been implemented in the finite element
code castem 2000 developed at cea-Saclay, and computations have been performed on a 32-processor
sgi Origin 2000.

In order to identify the major trends in computational costs, we set the cpu costs of initializations for
the feti approach at 1, in terms of cpu equivalent time (accumulated on the 32 processors). Afterwards,
the feti iteration and the 2-level latin iteration for case (a) were determined in terms of cost. Figure 6
shows the evolution of the error versus this cpu equivalent time.

The cost of a direct finite element approach is 18 in terms of cpu equivalent time. When using the
multi-frontal scheme [2], [5], the costs are: 3 for local condensations and forward-backward substitutions
(which can be performed concurrently) and 2.6 for the resolution of the condensed problem (performed
sequentially). Total cost of the analysis therefore is 5.6 in cpu equivalent time. The cost of a local
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condensation is higher than a simple factorisation due to the higher fill-in of the local rigidity matrix
(in order to treat the boundary d.o.f. at the end). One can initially note that when increasing the
large-scale problem size of the 2-level latin algorithm, the error indicator starts out lower at the first
iteration because the large-scale first solution is used to initiate the algorithm. Another effect is the
increase in the convergence rate (Figure 5), but since iteration costs are also increasing, the two effects
cancel each other for the proposed example, (Figure 6).

The search directions for this example are km = E
l/4 and kM = 0; E is the Young’s modulus, and l is

the length of an interface edge.

9 Example of a heterogeneous structure

In order to illustrate the proposed micro/macro computational strategy, a test example is described in
Figure 7. It concerns a tridimensional cantilever structure which is weakened with multi-perforations in
the transverse direction and submitted to a terminal parabolic load.

The micro/macro description used herein corresponds to the hierarchical basis.
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Ud
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1
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micro / macro
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0.02
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Figure 7: Discretizations of the micro and macro scales, the considered problem and the convergence
curves

The Mises equivalent stress field of the solution is illustrated in Figure 8, where localized high gradient
areas are shown.
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Figure 8: Equivalent stress field level of the solution

Figure 7 also displays the error with respect to the standard discretized reference problem (96 819
degrees of freedom). It is compared to the error obtained using the hierarchical approach without
homogenization [3], as well as to the error obtained with the former mono-level approach without the
macro scale [8]. In terms of the iteration count, the level of efficiency is quite high.

The search directions in this example are km = E
0.6l and kM = 0; E is the average Young’s modulus

according to the mixing law, and l is the length of a side of interface.

10 Conclusion

The technique proposed herein belongs to the set of structural analysis with homogenization. It uses a
formulation on both the micro and macro scales within the latin method. A key point is the description
of the micro and macro quantities on the interfaces between sub-structures. Several choices are possible
and two of them, which arise from the partitioning of displacement have been detailed. Nevertheless,
dual approaches can be built when focussing on interface forces.

Moreover, this approach leads to a parallel and mechanical approach which is related to domain
decomposition methods, and well suited to parallel architecture computers: the underlying algorithm
can be interpreted as a “mixed” and 2-level domain decomposition method.
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[12] J. T. Oden, K. Vemaganti, and N. Moës. Hierarchical modeling of heterogeneous solids. Computer
Methods in Applied Mechanics and Engineering. To appear in a special issue “Computational
Advances in Modeling Composites and Heterogeneous Materials”.

[13] J. T. Oden and T. I. Zohdi. Analysis and adaptive modeling of highly heterogeneous structures.
Computer Methods in Applied Mechanics and Engineering, 148:367–392, 1997.

[14] E. Sanchez-Palencia. Non homogeneous media and vibration theory, volume 127 of Lecture Notes in
Physics. Springer Verlag, 1980.

[15] H. Yserentant. On the multi-level splitting of finite element spaces. Num. Math., 49:379–412, 1986.

14


