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Abstract 

Nonequilibrium molecular dynamics (NEMD) simulations of the Mie α-6 and the 

exponential α-6 (exp α-6) fluids have been carried out for 42 thermodynamic states. 

Various repulsive coefficients have been studied, α ranging from 9 to 14 for the Mie α-

6 potentials and from 11 to 16 for the exp α-6 ones, which corresponds to a total of 603 

points of simulation of stable phases. The simulations have shown that, for a given set 

of reduced temperature and density (using an appropriate scaling procedure), the 

reduced pressure varies linearly with 6−α  for the Mie α-6 potentials and with 7−α  

for the exp α-6 potentials. Concerning the viscosity, it is shown that, for both potential 

families, the variation is linear with α. Thus, an approximate corresponding states 

scheme exists on pressure and on viscosity for fluids modelled by both potentials 

families, but only for each property separately. In addition, it appears that, approximate 

corresponding states exist between fluids modelled by a Mie α-6 potential and an exp 

(α+2)-6 one for pressure, and between fluids modelled by a Mie α-6 potential and an 
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exp (α+2.5)-6 one for viscosity. So, despite obvious similarities, the influence of the 

shape of the potential on pressure and on viscosity is not strictly the same. Hence, a 

complete perfect corresponding states scheme (including both the pressure and the 

viscosity) seems hardly feasible between fluids modelled by the Mie α-6 and the exp α-

6 potential families. 
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1. Introduction 

Usually, when performing molecular simulations of fluid properties, the interactions 

between particles are modelled with an effective pair potential, the Lennard-Jones 12-6 

(LJ) one. This two parameters potential, despite its simplicity, mimics most of the 

features experimentally found in fluid states. In addition, due its simplicity, this 

potential is relatively easy to handle and allows a relatively quick computation of the 

interactions, which is a clear advantage compared to other potentials. However, it 

represents the decay of the repulsive interaction by an inverse twelve-power dependence 

on intermolecular separation that is still questionable [1]. This aspect is of importance 

since the structural properties of a normal fluid are primarily determined by the 

intermolecular short-range repulsive interactions [2,3]. Therefore, one way to improve 

the results provided by molecular simulations using simple effective potentials could be 

the use of different repulsive form as already done for transport properties in low 

density gases [4] or in modern equation of states [5]. 

Among the possible simple alternatives to the two parameters LJ potential (energy, ε, 

and size, rm) are the three parameters Mie α-6 and exponential α-6 potential families (ε, 

rm and α the repulsive slope). The first one uses a r
-α

 formulation of the repulsive part 

of potential (where r is the distance between particles) whereas the second one uses an 

exponential form. Compared to the classical LJ potential, it should be noted that far less 

attention has been paid to these potential families in molecular simulations. 

Nevertheless, it should be mentioned that, recently, some interesting results on 

thermodynamic as well as on transport properties have been found for the Mie α-6 [6-

10] and the exp α-6 potentials [10-14]. 

The purpose of this paper is to study, using molecular dynamics simulation in fluid 

states, the viscosity and the pressure provided by spherical fluid particles interacting 
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through Mie α-6 and exp α-6 potentials, testing various slopes (i.e. different values of 

α) of the repulsive part. Simulations are performed for a wide variety of thermodynamic 

states ranging from sub to supercritical regimes (42 states). So, by using a much more 

important database than in a previous paper [10] (603 simulation points of stable phases 

instead of 72) where these potentials were applied to real simple fluids, and an 

appropriate scaling procedure (rm is used as the length parameter instead of σ as usually 

done [10] ), an analysis of the link between the results for various repulsive slopes is 

performed. Furthermore, the validity of a corresponding states scheme in each family of 

potentials and between them is discussed (by corresponding states between different 

potentials, we mean corresponding states between materials described by these different 

potentials). 

2. Theory 

2.1. Fluid models 

To model interactions between particles two families of three parameters effective 

potentials have been used, the Mie α-6 and the exponential α-6 ones, which can be 

written as: 

 

6

6

















−
−=

r

r
UU m

RepulsiveTot
α

α
ε    (1) 

where for the Mie α-6: 

 

α

α
ε 

















−
=

r

r
U m

Repulsive
6

6
 (2) 

and for the exponential α-6: 
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where ε is the potential strength, rm the distance at which the potential is minimum, α 

the stiffness of the repulsive slope and r the intermolecular separation.  

In this study α varies from 9 to 14 for the Mie α-6 potentials, with a step of 1, and from 

11 to 16, with a step of 0.5, for the exp α-6 ones. It should be noted that the larger α, the 

more repulsive the potential.  

2.2. Law of the corresponding states 

The law of the corresponding states postulates that, after an adequate scaling (using 

usually the critical point values), different fluids have superimposed thermodynamic 

phase diagrams. Furthermore, a similar scaling procedure is possible for transport 

properties such as for viscosity [15]. The microscopic formulation of the law of the 

corresponding states is based on the molecular parameters of the potential [16], ε and 

rm. This rescaling procedure, when dealing with particles modelled by spheres, means 

that, for a given potential form, the scaled properties (called reduced properties) will be 

independent of the molecular parameters (i.e. fluids modelled in such way follow a 

corresponding states law). It is then possible to deduce the properties of a fluid based on 

the ones of another fluid. 

It should be mentioned that rm has been used instead of σ (the distance at which the 

potential is equal to zero) as it is usually done for the LJ potential. In this scheme the 

reduced thermodynamic variables used to perform the simulations are the reduced 

temperature: 

 
ε
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and the reduced density, 
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where T is the temperature, N the number of particle, V the volume of the simulation 

box. The reduced pressure, P
*
, which is a universal function of T

*
 and ρ*

 for a given 

potential, is: 

 ( )
ε

ρ
3

*** , mrPTP =  (6) 

where P is the pressure of the system. 

The reduced viscosity, which is a universal function of the thermodynamic conditions 

for a given potential form, is, 

 ( )
ε

ηρη
m

r
T m

2
*** , =  (7) 

where m is the molecular weight and η  the dynamic viscosity. 

2.3. NonEquilibrium Molecular Dynamics 

To compute the pressure and the viscosity a homemade molecular dynamics code has 

been used. The Verlet velocity algorithm has been used to integrate the equation of 

motion and usual periodic boundary conditions have been applied. To limit finite size 

effects and to obtain a good accuracy on the value obtained, simulations have been 

performed on systems composed of 1500 particles. A truncated potential with a cutoff 

radius rc equal to 2.5rm has been used. Long range interactions corrections for pressure 

were included in the computation. 

To compute the viscosity, we have chosen to use a boundary driven nonequilibrium 

scheme developed by F. Müller-Plathe [17], which provides reliable results in a 

reasonable amount of CPU time [10,18-19]. In this technique, the simulation box is 

divided in several slabs (in our case 32). Then, the fluid is biperiodically sheared thanks 

to a net exchange of the momentum between the central part of the simulation box, and 

the edge layers to conserve the periodic boundary conditions. This exchange is done 

every 300 timesteps to avoid thermal disturbances and non Newtonian behaviour (this 
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corresponds to a very weak reduced shear rate always smaller than 0.005) [10,18]. This 

procedure keeps the overall energy and momentum constant and simply corresponds to 

a redistribution in the simulation box of a certain amount of momentum. After a 

transient stage, the system tends towards a stationary state and the viscosity of the 

system is simply deduced from the Newton’s law. To ensure a sufficient statistical 

precision, simulations have been performed on 10
7
 time steps (with a reduced timestep 

equal to 0.002). It has already been verified that this numerical procedure ensures a 

better estimation of viscosity and pressure compared to literature [10,19-20]. In 

addition, to avoid a drift of the temperature during simulations, a Berendsen thermostat 

has been used [21]. 

Using these numerical parameters, the statistical errors produced on viscosity are around 

± 3 % (except in dense phase where errors may reach 5 %) and are around ± 1 % on 

pressure. Error bars have not been included in the figures. 

3. Results and discussion 

The main point of this work is to perform simulations in various reduced 

thermodynamic states (and varying also the repulsive stiffness for each state) in order to 

construct a reduced viscosity and pressure database for each potential. To achieve such 

a goal, we have sampled the thermodynamic state space to provide values in several 

conditions including gas, liquid and supercritical phases. Thus, we have performed 

simulations for T
*
 ranging from 1 to 2.5 with a step of 0.25 and for ρ*

 ranging from 0.3 

to 1.3 with a step of 0.2. It should be noted that some of these states correspond to a 

two-phase region (these points being dependent on the potential), they have been 

discarded for the analysis. So, 42 different state points were simulated for each 

potential: the Mie α-6 ones for α going from 9 to 14 with a step of 1, and the exp α-6 

ones for α going from 11 to 16 with a step of 0.5, which corresponds to a total of 603 
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points of simulations of stable phases. The results for both potentials families and both 

properties are given in tables 1 and 2. It should be noted that the α chosen correspond 

approximately to the same range of repulsive stiffness for both potential families. 

3.1. Results on pressures 

The general behavior of the computed reduced pressure found in the stable phases is 

consistent as P
*
 increases with T

*
 and ρ*

 in a monotonic way, whatever the potential, 

see figure 1 for Mie α-6 potentials, figure 2 for exp α-6 ones. Furthermore, as expected, 

the slope of the repulsive part of the potential strongly affects the amplitude of the 

pressure; more precisely, the larger α, the higher the pressure for both potential 

families, which is consistent with previous works [6]. Such increase of the pressure with 

α is not surprising as long as changing α modifies the position of the critical point in 

reduced units [6,7] (the phase diagram for both potential families, in the ρ*
, T

*
 plan, is 

shifted upwards when α is lowered).  

It has been found, for the Mie α-6 potentials, that the increase of reduced pressure with 

α is not perfectly linear, but is well approximated by a linear function of 6−α  as 

shown in figure 3 along isotherm T
*
=2.0 over the range of α. Notice that, despite no 

theoretical foundations, such empirical formulation is consistent with the fact that a 

geometric law is usually applied as a combining rule for α and the potential is no longer 

repulsive for α≤6 (cf. equations (1-2)). 

This simple dependence allows to deduce the reduced pressures for a particular value of 

α from those obtained for two other values of alpha, noted αι (i.e. a corresponding states 

scheme on pressure between Mie α-6 potentials). The unique condition is that the 

values of αi encompass the one of α. The analysis shows that the following equation 

have to be used: 
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where yi is the weight associated to the result on pressure for αi. The values of yi are 

chosen in order to obtain the desired value of α, from the values of αi, thanks to eq.(9), 

while respecting eq. (10) (e.g. to obtain the result for α=12 from the values of α1=10 

and α2=14, the unique solution is ( ) ( )122681 −−=y  and y2=1-y1). 

To test the applicability of this empirical scheme, we have compared the reduced 

pressures provided by equations (8-10) for α=10, 11, 12 and 13, using the values 

obtained for α1=9 and α2=14 (the extreme values tested), with those coming from the 

direct MD simulations for the same values of α.  

Table 3 clearly shows that the proposed scheme, equations (8-10), is able to provide 

results consistent with the simulations whatever the repulsive coefficient. The overall 

Average Absolute Deviations (AAD) is equal to 1.25 %, and the Maximum absolute 

Deviation (MxD) is equal to 5.1 %, which is good if we take into account the simplicity 

of the proposed scheme. Besides, the proposed scheme could serve as a test for modern 

equation of state based on Mie α-6 potentials [5]. 

Concerning the exp α-6 potentials, as for the Mie α-6 potentials, it has been noticed that 

the increase of reduced pressure with α is not perfectly linear. In addition, this increase 

can be well approximated by a linear function of 7−α , for each thermodynamic state, 

as shown in figure 4 for T
*
=2.0. Notice that this empirical relation is consistent with the 
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fact that for α≤7, the exp α-6 potential is no longer repulsive (cf. equations (1) and (3)) 

and that a geometric law is usually applied as a combining rule for α . 

Using a similar scheme than for the Mie α-6 potential, equations (8) and (10) combined 

with: 
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allows an estimation of the pressure for a particular value of α from those obtained for 

two other values of alpha noted αι (i.e. a corresponding states scheme on pressure 

between exp α-6 potentials). This empirical scheme has been applied on the exp α-6 

potential for α going from 11.5 to 15.5, with a step of 0.5, using the values obtained for 

α1=11 and α2=16. Comparisons of the results given by this approach with those coming 

from MD simulations are given in table 4. As for the Mie α-6 potential this simple 

scheme is able to provide reasonably good results, the overall AAD being equal to 1.73 

% with a MxD of 6.18%. 

Another interesting point is to investigate similarities between results of both potential 

families of potentials for the set of reduced variables used, equations (4-6). To do so we 

have compared the results for all potentials with those given by the usual LJ one. 

Results for T
*
=2.0 are shown in figures 5 and 6. It appears that the results on pressure 

for a Mie α-6 potential are approximately equivalent to those for an exp (α+2)-6 

potential, even if non negligible deviations appears. As an example, the AAD on 

pressures between the exp 14-6 potential and the Mie 12-6 (LJ) one for all the 

thermodynamic states studied is only equal to 3.96 %, which confirms what observed on 

figure 6. Such results indicate that, for the set of chosen reduced variables, an 

approximate corresponding states [3] scheme (but not a “perfect” one) exist between 

both potentials families for the pressure. 
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3.2. Results on viscosities 

Whatever the potential, the general behavior of the computed viscosity is consistent 

with what is known for simple non polar systems: i.e. viscosity always increases with 

density and slightly increases with temperature for low density systems (gas like) and 

decreases with temperature for high density systems (liquid like). Some results are 

shown in figures 7 and 8. The change in the slope sign corresponds more or less to a 

reduced density equal to twice the critical value, this behavior being the classical one in 

non polar simple fluids [16]. 

As for the pressure, for both potential families, the slope of the repulsive part strongly 

affects the amplitude of the viscosity, as shown in figure 7 for the Mie α-6 potentials 

and figure 8 for the exp α-6 ones. Furthermore, the larger α, the higher the viscosity, 

except from the low density regime where the viscosities are weakly dependent on α, 

see figure 9 for the Mie α-6 potentials and figure 10 for the exp α-6 ones . 

As shown on figure 9 and 10 for T
*
=2.0, it has been found that the viscosities for both 

potential families can be well correlated by a linear relation on α for each 

thermodynamic state. The analysis of the results shows that it is possible to write that: 

 ( ) ( )∑=
i

iiz αηαη **  (12) 

with  

 ∑=
i

iiz αα  (13) 

and 

 ∑ =
i

iz 1 (14) 

where zi is the weight associated to the result on viscosity for αi. 
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This scheme has been applied on the Mie α-6 potentials for α ranging from 10 to 13 

using the values obtained for α1=9 and α2=14, and on the exp α-6 potentials for α 

ranging from 11.5 to 15.5 using the values obtained for α1=11 and α2=16. Comparisons 

with results coming from the MD simulations are given in tables 5 and 6. These tables 

show that this simple scheme is able to provide excellent results compared to the 

inherent uncertainties, the overall AAD being equal to 1.96 % (MxD=10.3%) for the 

Mie α-6 potentials and equal to 1.74% (MxD=11.5%) for the exp α-6 ones. These 

results indicate that, as for pressure, an approximate corresponding states scheme on 

viscosity exists for both potential families for the range of α explored.  

Figures 11 and 12 show, for T
*
=2.0, that the relative effects of the repulsive exponent 

on reduced viscosities, compared to the LJ results, are similar for both potential 

families. More precisely it appears from these figures that exponential (α+2.5)-6 results 

are relatively close to those obtained for the Mie α-6 potentials. As an example, the 

AAD on viscosities between the Mie 12-6 (LJ) potential and the exp 14.5-6 one for all 

thermodynamics states studied is only equal to 1.95 % which confirms what observed 

on figure 12. Thus, results exhibit an approximate corresponding states law between 

both families of potentials for the viscosities in the T
*
, ρ*

 plan. 

Another interesting point is to analyse the relative influence of the repulsive coefficient 

α on P
*
 and η*

. To do so, reduced viscosity is drawn versus reduced pressure for the 

whole range of density and for four different temperatures in figure 13 for the Mie α-6 

potentials, and in figure 14 for the exp α-6 potentials. These figures exhibit that, for a 

given T
*
 and P

*
, η*

 is weakly α dependent (i.e. the general trend is similar whatever the 

symbol for a given T
*
 on figures 13 and 14). Nevertheless, for both potentials families, 

this dependence is not negligible for two very different values of α, especially at low 

temperature. Such result is not surprising as long as the dependence of reduced pressure 
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and viscosity with α is not the same, see eqs (8-14). This indicates that a complete 

corresponding states scheme for each potential family, including both pressure and 

viscosity, cannot be perfectly satisfied. 

Concerning a link between both potentials families, a comparison between figures 5 and 

6 and figures 11 and 12 clearly shows that the behaviors of pressures and of viscosities 

differ for a given set of T
*
, ρ*

 and potential type. This indicates that the influence of the 

shape of the potential on these two properties is not strictly the same even if similarities 

exist (see figure 13 and 14). Hence, the relation between η*
 and (T

*
, P

*
) depends on the 

shape of the repulsive potential part (i.e. there is no perfect corresponding states 

between the two potentials families). Thus a complete corresponding states scheme 

(including simultaneously pressure and viscosity), covering the whole range of 

thermodynamic conditions, seems hardly feasible between the Mie α-6 and the exp α-6 

potentials families. 

For applications on real fluids, such findings could be of interest because in most cases 

the optimum molecular parameters of the classical LJ potential are different for a static 

and a dynamic property [22], which exhibits the intrinsic limitations of such modelling. 

So, due to the differences found between the behavior of the two potential families (and 

inside each families) on P
*
 and η*

, it is suspected that a correct choice of the potential 

could provide an improvement on this point in some cases [9,10]. 

4. Conclusion 

In this study, an analysis of the general influence of the repulsive slope of the Mie α-6 

and exponential α-6 potentials on a static property, the pressure, and on a transport 

property, the viscosity, has been performed. Values of α ranging from 9 to 14, with a 

step of 1, for the Mie α-6 potential and from 11 to 16, with a step of 0.5, for the exp α-6 

potential have been tested. To conduct this study, nonequilibrium molecular dynamics 
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simulations have been carried out in various reduced thermodynamic states, T
*
 varying 

from 1.0 to 2.5 with a step of 0.25 and ρ*
 from 0.3 to 1.3 with a step of 0.2.  

These simulations on a large database, 603 points, have shown that the influence of the 

repulsive coefficient has an expected increasing effect with density on both properties. 

In addition, for a given set of reduced thermodynamic conditions, simple empirical 

relations between the properties and the repulsive coefficient have been found (using rm 

as the length parameter to scale the properties). For pressure, results have shown that the 

reduced pressure varies linearly with 6−α  for the Mie α-6 potentials and with 7−α  

for the exp α-6 potentials. For viscosity, it appears that, for both potential families, its 

variation is linear with α. Thus, using these dependences, it is possible to deduce 

pressure and viscosity, for a given α, from the results obtained with other repulsive 

coefficients, unless the values of these coefficients encompass the one of α. These 

results indicate that an approximate corresponding states scheme exists on pressure and 

on viscosity for both potentials families, but only for each property separately. In fact, 

due to different dependences of pressure and viscosity on α, for a given potentials 

family, η*
(P

*
, T

*
) depends on α even if this dependence is weak. Hence a complete 

corresponding states scheme for each potential family, including both the pressure and 

the viscosity, cannot be perfectly satisfied. 

In addition, when results for Mie α-6 and exp α-6 potentials are compared, it appears 

that the influence of α on the viscosity differs from the one on pressure, especially at 

mid densities. A Mie α-6 potential provides similar results to those given by an exp 

(α+2)-6 potential for pressure whereas it is an exp (α+2.5)-6 one for viscosity. Thus, for 

each property (pressure and viscosity) separately, an approximate corresponding states 

law exists between the Mie α-6 and the exp α-6 potentials families. Nevertheless a 
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complete corresponding states scheme between both potentials families including 

together pressure and viscosity seems hardly feasible. 
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Tables: 

Table 1 Reduced pressures and viscosities of the Mie α-6 potentials. 

T
* ρ* α=9 α=10 α=11 α=12 α=13 α=14 

P
* η* P

* η* P
* η* P

* η* P
* η* P

* η* 

1.00 1.1  0.548 2.144 0.985 2.238 1.373 2.565 1.718 2.644

1.00 1.3 2.227 3.801 3.470 4.468 4.552 5.320 5.506 6.071 6.402 7.143 7.219 8.448

1.25 0.3 0.149 0.270 0.167 0.272 0.183 0.272

1.25 0.5    0.196 0.435

1.25 0.7      0.205 0.711 0.297 0.726

1.25 0.9  0.300 1.098 0.549 1.153 0.768 1.203 0.962 1.259

1.25 1.1 0.699 1.719 1.408 1.926 2.003 2.074 2.530 2.139 2.979 2.350 3.396 2.520

1.25 1.3 4.160 3.268 5.566 3.771 6.808 4.446 7.913 5.195 8.963 5.884 9.926 7.296

1.50 0.3 0.178 0.307 0.214 0.301 0.242 0.306 0.264 0.308 0.284 0.311 0.300 0.310

1.50 0.5 0.284 0.454 0.343 0.461 0.402 0.477 0.449 0.484

1.50 0.7 0.258 0.686 0.424 0.691 0.560 0.729 0.682 0.731 0.788 0.760

1.50 0.9 0.375 1.045 0.781 1.082 1.115 1.138 1.406 1.177 1.649 1.223 1.873 1.293

1.50 1.1 1.904 1.722 2.689 1.875 3.362 2.025 3.966 2.189 4.485 2.347 4.970 2.450

1.50 1.3 5.951 2.962 7.502 3.471 8.894 4.036 10.133 4.610 11.339 5.222 12.443 6.031

1.75 0.3 0.288 0.344 0.325 0.344 0.354 0.343 0.376 0.346 0.398 0.344 0.415 0.344

1.75 0.5 0.336 0.485 0.440 0.487 0.523 0.487 0.587 0.491 0.650 0.494 0.701 0.508

1.75 0.7 0.465 0.687 0.688 0.712 0.871 0.745 1.020 0.758 1.158 0.783 1.274 0.774

1.75 0.9 1.090 1.048 1.531 1.104 1.902 1.178 2.223 1.206 2.502 1.278 2.754 1.314

1.75 1.1 3.043 1.701 3.906 1.896 4.649 2.014 5.313 2.143 5.911 2.347 6.460 2.429

1.75 1.3 7.630 2.830 9.323 3.274 10.852 3.699 12.262 4.359 13.575 4.928 14.816 5.352

2.00 0.3 0.396 0.375 0.435 0.371 0.465 0.377 0.489 0.377 0.511 0.369 0.529 0.377

2.00 0.5 0.561 0.517 0.671 0.518 0.759 0.514 0.832 0.527 0.896 0.530 0.951 0.530

2.00 0.7 0.874 0.720 1.115 0.742 1.311 0.772 1.475 0.795 1.624 0.798 1.753 0.812

2.00 0.9 1.783 1.051 2.262 1.131 2.663 1.196 3.015 1.241 3.326 1.297 3.608 1.379

2.00 1.1 4.131 1.689 5.065 1.823 5.880 2.006 6.612 2.137 7.274 2.252 7.889 2.487

2.00 1.3 9.225 2.768 11.048 3.096 12.712 3.564 14.220 4.101 15.695 4.600 17.068 5.065

2.25 0.3 0.503 0.407 0.543 0.405 0.574 0.400 0.598 0.407 0.623 0.388 0.642 0.405

2.25 0.5 0.784 0.536 0.900 0.537 0.994 0.549 1.065 0.559 1.140 0.550 1.200 0.560

2.25 0.7 1.277 0.750 1.532 0.757 1.744 0.785 1.920 0.808 2.083 0.812 2.223 0.844

2.25 0.9 2.454 1.051 2.965 1.149 3.404 1.223 3.789 1.276 4.127 1.287 4.438 1.372

2.25 1.1 5.174 1.659 6.178 1.810 7.059 1.963 7.862 2.133 8.589 2.224 9.264 2.376

2.25 1.3 10.747 2.704 12.698 3.054 14.485 3.413 16.113 3.934 17.722 4.340 19.223 4.973

2.50 0.3 0.609 0.439 0.650 0.440 0.683 0.437 0.705 0.427 0.734 0.417 0.754 0.427

2.50 0.5 1.006 0.570 1.128 0.570 1.227 0.606 1.308 0.587 1.382 0.577 1.446 0.590

2.50 0.7 1.674 0.774 1.945 0.804 2.171 0.800 2.360 0.846 2.535 0.862 2.689 0.872

2.50 0.9 3.110 1.100 3.657 1.177 4.124 1.233 4.541 1.324 4.908 1.357 5.250 1.448

2.50 1.1 6.184 1.693 7.255 1.843 8.204 1.988 9.068 2.215 9.858 2.334 10.600 2.497

2.50 1.3 12.211 2.751 14.282 3.182 16.193 3.502 17.959 3.872 19.677 4.134 21.299 4.999
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Table 2 Reduced pressures and viscosities of the exp α-6 potentials. 

T
* ρ* α=11 α=11.5 α=12 α=12.5 α=13 α=13.5 α=14 α=14.5 α=15 α=15.5 α=16 

  P
* η* P

* η* P
* η* P

* η* P
* η* P

* η* P
* η* P

* η* P
* η* P

* η* P
* η* 

1.00 1.1    0.157 1.837 0.416 1.961 0.652 2.016 0.872 2.122 1.074 2.230 1.264 2.229 1.442 2.393 1.612 2.610 1.774 2.501

1.00 1.3 2.050 3.073 2.738 3.555 3.361 3.949 3.935 4.372 4.469 4.689 4.970 5.247 5.450 5.604 5.922 6.337 6.333 6.775 6.747 7.725 7.148 8.367

1.25 0.3 0.135 0.263 0.146 0.268 0.156 0.262 0.165 0.267 0.174 0.269 0.182 0.274 0.189 0.268 0.195 0.275

1.25 0.5  0.190 0.419 0.208 0.437 0.226 0.434

1.25 0.7      0.173 0.679 0.221 0.680 0.267 0.719 0.309 0.702 0.350 0.717

1.25 0.9      0.274 1.031 0.403 1.070 0.525 1.121 0.639 1.169 0.745 1.188 0.843 1.180 0.937 1.237 1.025 1.242

1.25 1.1 0.739 1.510 1.115 1.692 1.456 1.765 1.763 1.825 2.045 1.910 2.311 2.098 2.554 2.107 2.787 2.287 3.008 2.319 3.215 2.420 3.415 2.384

1.25 1.3 3.771 2.666 4.574 3.113 5.288 3.320 5.958 3.812 6.585 3.921 7.168 4.370 7.739 4.774 8.276 4.968 8.792 5.507 9.279 5.776 9.768 6.286

1.50 0.3 0.204 0.300 0.221 0.303 0.236 0.301 0.249 0.302 0.260 0.306 0.271 0.305 0.280 0.309 0.289 0.305 0.297 0.306 0.304 0.310 0.312 0.310

1.50 0.5 0.177 0.436 0.223 0.443 0.263 0.432 0.298 0.441 0.331 0.449 0.360 0.451 0.388 0.459 0.413 0.463 0.436 0.470 0.457 0.463 0.478 0.471

1.50 0.7 0.161 0.637 0.261 0.652 0.350 0.670 0.429 0.681 0.501 0.691 0.568 0.705 0.629 0.710 0.685 0.725 0.738 0.723 0.789 0.747 0.836 0.744

1.50 0.9 0.477 0.950 0.687 1.006 0.872 1.037 1.039 1.047 1.195 1.106 1.333 1.116 1.466 1.131 1.591 1.204 1.708 1.229 1.818 1.226 1.923 1.282

1.50 1.1 1.840 1.498 2.272 1.633 2.659 1.728 3.015 1.771 3.342 1.891 3.648 1.997 3.936 2.071 4.211 2.207 4.469 2.313 4.713 2.285 4.950 2.355

1.50 1.3 5.350 2.481 6.242 2.896 7.063 3.050 7.818 3.392 8.534 3.655 9.206 4.041 9.853 4.183 10.465 4.657 11.059 5.093 11.637 5.214 12.187 5.603

1.75 0.3 0.313 0.343 0.330 0.337 0.346 0.342 0.359 0.341 0.372 0.343 0.383 0.342 0.392 0.343 0.402 0.339 0.411 0.343 0.419 0.344 0.426 0.346

1.75 0.5 0.396 0.472 0.446 0.469 0.490 0.466 0.529 0.482 0.566 0.481 0.599 0.483 0.627 0.487 0.656 0.492 0.681 0.502 0.706 0.466 0.728 0.494

1.75 0.7 0.554 0.658 0.666 0.659 0.766 0.705 0.856 0.700 0.938 0.720 1.013 0.726 1.082 0.745 1.146 0.738 1.208 0.754 1.263 0.762 1.317 0.778

1.75 0.9 1.143 0.958 1.381 1.021 1.589 1.066 1.778 1.072 1.952 1.094 2.114 1.136 2.265 1.202 2.405 1.197 2.541 1.252 2.665 1.268 2.785 1.274

1.75 1.1 2.878 1.502 3.357 1.609 3.794 1.726 4.196 1.753 4.567 1.903 4.914 1.987 5.239 2.048 5.551 2.169 5.846 2.195 6.129 2.238 6.402 2.366

1.75 1.3 6.821 2.412 7.804 2.805 8.714 2.923 9.555 3.178 10.347 3.398 11.103 3.690 11.824 4.022 12.516 4.196 13.186 4.533 13.828 4.981 14.449 5.201

2.00 0.3 0.419 0.378 0.437 0.374 0.454 0.370 0.469 0.364 0.481 0.373 0.492 0.367 0.504 0.369 0.513 0.375 0.523 0.373 0.531 0.375 0.538 0.381

2.00 0.5 0.614 0.506 0.668 0.505 0.717 0.514 0.759 0.518 0.799 0.511 0.834 0.518 0.868 0.519 0.897 0.524 0.926 0.530 0.952 0.528 0.975 0.530

2.00 0.7 0.943 0.692 1.067 0.705 1.177 0.716 1.275 0.730 1.366 0.735 1.450 0.750 1.526 0.760 1.597 0.786 1.665 0.788 1.729 0.813 1.787 0.825

2.00 0.9 1.786 0.983 2.047 1.012 2.280 1.062 2.491 1.079 2.687 1.119 2.865 1.160 3.032 1.204 3.194 1.227 3.342 1.244 3.484 1.269 3.620 1.305

2.00 1.1 3.858 1.495 4.389 1.573 4.876 1.683 5.315 1.755 5.733 1.842 6.115 1.913 6.481 2.020 6.830 2.095 7.157 2.197 7.481 2.303 7.784 2.350

2.00 1.3 8.211 2.298 9.283 2.614 10.271 2.837 11.197 3.013 12.064 3.302 12.890 3.562 13.690 3.830 14.453 4.060 15.186 4.345 15.906 4.675 16.603 4.984

2.25 0.3 0.523 0.397 0.544 0.395 0.561 0.401 0.575 0.404 0.589 0.404 0.602 0.402 0.612 0.402 0.625 0.398 0.632 0.398 0.643 0.399 0.652 0.402
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2.25 0.5 0.829 0.528 0.888 0.518 0.938 0.525 0.987 0.533 1.027 0.540 1.066 0.548 1.103 0.535 1.134 0.548 1.163 0.548 1.193 0.553 1.220 0.549

2.25 0.7 1.325 0.709 1.459 0.712 1.580 0.745 1.688 0.756 1.787 0.756 1.877 0.778 1.962 0.803 2.042 0.799 2.118 0.810 2.184 0.828 2.253 0.831

2.25 0.9 2.411 0.983 2.693 1.041 2.950 1.088 3.182 1.130 3.395 1.133 3.597 1.179 3.778 1.206 3.955 1.257 4.120 1.297 4.278 1.313 4.432 1.392

2.25 1.1 4.796 1.480 5.375 1.543 5.904 1.705 6.391 1.746 6.845 1.793 7.266 1.885 7.670 2.011 8.053 2.126 8.418 2.163 8.770 2.301 9.108 2.283

2.25 1.3 9.530 2.250 10.681 2.536 11.750 2.766 12.745 2.905 13.693 3.215 14.591 3.459 15.459 3.660 16.291 3.842 17.094 4.087 17.888 4.460 18.642 4.532

2.50 0.3 0.627 0.429 0.649 0.433 0.666 0.427 0.682 0.422 0.696 0.425 0.707 0.425 0.725 0.424 0.734 0.428 0.746 0.429 0.752 0.418 0.763 0.421

2.50 0.5 1.045 0.548 1.106 0.551 1.162 0.552 1.211 0.551 1.258 0.561 1.299 0.567 1.339 0.572 1.373 0.570 1.404 0.581 1.433 0.597 1.466 0.601

2.50 0.7 1.700 0.748 1.846 0.754 1.976 0.772 2.092 0.777 2.200 0.773 2.300 0.794 2.391 0.799 2.478 0.826 2.560 0.847 2.636 0.839 2.706 0.854

2.50 0.9 3.014 1.009 3.321 1.041 3.600 1.087 3.849 1.151 4.085 1.179 4.302 1.193 4.505 1.219 4.698 1.266 4.879 1.305 5.052 1.327 5.221 1.364

2.50 1.1 5.700 1.467 6.329 1.553 6.899 1.641 7.426 1.754 7.915 1.828 8.374 1.933 8.818 2.011 9.235 2.113 9.635 2.180 10.020 2.301 10.391 2.424

2.50 1.3 10.790 2.199 12.026 2.437 13.174 2.621 14.242 2.820 15.259 3.122 16.233 3.357 17.163 3.574 18.057 3.739 18.892 4.034 19.801 4.346 20.613 4.533
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Table 3 Deviations, for all thermodynamic states studied, between the pressures 

deduced from equations (8-10), using values for α=9 and α=14, and those computed by 

MD simulations for the Mie α-6 potentials. 

Alpha 10 11 12 13 

AAD 1.50 1.63 1.18 0.69 

MxD 5.10 4.63 3.61 1.60 

 

Table 4 Deviations, for all thermodynamic states studied, between the pressures 

deduced from equations (8,10-11), using values for α=11 and α=16, and those 

computed by MD simulations for the exp α-6 potentials. 

Alpha 11.5 12 12.5 13 13.5 14 14.5 15 15.5 

AAD 1.67 2.33 2.48 2.40 2.11 1.79 1.40 0.95 0.46 

MxD 5.03 6.18 6.07 5.73 4.64 3.77 2.91 1.92 0.97 

 

Table 5 Deviations, for all thermodynamic states studied, between the viscosities 

deduced from equations (12-14), using values for α=9 and α=14, and those computed 

by MD simulations for the Mie α-6 potentials. 

Alpha 10 11 12 13 

AAD 1.72 2.18 1.86 2.09 

MxD 8.01 9.74 9.42 10.30 

 

Table 6 Deviations, for all thermodynamic states studied, between the viscosities 

deduced from equations (8,10-11), using values for α=11 and α=16, and those 

computed by MD simulations for the exp α-6 potentials. 
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Alpha 11.5 12 12.5 13 13.5 14 14.5 15 15.5 

AAD 1.63 1.79 1.43 1.86 1.66 2.01 1.93 1.76 1.55 

MxD 5.60 4.62 6.62 10.70 9.02 11.52 7.23 7.87 5.63 
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Figure captions: 

Fig. 1 Behavior of reduced pressure of some Mie α-6 potentials versus reduced 

temperature. Circles correspond to ρ*
=0.9, up triangles to ρ*

=1.1 and squares to ρ*
=1.3. 

Open symbols correspond to α=9, grey ones to α=11, dark grey ones to α=12 and black 

symbols to α=14. 

Fig. 2 Behavior of reduced pressure of some exp α-6 potentials versus reduced 

temperature. Circles correspond to ρ*
=0.9, up triangles to ρ*

=1.1 and squares to ρ*
=1.3. 

Open symbols correspond to α=11, grey ones to α=13, dark grey ones to α=14 and 

black symbols to α=16. 

Fig. 3 Behavior of reduced pressure of Mie α-6 potentials for various reduced densities 

at T
*
=2.0 versus 6−α . � corresponds to ρ*

=0.3, � to ρ*
=0.5, � to ρ*

=0.7, � to 

ρ*
=0.9, � to ρ*

=1.1 and � to ρ*
=1.3. 

Fig. 4 Behavior of reduced pressure of exp α-6 potentials for various reduced densities 

at T
*
=2.0 versus 7−α . � corresponds to ρ*

=0.3, � to ρ*
=0.5, � to ρ*

=0.7, � to 

ρ*
=0.9, � to ρ*

=1.1 and � to ρ*
=1.3. 

Fig. 5 Deviations between reduced pressures computed for various Mie α-6 potentials 

and the LJ potential for different reduced densities at T
*
=2.0. The highest curve (�) 

corresponds to the values for α =9 and the lowest (+) to those for α =14, the curves 

between correspond to values of α ranging from 10 to 13 with a step of 1. 

Fig. 6 Deviations between reduced pressures computed for various exp α-6 potentials 

and the LJ potential for different reduced densities at T
*
=2.0. The highest curve (�) 

corresponds to the values for α =11 and the lowest (+) to those for α =16, the curves 

between correspond to values of α ranging from 11.5 to 15.5 with a step of 0.5. 
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Fig. 7 Behavior of reduced viscosity of some Mie α-6 potentials versus reduced 

temperature. Circles correspond to ρ*
=0.9, up triangles to ρ*

=1.1 and squares to ρ*
=1.3. 

Open symbols correspond to α=9, grey ones to α=11, dark grey ones to α=12 and black 

symbols to α=14. 

Fig. 8 Behavior of reduced viscosity of some exp α-6 potentials versus reduced 

temperature. Circles correspond to ρ*
=0.9, up triangles to ρ*

=1.1 and squares to ρ*
=1.3. 

Open symbols correspond to α=11, grey ones to α=13, dark grey ones to α=14 and 

black symbols to α=16. 

Fig. 9 Behavior of reduced viscosity of Mie α-6 potentials for various reduced densities 

at T
*
=2.0 versus the repulsive slope coefficient α. � corresponds to ρ*

=0.3, � to 

ρ*
=0.5, � to ρ*

=0.7, � to ρ*
=0.9, � to ρ*

=1.1 and � to ρ*
=1.3. 

Fig. 10 Behavior of reduced viscosity of exp α-6 potentials for various reduced 

densities at T
*
=2.0 versus the repulsive slope coefficient α. � corresponds to ρ*

=0.3, � 

to ρ*
=0.5, � to ρ*

=0.7, � to ρ*
=0.9, � to ρ*

=1.1 and � to ρ*
=1.3. 

Fig. 11 Deviations between reduced viscosities computed for various Mie α-6 potentials 

and the LJ potential for different reduced densities at T
*
=2.0. The highest curve (�) 

corresponds to the values for α =9 and the lowest (+) to those for α =14, the curves 

between correspond to values of α going from 10 to 13 with a step of 1. 

Fig. 12 Deviations between reduced viscosities computed for various exp α-6 potentials 

and the LJ potential for different reduced densities at Τ*
=2.0. The highest curve (�) 

corresponds to the values for α =11 and the lowest (+) to those for α =16, the curves 

between correspond to values of α going from 11.5 to 15.5 with a step of 0.5. 

Fig 13 Mie α-6 reduced viscosities for different reduced temperatures and pressures. 

Circles correspond to α=9, down triangles to α=10, squares to α=11, diamonds to 
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α=12, up triangles to α=13 and hexagons to α=14. Black symbols correspond to T
*
=1.0, 

dark grey ones to T
*
=1.5, light grey ones to T

*
=2.0 and open symbols to T

*
=2.5. 

Fig 14 Exp α-6 reduced viscosities for different reduced temperatures and pressures. 

Circles correspond to α=11, down triangles to α=12, squares to α=13, diamonds to 

α=14, up triangles to α=15 and hexagons to α=16. Black symbols correspond to T
*
=1.0, 

dark grey ones to T
*
=1.5, light grey ones to T

*
=2.0 and open symbols to T

*
=2.5. 

 


