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On the q-Bessel Fourier transform

In this work, we are interested by the q-Bessel Fourier transform with a new approach. Many important results of this q-integral transform are proved with a new constructive demonstrations and we establish in particular the associated q-Fourier-Neumen expansion which involves the q-little Jacobi polynomials.

Introduction

In the recent mathematical literature one finds many articles which deal with the theory of q-Fourier analysis associated with the q-Hankel transform. This theory was elaborated first by Koornwinder and R.F. Swarttouw [START_REF] Koornwinder | On q-analogues of the Hankel and Fourier Transforms[END_REF] and then by Fitouhi and Al [START_REF] Dhaouadi | Inequalities in q-Fourier Analysis[END_REF][START_REF] Fitouhi | The q-j α Bessel function[END_REF]. It should be noticed that in [START_REF] Dhaouadi | Inequalities in q-Fourier Analysis[END_REF] we provided the mains results of q-Fourier analysis in particular that the q-Hankel transform is extended to the L q,2,ν space like an isometric operator. Often we use the crucial properties namely the positivity of the q-Bessel translation operator to prove some results but these last property is not ensured for any q in the interval ]0, 1[. Thus, we will prove some main results of q-Fourier analysis without the positivity argument especially the following statments: -Inversion Formula in the L q,p,ν spaces with p ≥ 1.

-Plancherel Formula in the L q,p,ν ∩ L q,1,ν spaces with p > 2.

-Plancherel Formula in the L q,2,ν spaces.

Note that in the paper [START_REF] Fitouhi | Positivity of the Generalized Translation Associated with the q-Hankel Transform, Constructive Approximation[END_REF] we have proved that the positivity of the q-Bessel translation operator is ensured in all points of the interval ]0, 1[ when ν ≥ 0. In this article we will try to show in a clear way the part in which the positivity of the q-Bessel translation operator plays a role in q-Bessel Fourier analysis. In particular, when we try to prove a q-version of the Young's inequality for the associated convolution.

Many interesting result about the uncertainty principle for the q-Bessel transform was proved in the last years. We cite for examples [START_REF] Bettaibi | Uncertainty principles for the q-trigonometric Fourier transforms[END_REF][START_REF] Bettaibi | Uncertainty principles in q 2 -analogue Fourier analysis[END_REF][START_REF] Bettaibi | Elements of harmonic analysis related to the third basic zero order Bessel function[END_REF][START_REF] Fitouhi | On Hardy's inequality for symmetric integral transforms and analogous[END_REF]. There are some differences of the results cited above and our result: In this paper the Heisenberg uncertainty inequality is established for functions in L q,2,ν space. The Hardy's inequality discuss here is a quantitative uncertainty principles which give an information about how a function and its q-Bessel Fourier transform are linked.

In the end of this paper we use the remarkable work in [START_REF] Abreu | A q-linear analogue of the plane wave expansion[END_REF] to establish a new result about the q-Fourier-Neumen expansion involving the q-little Jacobi polynomials.

The q-Bessel transform

The reader can see the references [START_REF] Gasper | Basic hypergeometric series, Encycopedia of mathematics and its applications[END_REF][START_REF] Jackson | On a q-Definite Integrals[END_REF][START_REF] Swarttouw | The Hahn-Exton q-Bessel functions[END_REF] about q-series theory. The references [START_REF] Dhaouadi | Inequalities in q-Fourier Analysis[END_REF][START_REF] Fitouhi | The q-j α Bessel function[END_REF][START_REF] Koornwinder | On q-analogues of the Hankel and Fourier Transforms[END_REF] are devoted to the q-Bessel Fourier analysis. Throughout this paper, we consider 0 < q < 1 and ν > -1. We denote by R + q = {q n , n ∈ Z} . The q-Bessel operator is defined as follows [START_REF] Dhaouadi | Inequalities in q-Fourier Analysis[END_REF] ∆ q,ν f

(x) = 1 x 2 f (q -1 x) -(1 + q 2ν )f (x) + q 2ν f (qx) .
The eigenfunction of ∆ q,ν associated with the eigenvalue -λ 2 is the function x → j ν (λx, q 2 ), where j ν (., q 2 ) is the normalized q-Bessel function defined by [START_REF] Dhaouadi | Inequalities in q-Fourier Analysis[END_REF][START_REF] Fitouhi | The q-j α Bessel function[END_REF][START_REF] Gasper | Basic hypergeometric series, Encycopedia of mathematics and its applications[END_REF][START_REF] Koelink | On the zeros of the Hahn-Exton q-Bessel Function and associated q-Lommel polynomials[END_REF][START_REF] Swarttouw | The Hahn-Exton q-Bessel functions[END_REF]]

j ν (x, q 2 ) = ∞ n=0 (-1) n q n(n+1) (q 2ν+2 , q 2 ) n (q 2 , q 2 ) n x 2n .
The q-Jackson integral of a function

f defined on R + is ∞ 0 f (t)d q t = (1 -q) n∈Z q n f (q n ).
We denote by L q,p,ν the space of functions f defined on R + such that

f q,p,ν = ∞ 0 |f (x)| p x 2ν+1 d q x 1/p exist.
We denote by C q,0 the space of functions defined on R + q tending to 0 as x → ∞ and continuous at 0 equipped with the topology of uniform convergence. The space C q,0 is complete with respect to the norm f q,∞ = sup

x∈R + |f (x)|.
The normalized q-Bessel function j ν (., q 2 ) satisfies the orthogonality relation

c 2 q,ν ∞ 0 j ν (xt, q 2 )j ν (yt, q 2 )t 2ν+1 d q t = δ q (x, y), ∀x, y ∈ R + q (1)
where

δ q (x, y) = 0 if x = y 1 (1-q)x 2(ν+1) if x = y and c q,ν = 1 1 -q (q 2ν+2 , q 2 ) ∞ (q 2 , q 2 ) ∞ .
Let f be a function defined on R + q then ∞ 0 f (y)δ q (x, y)y 2ν+1 d q y = f (x).

The normalized q-Bessel function j ν (., q 2 ) satisfies

|j ν (q n , q 2 )| ≤ (-q 2 ; q 2 ) ∞ (-q 2ν+2 ; q 2 ) ∞ (q 2ν+2 ; q 2 ) ∞ 1 if n ≥ 0 q n 2 -(2ν+1)n if n < 0 .
The q-Bessel Fourier transform F q,ν is defined by [START_REF] Dhaouadi | Inequalities in q-Fourier Analysis[END_REF][START_REF] Fitouhi | The q-j α Bessel function[END_REF][START_REF] Koornwinder | On q-analogues of the Hankel and Fourier Transforms[END_REF]]

F q,ν f (x) = c q,ν ∞ 0 f (t)j ν (xt, q 2 )t 2ν+1 d q t, ∀x ∈ R + q .
Proposition 1 Let f ∈ L q,1,ν then F q,ν f ∈ C q,0 and we have

F q,ν (f ) q,∞ ≤ B q,ν f q,1,v
where B q,ν = 1 1 -q (-q 2 ; q 2 ) ∞ (-q 2v+2 ; q 2 ) ∞ (q 2 ; q 2 ) ∞ .

Theorem 1 Let f be a function in the L q,p,ν space where p ≥ 1 then

F 2 q,ν f = f. (2) 
Proof. If f ∈ L q,p,ν then F q,ν f exist, and we have

F 2 q,ν f (x) = c q,ν ∞ 0 F q,ν f (t)j ν (xt, q 2 )t 2ν+1 d q t = ∞ 0 f (y) c 2 q,ν ∞ 0 j ν (xt, q 2 )j ν (yt, q 2 )t 2ν+1 d q t y 2ν+1 d q y = ∞ 0 f (y)δ q (x, y)y 2ν+1 d q y = f (x).
The computations are justified by the Fubuni's theorem: If p > 1 then we use the Hölder's inequality

∞ 0 |f (y)| ∞ 0 |j ν (xt, q 2 )j ν (yt, q 2 )|t 2ν+1 d q t y 2ν+1 d q y ≤ ∞ 0 |f (y)| p y 2ν+1 d q y 1/p × ∞ 0 σ(y) p y 2ν+1 d q y 1/p .
The numbers p and p above are conjugates and

σ(y) = ∞ 0 |j ν (xt, q 2 )j ν (yt, q 2 )|t 2ν+1 d q t, then ∞ 0 σ(y) p y 2ν+1 d q y = 1 0 σ(y) p y 2ν+1 d q y + ∞ 1 σy p y 2ν+1 d q y.
Note that

1 0 σ(y) p y 2ν+1 d q y ≤ j ν (., q 2 ) p q,∞ 1 0 ∞ 0 |j ν (xt, q 2 )|t 2ν+1 d q t p y 2ν+1 d q y
≤ j ν (., q 2 ) p q,∞ j ν (., q 2 ) p q,1,ν x -2(ν+1)p 1 0 ≤ j ν (., q 2 ) p q,∞ j ν (., q 2 ) p q,1,ν ∞ 1 y 2ν+1 y 2(ν+1)p d q y ≤ j ν (., q 2 ) p q,∞ j ν (., q 2 ) p q,1,ν

y 2ν+1 d q y < ∞,
∞ 1 1 y 2(ν+1)(p-1)+1 d q y < ∞. If p = 1 then ∞ 0 f (y) ∞ 0 |j ν (xt, q 2 )j ν (yt, q 2 )|t 2ν+1 d q t y 2ν+1 d q y ≤ f q,1,ν j ν (., q 2 ) q,∞ j ν (., q 2 ) q,1,ν × 1 x 2(ν+1) .
Theorem 2 Let f be a function in the L q,1,ν ∩ L q,p,ν space, where p > 2 then F q,ν f q,2,ν = f q,2,ν .

Proof. Let f ∈ L q,1,ν ∩ L q,p,ν then by Theorem 1 we see that

F 2 q,ν f = f. This implies ∞ 0 F q,ν f (x) 2 x 2ν+1 d q x = ∞ 0 F q,ν f (x) c q,ν ∞ 0 f (t)j ν (xt, q 2 )t 2ν+1 d q t x 2ν+1 d q x = ∞ 0 f (t) c q,ν ∞ 0 F q,ν f (x)j ν (xt, q 2 )x 2ν+1 d q x t 2ν+1 d q t = ∞ 0 f (t) 2 t 2ν+1 d q t.
The computations are justified by the Fubuni's theorem

∞ 0 |f (t)| c q,ν ∞ 0 |F q,ν f (x)||j ν (xt, q 2 )|x 2ν+1 d q x t 2ν+1 d q t ≤ ∞ 0 |f (t)| p t 2ν+1 d q t 1/p × ∞ 0 |φ(t)| p t 2ν+1 d q t 1/p , where φ(t) = c q,ν ∞ 0 |F q,ν f (x)||j ν (xt, q 2 )|x 2ν+1 d q x, then F q,ν f (x) ≤ c q,ν ∞ 0 |f (y)||j ν (xy, q 2 )|y 2ν+1 d q y ≤ c q,ν ∞ 0 |f (y)| p y 2ν+1 d q y 1/p × ∞ 0 |j ν (xy, q 2 )| p y 2ν+1 d q y 1/p ≤ c q,ν ∞ 0 |f (y)| p y 2ν+1 d q y 1/p × ∞ 0 |j ν (y, q 2 )| p y 2ν+1 d q y 1/p
x -2(ν+1)/p ≤ c q,ν f q,p,ν j ν (., q 2 ) q,p,ν x -2(ν+1)/p . This gives

φ(t) ≤ c 2 q,ν f q,p,ν j ν (., q 2 ) q,p,ν ∞ 0 |j ν (xt, q 2 )|x (2ν+1)-2(ν+1)/p d q x ≤ c 2 q,ν f q,p,ν j ν (., q 2 ) q,p,ν ∞ 0 |j ν (x, q 2 )|x 2(ν+1)/p-1 d q x t -2(ν+1)/p ≤ C 1 t -2(ν+1)/p , and 
φ(t) = c q,ν ∞ 0 |F q,ν f (x)||j ν (xt, q 2 )|x 2ν+1 d q x = c q,ν ∞ 0 |F q,ν f (x/t)||j ν (x, q 2 )|x 2ν+1 d q x t -2(ν+1) ≤ c q,ν F q,ν f q,∞ × j ν (., q 2 ) q,1,ν × t -2(ν+1) ≤ C 2 t -2(ν+1) .
Note that

-1 < -2(ν + 1) p p + 2v + 1 -2(ν + 1)p + 2v + 1 < -1 ⇔ 0 < -2(ν + 1)(p -2) -2(ν + 1)(p -1) < 0 ⇔ 1 < p < 2 ⇔ p > 2. Hence ∞ 0 |φ(t)| p t 2ν+1 d q t = 1 0 |φ(t)| p t 2ν+1 d q t + ∞ 1 |φ(t)| p t 2ν+1 d q t ≤ C 1 1 0 t -2(v+1)p/p t 2ν+1 d q t + C 2 ∞ 1 t -2(v+1)p t 2ν+1 d q t < ∞,
which prove the result.

Theorem 3 Let f be a function in the L q,2,ν space then

F q,ν f q,2,ν = f q,2,ν .
Proof. We introduce the function ψ x as follows

ψ x (t) = c q,ν j ν (tx, q 2 ).
The inner product , in the Hilbert space L q,2,ν is defined by

f, g ∈ L q,2,ν ⇒ f, g = ∞ 0 f (t)g(t)t 2ν+1 d q t. (3) 
Using (1) we write x = y ⇒ ψ x , ψ y = 0

ψ x 2 q,2,ν = 1 1 -q x -2(ν+1) .
We have

F q,ν f (x) = f, ψ x ,
and by Theorem 1

f ∈ L q,2,ν ⇒ F 2 q,ν f = f, then f, ψ x = 0, ∀x ∈ R + q ⇒F q,ν f (x) = 0, ∀x ∈ R + q ⇒f = 0. Hence, {ψ x , x ∈ R +
q } form an orthogonal basis of the Hilbert space L q,2,ν and we have

{ψ x , ∀x ∈ R + q } = L q,2,ν . Now f ∈ L q,2,ν ⇒ f = x∈R + 1 ψ x 2 q,2,ν f, ψ x ψ x ,
and then

f 2 q,2,ν = x∈R + 1 ψ x 2 q,2,ν f, ψ x 2 = (1 -q) x∈R + x 2(ν+1) F q,ν f (x) 2 = F q,ν f 2 q,2,ν ,
which achieve the proof.

Proposition 2 Let f ∈ L q,p,ν where p ≥ 1 then F q,ν f ∈ L q,p,ν . If 1 ≤ p ≤ 2 then F q,ν f q,p,ν ≤ B 2 p -1 q,ν f q,p,ν . (4) 
Proof. This is an immediate consequence of Proposition 1, Theorem 3, the Riesz-Thorin theorem and the inversion formula (2).

The q-translation operator is given as follow

T ν q,x f (y) = c q,ν ∞ 0 F q,ν f (t)j ν (yt, q 2 )j ν (xt, q 2 )t 2ν+1 d q t.
Let us now introduce

Q ν = q ∈]0, 1[, T ν q,
x is positive for all x ∈ R + q the set of the positivity of T ν q,x . We recall that T ν q,x is called positive if T v q,x f ≥ 0 for f ≥ 0. In a recent paper [START_REF] Dhaouadi | Paley-Wiener theorem for the q-Bessel transform and associated q-sampling formula[END_REF] it was proved that if

-1 < ν < ν ′ then Q ν ⊂ Q ν ′ . As a consequence : -If 0 ≤ ν then Q ν =]0, 1[. -If -1 2 ≤ ν < 0 then ]0, q 0 ] ⊂ Q -1 2 ⊂ Q ν ]0, 1[, q 0 ≃ 0.43. -If -1 < ν ≤ -1 2 then Q ν ⊂ Q -1 2 .
Theorem 4 Let f ∈ L q,p,ν then T ν q,x f exists and we have

∞ 0 T ν q,x f (y)y 2ν+1 d q y = ∞ 0 f (y)y 2ν+1 d q y. and T ν q,x f (y) = ∞ 0 f (z)D ν (x, y, z)z 2ν+1 d q z, where D ν (x, y, z) = c 2 q,ν ∞ 0 j ν (xs, q 2 j ν (ys, q 2 j ν (zs, q 2 )s 2ν+1 d q s.
If we suppose that T ν q,x is a positive operator then for all p ≥ 1 we have

T ν q,x f q,p,ν ≤ f q,p,ν . (5) 
Proof. We write the operator T ν q,x in the following form

T ν q,x f (y) = c q,ν ∞ 0 F q,v f (z)j v (xz, q 2 )j v (yz, q 2 )z 2v+1 d q z = F q,ν F q,ν f (z)j ν (xz, q 2 ) (y).
So we have

∞ 0 T ν q,x f (y)y 2ν+1 d q y = ∞ 0 F q,ν F q,ν f (z)j ν (xz, q 2 ) (y)y 2ν+1 d q y = 1 c q,ν c q,ν ∞ 0 F q,ν F q,ν f (z)j ν (xz, q 2 ) (y)j ν (0, q 2 )y 2ν+1 d q y = 1 c q,ν F 2 q,ν F q,ν f (z)j ν (xz, q 2 ) (0) = 1 c q,ν F q,ν f (0) = ∞ 0 f (y)y 2v+1 d q y.
On the other hand

T ν q,x f (y) = c q,ν ∞ 0 F q,ν f (z)j ν (xz, q 2 )j ν (yz, q 2 )z 2ν+1 d q z = c q,ν ∞ 0 c q,ν ∞ 0 f (t)j ν (tz, q 2 )t 2ν+1 d q t j ν (xz, q 2 )j ν (yz, q 2 )z 2v+1 d q z = ∞ 0 c 2 q,ν ∞ 0 j ν (xz, q 2 )j ν (yz, q 2 )j ν (tz, q 2 )z 2ν+1 d q z f (t)t 2ν+1 d q t = ∞ 0 D q,ν (x, y, t)f (t)t 2ν+1 d q t.
The computations are justified by the Fubuni's theorem

∞ 0 ∞ 0 |f (t)| j ν (tz, q 2 ) t 2ν+1 d q t j v (xz, q 2 ) j ν (yz, q 2 ) z 2v+1 d q z ≤ f q,p,ν ∞ 0 ∞ 0 j ν (tz, q 2 ) p t 2ν+1 d q t 1 p j ν (xz, q 2 ) j v (yz, q 2 ) z 2ν+1 d q z ≤ f q,p,ν j ν (., q 2 ) q,p,ν ∞ 0 j ν (xz, q 2 ) j ν (yz, q 2 ) z 2(ν+1) 1-1 p -1 d q z.
Now suppose that T ν q,x is positive. Given a function f ∈ C q,0 we obtains

T ν q,x f (y) = ∞ 0 D q,ν (x, y, t)f (t)t 2ν+1 d q t ≤ ∞ 0 |D q,ν (x, y, t)| |f (t)| t 2v+1 d q t ≤ ∞ 0 D q,ν (x, y, t)t 2v+1 d q t f q,∞ = f q,∞ which implies T ν q,x f q,∞ ≤ f q,∞ . If the function f ∈ L q,1,ν then we obtains T ν q,x f q,1,ν = ∞ 0 T ν q,x f (y) y 2ν+1 d q y ≤ ∞ 0 ∞ 0 |D q,ν (x, y, t)| |f (t)| t 2ν+1 d q t y 2ν+1 d q y ≤ ∞ 0 ∞ 0 D q,ν (x, y, t)y 2ν+1 d q y |f (t)| t 2ν+1 d q t ≤ ∞ 0 |f (t)| t 2ν+1 d q t = f q,1,ν .
The result is a consequence of the Riesz-Thorin theorem.

Notice that the kernel D q,ν (x, y, t) can be written as follows D q,ν (x, y, t) = c 2 q,ν ∞ 0 j ν (xz, q 2 )j ν (yz, q 2 )j ν (tz, q 2 )z 2ν+1 d q z = c q,ν F q,ν j ν (xz, q 2 )j ν (yz, q 2 ) (t), which implies

∞ 0 D q,ν (x, y, t)t 2ν+1 d q t = c q,ν ∞ 0 F q,ν j ν (xz, q 2 )j ν (yz, q 2 ) (t)t 2ν+1 d q t = F 2 q,ν j ν (xz, q 2 )j ν (yz, q 2 ) (0) = 1.
The q-convolution product is defined by

f * q g = F q,ν [F q,ν f × F q,ν g] .
Theorem 5 Let 1 ≤ p, r, s such that

1 p + 1 r -1 = 1 s
Given two functions f ∈ L q,p,ν and g ∈ L q,r,ν then f * q g exists and we have f * q g(x) = c q,ν ∞ 0 T ν q,x f (y)g(y)y 2ν+1 d q y. and f * q g ∈ L q,s,ν .

F q,ν (f * q g) = F q,ν (f ) × F q,ν (g).

If s ≥ 2 then f * q g q,s,ν ≤ B q,ν f q,p,ν g q,r,ν .

If we suppose that T ν q,x is a positive operator then f * q g q,s,ν ≤ c q,ν f q,p,ν g q,r,ν .

Proof. We have

f * q g(x) = F q,ν [F q,ν f × F q,ν g] (x) = c q,ν ∞ 0 F q,ν f (y) × F q,ν g(y)j ν (xy, q 2 )y 2ν+1 d q y = c q,ν ∞ 0 F q,ν f (y) × c q,ν ∞ 0 g(z)j ν (zy, q 2 )z 2ν+1 d q z j v (xy, q 2 )y 2ν+1 d q y = c q,ν ∞ 0 c q,ν ∞ 0 F q,ν f (y)j v (zy, q 2 )j ν (xy, q 2 )y 2ν+1 d q y g(z)z 2ν+1 d q z = c q,ν ∞ 0 T ν q,x f (z)g(z)z 2ν+1 d q z.
The computations are justified by the Fubuni's theorem

∞ 0 |F q,ν f (y)| × ∞ 0 |g(z)| × j ν (zy, q 2 ) z 2ν+1 d q z j ν (xy, q 2 ) y 2ν+1 d q y ≤ g q,r,ν ∞ 0 |F q,ν f (y)| × ∞ 0 j ν (zy, q 2 ) r z 2ν+1 d q z
1 r j ν (xy, q 2 ) y 2ν+1 d q y ≤ g q,r,ν j ν (., q 2 ) q,r,ν

∞ 0 |F q,ν f (y)| × j v (xy, q 2 ) y -2ν+2 r y 2ν+1 d q y
≤ g q,r,ν j ν (., q 2 ) q,r,ν F q,ν f q,p,v ∞ 0 j ν (xy, q 2 ) y -2ν+2 r p y 2ν+1 d q y 1 p ≤ g q,r,ν j ν (., q 2 ) q,r,ν F q,ν f q,p,ν

∞ 0 j ν (xy, q 2 ) p y 2(ν+1)(1-p r )-1 d q y 1 p
.

From Proposition 2 we deduce that F q,ν f ∈ L q,p,ν and F q,ν g ∈ L q,r,ν .

Then, using the Hölder inequality and the fact that

1 p + 1 r = 1 s to conclude that F q,ν f × F q,ν g ∈ L q,s,ν . Which implies that f * q g = F q,ν [F q,ν f × F q,ν g] ∈ L q,s,ν
and by the inversion formula (2) we obtain

F q,ν (f * q g) = F q,ν f × F q,ν g.
Suppose that s ≥ 2, so 1 ≤ s ≤ 2 and we can write

f * q g q,s,ν = F q,ν [F q,ν f × F q,ν g] q,s,ν ≤ B 2 s -1 q,ν F q,ν f q,p,ν F q,ν g q,r,ν ≤ B 2 s -1 q,ν B 2 p -1 q,ν B 2 r -1 q,ν
f q,p,ν g q,r,ν ≤ B q,ν f q,p,ν g q,r,ν .

Now suppose that T ν q,x is a positive operator. We introduce the operator K f as follows

K f g(x) = c q,ν ∞ 0 T ν q,x f (z)g(z)z 2ν+1 d q z.
By the Hölder inequality and ( 5) we get K f g q,∞ ≤ c q,ν f q,p,ν g q,p,ν .

The Minkowski inequality leads to K f g q,p,ν ≤ c q,ν f q,p,ν g q,1,ν .

Hence we have

K f : L q,p,ν → C q,0 , K f : L q,1,ν → L q,p,ν .
Then the operator K f satisfies K f : L q,r,ν → L q,s,ν and f * q g q,s,ν = K f g q,s,ν ≤ c q,ν f q,p,ν g q,r,ν .

Remark 1 We discuss here the sharp results for the Hausdorf-Young inequality provided above. An inequality already sharper than ( 6) is given in formula [START_REF] Fitouhi | Positivity of the Generalized Translation Associated with the q-Hankel Transform, Constructive Approximation[END_REF]. In fact we have c q,ν < B q,ν .

To obtained [START_REF] Fitouhi | Positivity of the Generalized Translation Associated with the q-Hankel Transform, Constructive Approximation[END_REF] without the positivity argument, we can do by using which is a q-Riemann-Liouville fractional integral generalizing the q-Mehler integral representation for the q-Bessel function j ν (., q 2 ) which can be proved in a straightforward way [START_REF] Fitouhi | The q-j α Bessel function[END_REF] 

j ν (λ, q 2 ) = [2ν] q 1 0
(q 2 t 2 , q 2 ) ∞ (q 2ν t 2 , q 2 ) ∞ j 0 (λt, q 2 )td q t together with the inequalities for the q-Bessel function which is given as formula (24) in the paper [START_REF] Bettaibi | Elements of harmonic analysis related to the third basic zero order Bessel function[END_REF] |j 0 (x; q 2 )| ≤ 1, ∀x ∈ R + q . Combine this formulas we arrive at

|j ν (x; q 2 )| ≤ 1, ∀x ∈ R + q , ν ≥ 0.
Then the inequalities (4) can be written as follows

F q,ν f q,p,ν ≤ c 2 p -1 q,ν f q,p,ν .
This should give the sharpest version of (6) in the cases ν ≥ 0. Unfortunately the positivity of the operator T ν q,x is satisfied in this case. In fact we can prove that if we are in the positivity cases then j ν (., q 2 ) q,∞ ≤ 1.

To prove this recalling that T ν q,x j ν (y, q 2 ) = j ν (x, q 2 )j ν (y, q 2 ). So we have ∞ 0 D ν (x, y, t)j v (t, q 2 )t 2v+1 d q t = j ν (x, q 2 )j ν (y, q 2 ).

We obtains for all x, y ∈ R +

q j ν (x, q 2 ) × j ν (y, q 2 ) ≤ ∞ 0 D ν (x, y, t) j ν (t, q 2 ) t 2ν+1 d q t ≤ ∞ 0 D v (x, y, t)t 2ν+1 d q t j ν (., q 2 ) q,∞ . The fact that ∞ 0 D ν (x, y, t)t 2ν+1 d q t = 1 implies j ν (., q 2 )
2 q,∞ ≤ j ν (., q 2 ) q,∞ which gives the result.

Uncertainty principle

We introduce two q-difference operators

∂ q f (x) = f (q -1 x) -f (x) x and ∂ * q f (x) = f (x) -q 2ν+1 f (qx)
x .

Then we have

∂ q ∂ * q f (x) = ∂ * q ∂ q f (x) = ∆ q,ν f (x).
Proposition 3 If ∂ q f, g exist and lim a→∞ a 2ν+1 f (q -1 a)g(a) = 0 then

∂ q f, g = -f, ∂ * q g .
Proof.

The following computation

a 0 ∂ q f (x)g(x)x 2ν+1 d q x = a 0 f (q -1 x) -f (x) x g(x)x 2ν+1 d q x = a 0 f (q -1 x) x g(x)x 2ν+1 d q x - a 0 f (x) x g(x)x 2ν+1 d q x = q 2ν+1 q -1 a 0 f (x) x g(qx)x 2ν+1 d q x - a 0 f (x) x ∂ q g(x)x 2ν+1 d q x = q 2ν+1 a 0 f (x) x ∂ q g(qx)x 2ν+1 d q x - a 0 f (x) x g(x)x 2v+1 d q x + a 2ν+1 f (q -1 a)g(a) = - a 0 f (x) g(x) -q 2ν+1 g(qx) x x 2ν+1 d q x + a 2ν+1 f (q -1 a)g(a) = = - a 0 f (x)∂ * q g(x)x 2ν+1 d q x + a 2ν+1 f (q -1 a)g(a)
leads to the result.

Corollary 1 If f ∈ L q,2,ν such that xF q,ν f ∈ L q,2,ν then ∂ q f 2 = xF q,ν f 2 .
Proof. In fact we have

∂ q f 2 2 = ∂ q f, ∂ q f = -f, ∂ * q ∂ q f = -f, ∆ q,ν f = -F q,ν f, F q,ν ∆ q,ν f = F q,ν f, x 2 F q,ν f = xF q,ν f 2 2 ,
which prove the result.

Theorem 6 Assume that f belongs to the space L q,2,ν . Then the q-Bessel transform satisfies the following uncertainty principal

f 2 2 ≤ k q,v xf 2 xF q,ν f 2
where

k q,ν = 1 + √ q × q ν+1
1 -q 2(ν+1) .

Proof. In fact

∂ * q xf = f (x) -q 2ν+2 f (qx) x∂ q f = f (q -1 x) -f (x).
We introduce the following operator

Λ q f (x) = f (qx), then Λ q f, g = q -2(ν+1) f, Λ -1 q g . So 1 1 -q 2(ν+1) ∂ * q xf (x) -q 2ν+2 Λ q x∂ q f (x) = f (x)
Assume that xf and xF q,ν f belongs to the space L q,2,ν . Then we have

f, f = - 1 1 -q 2(ν+1) xf, ∂ q f - 1 1 -q 2(ν+1) ∂ q f, xΛ -1 q f .
By Cauchy-Schwartz inequality we get

f, f ≤ 1 1 -q 2(ν+1) xf 2 ∂ q f 2 + 1 1 -q 2(ν+1) ∂ q f 2 xΛ -1 q f 2 .
On the other hand

xΛ -1 q f 2 = √ q × q ν+1 xf 2 ,
Corollary 1 leads to the result.

Hardy's theorem

The following Lemma from complex analysis is crucial for the proof of our main theorem.

Lemma 1 For every p ∈ N, there exist σ p > 0 for which

|z| 2p |j ν (z, q 2 )| < σ p e |z| , ∀z ∈ C.
Proof. In fact

|z| 2p |j ν (z, q 2 )| ≤ 1 (q 2 , q 2 ) ∞ (q 2ν+2 , q 2 ) ∞ ∞ n=0 q n(n-1) |z| 2n+2p ≤ q p(p+1) (q 2 , q 2 ) ∞ (q 2ν+2 , q 2 ) ∞ ∞ n=p q n(n-2p-1) |z| 2n . Now using the Stirling's formula n! ∼ √ 2πn
n n e n , we see that there exist an entire n 0 ≥ p such that q n(n-2p-1) < 1 (2n)!

, ∀n ≥ n 0 , which implies

∞ n=n 0 q n(n-2p-1) |z| 2n < ∞ n=n 0 1 (2n)! |z| 2n < e |z| .
Finally there exist σ p > 0 such that

|z| 2p |j ν (z, q 2 )| e |z| < σ p , ∀z ∈ C
This complete the proof.

Lemma 2 Let h be an entire function on C such that

|h(z)| ≤ Ce a|z| 2 , z ∈ C, |h(x)| ≤ Ce -ax 2 , x ∈ R,
for some positive constants a and C. Then there exist

C * ∈ R such h(x) = C * e -ax 2 .
The reader can see the reference [START_REF] Sitaram | An analogue of Hardy's theorem for very rapidly decreasing functions on semi-simple Lie groups[END_REF] for the proof. Now we are in a position to state and prove the q-analogue of the Hardy's theorem Theorem 7 Suppose f ∈ L q,1,ν satisfying the following estimates

|f (x)| ≤ Ce -1 2 x 2 , ∀x ∈ R + q , (8) 
|F q,ν f (x)| ≤ Ce -1 2 x 2 , ∀x ∈ R,
where C is a positive constant. Then there exist A ∈ R such that f (z) = Ac q,ν F q,ν e -1 2 x 2 (z), ∀z ∈ C.

Proof. We claim that F q,ν f is an analytic function and there exist C ′ > 0 such that

|F q,ν f (z)| ≤ C ′ e 1 2 |z| 2 , ∀z ∈ C. We have |F q,ν f (z)| ≤ c q,ν ∞ 0 |f (x)||j ν (zx, q 2 )|x 2ν+1 d q x.
From the Lemma 1, if |z| > 1 then there exist σ 1 > 0 such that

x 2ν+1 |j ν (zx, q 2 )| = 1 |z| 2ν+1 (|z| x) 2ν+1 |j ν (zx, q 2 )| < σ 1 1 + |z| 2 x 2 e x|z| , ∀x ∈ R + q .
Then we obtain

|F q,ν f (z)| ≤ Cσ 1 c q,ν ∞ 0 e -1 2 (x-|z|) 2 1 + |z| 2 x 2 d q x e 1 2 |z| 2 < Cσ 1 c q,ν ∞ 0 1 1 + x 2 d q x e 1 2 |z| 2 . Now, if |z| ≤ 1 then there exist σ 2 > 0 such that x 2ν+1 |j ν (zx, q 2 )| ≤ σ 2 e x , ∀x ∈ R + q . Therefore |F q,ν f (z)| ≤ Cσ 2 c q,ν ∞ 0 e -1 2 x 2 +x d q x ≤ Cσ 2 c q,ν ∞ 0 e -1 2 x 2 +x d q x e 1 2 |z| 2 ,
which leads to the estimate [START_REF] Fitouhi | The q-j α Bessel function[END_REF]. Using Lemma 2, we obtain

F q,ν f (z) = const.e -1 2 z 2 , ∀z ∈ C,
and by Theorem 1, we conclude that

f (z) = const.F q,ν e -1 2 t 2 (z), ∀z ∈ C.
Corollary 2 Suppose f ∈ L q,1,ν satisfying the following estimates

|f (x)| ≤ Ce -px 2 , ∀x ∈ R + q , |F q,ν f (x)| ≤ Ce -σx 2 , ∀x ∈ R,
where C, p, σ are a positive constant and pσ = 1 4 . We suppose that there exist a ∈ R + q such that a 2 p = 1 2 . Then there exist A ∈ R such that

f (z) = Ac q,ν F q,ν e -σt 2 (z), ∀z ∈ C.
Proof. Let a ∈ R + q , and put f a (x) = f (ax), then F q,ν f a (x) = 1 a 2ν+2 F q,ν f (x/a). In the end, applying Theorem 7 to the function f a .

Corollary 3 Suppose f ∈ L q,1,ν satisfying the following estimates

|f (x)| ≤ Ce -px 2 , ∀x ∈ R + q , |F q,ν f (x)| ≤ Ce -σx 2 , ∀x ∈ R, (9) 
where C, p, σ are a positive constant and pσ > 1 4 . We suppose that there exist a ∈ R + q such that a 2 p = 1 2 . Then f ≡ 0. Proof. In fact there exists σ ′ < σ such that pσ ′ = 1 4 . Then the function f satisfying the estimates of Corollary 2, if we replacing σ by σ ′ . Which implies F q,ν f (x) = const.e -σ ′ x 2 , ∀x ∈ R.

On the other hand, f satisfying the estimates (9), then const.e -σ ′ x 2 ≤ Ce -σx 2 , ∀x ∈ R. This implies F q,ν f ≡ 0, and by Theorem 1 we conclude that f ≡ 0. and then ∞ 0 J ν,n (x; q 2 )J ν,m (x; q 2 ) x 2ν+1 d q x = δ n,m . Now we use the arguments of q-Bessel Fourier analysis provided in this paper to show that P ν,n χ [0,1] , P ν,m χ [0,1] = F q,ν (J v,n ), F q,ν (J v,m ) = J ν,n , J ν,m = δ n,m .

Another proof of the orthogonality of the little q-Jacobi polynomials can be found in [START_REF] Koekoek | The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue[END_REF] Proposition 6 The systems {J ν,n } ∞ n=0 , {P ν,n } ∞ n=0 forme two orthonormals basis respectively of the Hilbert spaces P W v q and L ν q,2 .

Proof. From [START_REF] Jackson | On a q-Definite Integrals[END_REF] we derive the orthonormality. To prove that the system {J ν,n } ∞ n=0 is complet in P W ν q , given a function f ∈ P W ν q such that f, J ν,n = 0, ∀n ∈ N.

Then F q,ν (f ), F q,ν (J ν,n ) = 0, ∀n ∈ N, which implies F q,ν (f ), P ν,n χ [0,1] = F q,ν (f )χ [0,1] , P ν,n = F q,ν (f ), P ν,n = 0, ∀n ∈ N.

From the definition of the polynomial P ν,n we conclude that F q,ν (f ), t 2n = 0, ∀n ∈ N.

Then c q,ν ∞ n=0 (-1) n q n(n+1) (q 2 , q 2 ) n (q 2ν+2 , q 2 ) n F q,ν (f ), t 2n x 2n = 0, ∀x ∈ R + q , which can be written as F 2 q,ν (f )(x) = 0, ∀x ∈ R + q . By the inversion formula (2) we conclude that f = 0. From [START_REF] Jackson | On a q-Definite Integrals[END_REF] we derive the orthonormality. To prove that the system {P ν,n } ∞ n=0 is complet in L ν q,2 , given a function f ∈ L ν q,2 such that f |P ν,n = 0, ∀n ∈ N Then f |t 2n = 0, ∀n ∈ N.

Which leads to the result.

and ∞ 1 σ

 1 (y) p y 2ν+1 d q y

5 The q-Fourier-Neumann Expansions

The little q-Jacobi polynomials are defined for ν, β > -1 by [START_REF] Koekoek | The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue[END_REF] p n (x; q ν , q β ; q) = 2 φ 1 q n+ν+β+1 , q -n q ν+1 q; qx .

We define the functions P ν,n (x; q 2 ) = σ q,ν (n)q -n(ν+1) (q 2+2n , q 2ν+2 ; q 2 ) ∞ (q 2+2n+2ν , q 2 ; q 2 ) ∞ p n (x 2 ; q 2ν , 1; q 2 ) and J ν,n (x; q 2 ) = σ q,ν (n) J ν+2n+1 (q n x; q 2 ) x ν+1 , where

Consider L ν q,2 as an Hilbert space with the inner product

The q-Paley-Wiener space is defined by

Proposition 4 P W ν q is a closed subspace of L q,2,ν and with the inner product given in ( 3) is an Hilbert space.

Proof. In fact, given f ∈ L q,2,ν and let {f n } n∈N be a sequence of element of P W ν q which converge to f in L 2 -norm. For n ∈ N, there exist u n ∈ L ν q,2 such that

This give lim

and then

Proposition 5 We have

As a consequence

Proof. The following proof is identical to the proof of Lemma 1 in [START_REF] Abreu | A q-linear analogue of the plane wave expansion[END_REF]. Using an identity established in [START_REF] Koornwinder | On q-analogues of the Hankel and Fourier Transforms[END_REF]13] ∞ 0 t -λ J µ (q m t; q 2 )J θ (q n t; q 2 )d q t

= (1 -q)q n(λ-1)+(m-n)µ (q 1+λ+θ-µ , q 2µ+2 ; q 2 ) ∞ (q 1-λ+θ+µ , q 2 ; q 2 ) ∞ × 2 φ 1 q 1-λ+µ+θ , q 1-λ+µ-θ q 2µ+2 q 2 ; q 2m-2n+1+λ+θ-µ , [START_REF] Gasper | Basic hypergeometric series, Encycopedia of mathematics and its applications[END_REF] where n, m ∈ Z and θ, µ, λ ∈ C such that Re(1 -λ + θ + µ) > 0, θ, µ are not equal to a negative integer and

are not a non-positive integer [13].

To evaluate F q,ν (J ν,n )(x) when x = q m ≤ 1, we take in ( 10)

J ν (xt; q 2 )J ν+2n+1 (q n t; q 2 ) d q t = σ q,ν (n)q -n(ν+1) (q 2+2n , q 2ν+2 ; q 2 ) ∞ (q 2+2n+2ν , q 2 ; q 2 ) ∞ 2 φ 1 q 2+2ν+2n , q -2n q 2ν+2 q 2 ; q 2 x 2 = P ν,n (x; q 2 ).

To evaluate F q,ν (J ν,m )(x) when x = q n > 1, we consider in ( 10)

In this way, 1 + λ + θ -µ = -2m. This gives for m ∈ N a factor (q -2m ; q 2 ) ∞ = 0 on the numerator and then F q,ν (J ν,m )(x) = 0, x > 1

By setting λ = 1, θ = ν + 2n + 1, and µ = ν + 2m + 1 in , it is clear that, for n, m = 0, 1, 2, . . . , ∞ 0 J ν+2n+1 (q n x; q 2 )J ν+2m+1 (q m x; q 2 )

As a consequence we have

× λ q J ν+1 (λ; q 2 )J ′ ν (λ/q; q 2 ) -J ν+1 (λ; q 2 )J ν (λ/q; q 2 ) -J ′ ν+1 (λ; q 2 )J ν (λ/q; q 2 ) .

Proof. Let λ ∈ R and consider the function

Then ψ λ ∈ L ν q,2 and we can write

Note that

Then we deduce the result. Using the Parseval's theorem and (12) we obtain

x -2(ν+1) 1 -q .

The second identity is deduced also from the Parseval's theorem ∞ n=0

J n,ν (λ; q 2 ) 2 = N 2 q,ν,2 (ψ λ ), and the following relation proved in [START_REF] Koelink | On the zeros of the Hahn-Exton q-Bessel Function and associated q-Lommel polynomials[END_REF] 1 0 J ν (aqt; q 2 ) 2 td q t = -(1 -q)q ν-1 2a

× aJ ν+1 (aq; q 2 )J ′ ν (a; q 2 ) -J ν+1 (aq; q 2 )J ν (a; q 2 ) -J ′ ν+1 (aq; q 2 )J ν (a; q 2 ) .