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On the ¢-Bessel Fourier transform

Lazhar Dhaouadi *

Abstract

In this work, we are interested by the g-Bessel Fourier transform with a new approach.
Many important results of this g-integral transform are proved with a new constructive
demonstrations and we establish in particular the associated ¢-Fourier-Neumen expansion
which involves the g-little Jacobi polynomials.

1 Introduction

In the recent mathematical literature one finds many articles which deal with the theory of
g-Fourier analysis associated with the ¢-Hankel transform. This theory was elaborated first by
Koornwinder and R.F. Swarttouw [12] and then by Fitouhi and Al [5] §].

It should be noticed that in [5] we provided the mains results of g-Fourier analysis in particular
that the g-Hankel transform is extended to the £, 2, space like an isometric operator. Often
we use the crucial properties namely the positivity of the ¢-Bessel translation operator to prove
some results but these last property is not ensured for any ¢ in the interval ]0,1[. Thus, we
will prove some main results of g-Fourier analysis without the positivity argument especially the
following statments:

- Inversion Formula in the £, , spaces with p > 1.

- Plancherel Formula in the £, , N £, 1, spaces with p > 2.

- Plancherel Formula in the £, 2, spaces.

Note that in the paper [7] we have proved that the positivity of the ¢g-Bessel translation operator
is ensured in all points of the interval ]0,1[ when v > 0. In this article we will try to show in
a clear way the part in which the positivity of the g-Bessel translation operator plays a role
in g-Bessel Fourier analysis. In particular, when we try to prove a g¢-version of the Young’s
inequality for the associated convolution.

Many interesting result about the uncertainty principle for the ¢-Bessel transform was proved in
the last years. We cite for examples [2 3] [4, [9]. There are some differences of the results cited
above and our result:

In this paper the Heisenberg uncertainty inequality is established for functions in £, 2, space.
The Hardy’s inequality discuss here is a quantitative uncertainty principles which give an infor-
mation about how a function and its ¢g-Bessel Fourier transform are linked.

In the end of this paper we use the remarkable work in [I] to establish a new result about the
g-Fourier-Neumen expansion involving the g-little Jacobi polynomials.
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2 The g-Bessel transform

The reader can see the references [10] 11}, [16] about g-series theory. The references [5, [8 [12] are
devoted to the g-Bessel Fourier analysis. Throughout this paper, we consider 0 < ¢ < 1 and
v > —1. We denote by

RS ={¢", neZ}.
The g-Bessel operator is defined as follows [5]

1 _
Aguf(@) = — [fla'2) = (1+¢™) f(z) + 4" f(qz)] -

The eigenfunction of A,, associated with the eigenvalue —\? is the function = — j,(\z,¢?),
where j,(.,¢?) is the normalized g-Bessel function defined by [5, [8, [0, [14) [16]

o n(n+1)

(
jy(ﬂf,q2) _ Z(_l)n q x2n‘

= (@**2,¢*)n(d* ¢*)n

The g-Jackson integral of a function f defined on R is
| f0dt=0-0 3 ")
0 nez

We denote by L, the space of functions f defined on R;" such that

> 2 1 1/17
Hfuq,p,y:< /0 )Pt dq$> exist.

We denote by C, o the space of functions defined on R;r tending to 0 as x — oo and continuous
at 0 equipped with the topology of uniform convergence. The space C, ¢ is complete with respect
to the norm

[ fllg,00 = sup [f(z)].

:(/‘E]R:r

The normalized g-Bessel function j,(., ¢?) satisfies the orthogonality relation

G | aat it PNt = 8w, Yooy € By 1)
where
Oifx#vy
1) = .
(@, y) { W ifox=y
and

1 (¢*7,¢%)
—q (*,¢*)

Cqv = 1

Let f be a function defined on R;r then

| e = ra).
The normalized g-Bessel function j,(., ¢?) satisfies

(0% ¢%)oo(—¢*% 0% [ 1 if n>0
(q2u+2;q2)oo 2—(2v+1)n if n<0

13, (¢", ¢%)| <



The g-Bessel Fourier transform F, , is defined by [5] 8, 12]

Fowf (@) = cqp / F@ju(at,¢®)t* dyt, Vo e Ry
0
Proposition 1 Let f € L1, then F,,f € Cq0 and we have
”-7: 7V(f)Hq700 < Bqﬂ/HfH%Lv

where 5 o ors o
1 (=% 0%) oo ("% 0) oo
1—gq (0% ¢*) oo

Bgy =

Theorem 1 Let f be a function in the L, , space where p > 1 then
Foof =T (2)
Proof. If f € £, , then F,, f exist, and we have

]-"g,yf(x) = Cq’y/o Fouf (0)d(at, )2 Tt
= /0 f) [Cg,u /0 Gu(@t, 4o (yt, @t T dgt | y* ldgy
:/0 F@)oq(z,y)y™ gy
= f(z)

The computations are justified by the Fubuni’s theorem: If p > 1 then we use the Holder’s
inequality

/0 |f(v)l [/ |ju($t,q2)j,,(yt,q2)|t2’/+1dqt] VP dy

0
0o ot 1/p 0o Coid 1/p
< [ /0 |F)Py™ dqy} x [ /0 o(y)Py*+ dqy} :

The numbers p and p above are conjugates and

o
o) = [ lintat )it P
then

> P, 2v+1
/0 o(y)Py™ gy

1 0
= /0 o(y)Py* gy + /1 oyPy* dyy.

Note that
1
/0 o(y)Py™ gy
2\ 11D ! o 2 2 1 P 2 1
< il M | [ | it dqt} 2y
0 0

o B 1
< W @B sl (o ) E 2417 [ / zf"“dqy} < oo,



and

> D, 2v+1
/ o(y)Py* gy
1
2v+1

[e.e]
. 7 . o y
< Vil el P [ s

o0
| . ; 1
< H]V('vq2)”g,oo”]l/('7qz)”p,l,u/1 mdqy < 00.

If p=1 then

/0 £ [/0 |j”($t7qz)ju(yt,q2)|t2”+1dqt] y2"+1dqy

1
. 2 . 2
< I llgawlliv (@) lgoolliv (-, @) g1 % 2201

Theorem 2 Let f be a function in the L1, N Lyp, space, where p > 2 then

H]:q,uqu,Zv = HquQ,V'
Proof. Let f € L£,1, N Ly, then by Theorem [Il we see that

2
‘Fq,uf = f
This implies

/ ]:,l,f(x)zxm’ﬂdqx :/ Fawf () [Cq,u/ f(t)ju(xt,qz)tm’ﬂdqt} :E2”+1dq:17
0 0

=[50 feaw [T Frt@itan 1 e 20

/ f t2l/+ld t.

The computations are justified by the Fubuni’s theorem

/0 ol [ /0 |fq,uf<:c>||jy<:ct,q2>|:s2v+1dq4 v+ 4,1

o0 1/ 0 1/p
< [ /0 \f(t)!pt2”“dqt] T [ /0 \¢(t)\pt2v+1dqt} p,

Bt) = cqu /0 By F (@) (2t )2,

where

then
1 F @) < cgu /0 FO v @y, )y dyy

o o1 1/p 00 A 1/p
<eou | [P | x| [T it P )

0o - 1/p 00 A 1/p ) o
S A R R O

< Coull Fllgpu (- @) lgppa 0P,



This gives
2 2 o 2 2v+1)—2 1)/p
() < g | Fllapwlliv () lgpw /0 g (xt, %) | @D 2AD/P g g

< 2 laplio (o ) e [ [Tl q2>|x2<"+1>/P-1dqx] 20

and
o) = o [ 1B @it )l
S A e
< cqullFawFllaoe * 15 ( @*)llg x t720FD
< Cyt—20H),
Note that
_ _ P _ B
{ —;(j +21();i Z’ffifi { (i2<(1/ i(;)?;—al—)(f) <2()) cl<p<2ep>2
Hence
[T owpetan= [ wpesaps [T owpe
o /1t_2(v+1)p/pt2u+1dqt+c2 /OO 2D o
0 1
which prove the result. |

Theorem 3 Let f be a function in the L, 2, space then

H-Fq,VquQ,V = HquQ,V'

Proof. We introduce the function 1, as follows

%(t) = Cq,z/jz/(t$a q2)‘

The inner product (,) in the Hilbert space L2, is defined by

F.9 € Loy = frg) = /0 " Hg )Ryt (3)

Using (II) we write
x#yj <wx7¢y> =0

1
”wxugzw =17 2(v+1)

We have
]:qyl/f(x) = <f7 Q)Z):E>7



and by Theorem [I]
f E £q72,1/ = fq%yf = f7

then
(f ) =0,Vo € R =F, , f(x) =0,Vz e Rf=f = 0.

Hence, {t¢,,x € R}} form an orthogonal basis of the Hilbert space £, 2, and we have
q a2,

{w$7 vx € R‘—}_} = £Q727V'

Now
f€Lypy=f= Z (> Y,
IITZ)mIIq 2.0
and then
12 = 2 o ” (Fta)? = (=) D 2® " VF (@) = 1 Faw o0
zeRF A2V z€RF
which achieve the proof. |

Proposition 2 Let f € L, , where p>1 then Fy,f € Lyp,. If 1 <p <2 then

21
[ Fawfllapy < Biw | fllgp.o- (4)

Proof. This is an immediate consequence of Proposition [I, Theorem 3], the Riesz-Thorin theo-
rem and the inversion formula (2I). |

The g-translation operator is given as follow

Ty f(y) = cqw /0 FawrF®)du(yt, ) gu (xt, ¢* )t T Hd,t.

Let us now introduce

Q= {q €]0,1[, 1Ty, 1is positive for all =z € R;}

the set of the positivity of T;/,. We recall that T}/, is called positive if T/, f > 0 for f > 0. In
a recent paper [6] it was proved that if —1 < v < v/ then Q, C Q,/ . As a consequence :

- If 0 < v then Q, =]0,1].
- If =1 < v < 0 then ]0,q0] C Q_ 1 C @, ¢J0,1], ¢qo~0.43.

- If—1<1/§—% thenQ,,CQ_%.



Theorem 4 Let f € Ly, then TY [ exists and we have

/0 TY f()y™ gy = /0 F)y* dgy.

and
/ f x Y, 2 ) 2V+1dq2,
where
Dy (z,y,2) = 21,/ (@8, @%5u (ys, ¢ (25, ¢%)s™ T dys.
0

If we suppose that T/, is a positive operator then for all p > 1 we have

1752 flapw < 1 llgp- ()
Proof. We write the operator 7, in the following form
ToofW) = cqu /0 Fawf (2)jo(@z,4%)ju(yz, 4*)2*Fdy2
= Fow [Fauf(2)in(@2,4)] ().

So we have

/ Ty f )y iy = / Fow [Fawf (2)iv(z2,6*)] (0)y* ' dgy
0 0

B c1 qu”/ Fow [Fawf(2)iu(x2,6*)] ()3,(0,4°)y* +dgy
q,v 0

- Ci o [Fawf (2)jv(22,¢%)] (0)
q,V
1

- Cq,l/fqu(O)

— 7 s

On the other hand

T;v:cf(y) = Cq,l//o -F71/f(2)jy(f132,q2)ju(yz7q2)z2u+1dqz
= oo [ e [ IO | s, iz )
- / [/ quWyz,q2>jy<tz,q2>z2”+1dq4 FOR

/ Dyu(z,y,t) f(£)t2 T, t.

The computations are justified by the Fubuni’s theorem

/o [/0 |f(t)|‘jv(tzqu)\tzwldqt} (@2, @) i (yz, a°)] 2 dgz

Hqu’p’V/O |:/0 |jy(tz,q2)|ﬁt2u+1dqt:| |jy($z’q2)‘ ‘jv(yz,q2)| Z2V+1dqz

/OO ‘j,,(mz,q2)| |j,,(yz, qz)‘ 22(1/“)(1_%)_1%2.
0

=

IN

IN

1Fllg po 10 %)

Hq,ﬁv

7



Now suppose that T}/, is positive. Given a function f € C; we obtains

TV f(y)| = /0 Dq,y(x,y,t)f(t)tz’”rldqt‘

IN

/0 Dy, 8)] £ ()] 27 gt

[ / Dq,,,(x,y,t)t?”“dqt] T

IN

which implies
T3 f Il oo < I1F1lg 00 -

If the function f € L,1, then we obtains

Tty = [ 1T
L 1Dastein 012 |
1 Dot ) 010

< /O FOI 2+ dgt = |11l 1

IN

IN

The result is a consequence of the Riesz-Thorin theorem.

Notice that the kernel D, (z,y,t) can be written as follows

o
Dq’y(x, Y, t) = 627'/ / j,,(:z:z, q2)jy(yz, q2)ju(tZa q2)Z2V+1qu
0
= cquFaw (@2, 6*)ju(yz, 4] (1),

which implies

(e}

o0
/ D@,y ) dgt = cqu | Fou [in(22,6%)5u (2, ¢*)] ()1 Hdgt
0

0
- ]:qz,u [ju(ﬂfzaqz)jy(yz,qz)] (0) = 1.

The g-convolution product is defined by
f *q¢ g = th,u [th,uf X th,l/g] .

Theorem 5 Let 1< p,r,s such that

1 1 1
42 1==
p T s

Given two functions f € Lqp, and g € Ly, then f*, g exists and we have
- 2w+1
Fr00) = o [T I a0

8



and
f *q g € »Cq,s,u-

]:q,l/(f *q g) = ]:q,u(f) X ]:q,u(g)-

If s > 2 then
”f *q g”q7s,y S B‘LV Hqu,p,y Hg”qﬁ",y .

If we suppose that T}, is a positive operator then

Hf *q g”q7s,y S C‘LV ”f”q,p,y ”qu,r,y N

Proof. We have

[ *q g(x) = Fav [}—qwf X }—qwg] (x)
— /O Fyof(0) % Fyua@)iv(xy, ¢)y? gy

) )
= v / Fawl(y) x |:Cq,u / g(z)jy(zy,qz)z2”+1dqz] Jo(zy, ¢ )y* dgy
0OO N 0
= Cq / [quu / Fowf (y)jv(zy,f)ju(wy,qz)y”“dqy} 9(2)z*" dgz
0OO 0
— cq7VA T(fo(z)g(z)zbﬂdqz.
The computations are justified by the Fubuni’s theorem

/0 [ Four )] X [/0 l9(2)| % [ju(2y.4%)| Z2y+1dq2} i@y, ¢)| v*dgy

o > N T _2v+1
9l | IF,uf(y)IXUO oo @) 2 dqz}
_ 2v+42

= HquvT’vVHjl’("q2)Hq,r,V/0 P )] ooy a®)| v | v gy

3=

IN

Ju(@y, )| v* gy

P

; U _2u427P
= Hqu,T’,VH]l’("q2)Hq7F,uHquVf”q,ﬁv (/0 “]u(ivy,q2)‘y ) } y2u+ldqy>

IN

1
o 1
; 2 . 20\ |P, 2(w+1)(1-2)—1 P
oy ) s ([ i) P2 008y )
From Proposition 2] we deduce that
fq,l/f € Eq,ﬁ,l/ and vaug S ﬁquvu'

Then, using the Holder inequality and the fact that

e
@l | =

_l’_

[ =

to conclude that
fq’yf X ‘Fqﬂl-g G £q7§7y'

Which implies that
frq9=TFou Fauf x Faug) € Losu



and by the inversion formula (2]) we obtain
Faw (f *q9) = Fouf X Fovg.
Suppose that s > 2, so 1 <35 <2 and we can write
1S #q 9||q78,,, = | Fgw [Fouf x F ,u9]||q75,,,
Bio WFai o 1 a9l

2.1 2.1 2.
quvl’ B‘il’ B‘;V HfH(LpJ/HqumJ/

Bq,l/ ||f||q,p,1/ ||g||q77“,l/ :

IN

VANVAN

Now suppose that T, is a positive operator.
We introduce the operator K as follows

Kg(zr) = cq,,,/o quxf(z)g(z)zbﬂdqz.
By the Holder inequality and (B) we get

”ngHq,oo < Cq,v Hf”q,p,y Hqu,ﬁ,y :

The Minkowski inequality leads to

HngHq,p,y S C[LV Hf||q7p71/ Hqu,LV .

Hence we have
Kf : ﬁq’@y — Cq70, Kf : ﬁq,lﬂ, — Eq’p’y-
Then the operator K satisfies
Kf : ﬁqmy — ﬁq,&,,

and
”f *q g”q7571/ = ”ngH%&V S C‘LV Hf”q,p,y Hqu,r,y .

Remark 1 We discuss here the sharp results for the Hausdorf- Young inequality provided above.
An inequality already sharper than (6)) is given in formula (7). In fact we have cq, < By, .

To obtained (7) without the positivity argument, we can do by using which is a q-Riemann-
Liouville fractional integral generalizing the gq-Mehler integral representation for the q-Bessel

function j,(.,q*) which can be proved in a straightforward way [8]

1 2t2 q2)
(A ¢ =2 /7(‘]’“'7527575
J ()‘7q ) [ V]q 0 (q2Vt27q2)oo]0()\ 4 ) dq

together with the inequalities for the q-Bessel function which is given as formula (24) in the

paper [4)]
do(z;¢*)| <1, Va RS

Combine this formulas we arrive at

(z3¢®)| <1, Yz eRS, v>0.

10



Then the inequalities ([f)) can be written as follows

29
| Fawfllgpy < cav | fllgpo

This should give the sharpest version of (@) in the cases v > 0. Unfortunately the positivity of
the operator T/, is satisfied in this case.
In fact we can prove that if we are in the positivity cases then

50( ) oo < 1-

To prove this recalling that
TV vy, @°) = v (@, ¢*)ju (y, ).
So we have -
/0 Dy (@,y,t)ju(t, )" dyt = ju(x,4%)ju (y, %)

We obtains for all x,y € RF

(2, ¢*)| % |5 (y.¢*)| < /0 Dy (2, 1) | (t, %) 2 L dyt

IA

[/0 Dv(:pa Y, t)t2y+1dqt HJ”(’ q2)Hq,oo :

The fact that
/ D, (x,y, )t d,t =1
0
implies )
Hj’/("q2)Hq,oo = Hj”("q2)Hq7oo

which gives the result.

3 Uncertainty principle

We introduce two g-difference operators

flgz) = f(z)

X

Oqf(x) =

and 2v+1
91 F(x) = f@) =" flgx)

X

Then we have

040, f(x) = 0,0, f (x) = Ay f(T).

Proposition 3 If (0,f,g) exist and lim ‘a2"+1f(q_1a)g(a)‘ =0 then
a— o0

(Oqf.9) = —([,0;9)-

11



Proof. The following computation

/ 8 f 21/+1d T
/ f l f ) ( )$2V+1dql‘
_ / f(q 1117) 21/+1d r— / f 21/+1d z
_ q2u+1 /q f(ﬂf)g( 21/+1d / ff: 2u+1d T
_ 2u+1/ f(z) glqr)a®Hdz — / f(z) )22 dx + ot f (g a)g(a)
_ / f g ‘T iy—l—lg(qx) l‘2u+ldql‘ + a2u+1f(q—la)g(a)

= = _/0 f(@);g(x)a®  dyz + a® ! f(q " a)g(a)

leads to the result. [ |

Corollary 1 If f € L2, such that xF,,f € L2, then

1011y = l2Fqu £l -

Proof. In fact we have

Haqf”g = <aqfa 9f) = — <f= 8;8Qf>
— ([, Aguf)

— (Faufs FapBquf)

= <]:q7l/f’ $2]:q,vf>

= |l2Fe. fll3,

which prove the result. u

Theorem 6 Assume that f belongs to the space Lg2,. Then the q-Bessel transform satisfies
the following uncertainty principal

IF115 < kg llz£1l; laFqu £l

where

o [t vaxat]
O T2

Proof. In fact
O f = flx)— g f(qx)

20,f = flq~'x) — f(x).

12



We introduce the following operator

then
(Agf,g) = ¢ 2V (f,A7g).

So
1

=g el (@) = P A0y f(@)] = f()

Assume that zf and xF;, f belongs to the space £L;2,. Then we have

1 1
<f7f>:—1_qi,,+1<33f,8 o f) — w@qﬂw\q—lﬁ'

By Cauchy-Schwartz inequality we get

1 1 _
(o) < T 121210651+ Ty 10af s lodg £l

On the other hand
A f]l, = va x ¢t e fll,,

Corollary [l leads to the result.

4 Hardy’s theorem
The following Lemma from complex analysis is crucial for the proof of our main theorem.
Lemma 1 For every p € N, there exist o, > 0 for which

12|%P |5, (2, ¢%)| < ape‘z‘, Vz e C.

Proof. In fact

|Z|2p|jl/(z7q2)| < (qg’qg) 2,,4_2 2 ann 2 |z|2n+2p

qp(pH (n—2p—1)| .2
S(q2,q) 22 g ann D",

Now using the Stirling’s formula
n
n! ~ v 27mn—,
en

we see that there exist an entire ng > p such that

1
n(n—2p—1) < n >
q (271)'7 n = no,

which implies

]2\2" < el

ann 2p— 1‘2’2n< Z

n=ng nno

13



Finally there exist o, > 0 such that

2% i (2, ¢%)]

o] <oy VzeC

This complete the proof. |

Lemma 2 Let h be an entire function on C such that

Ih(z)| < Ce?” zec,

|h(z)] < Ce ™" 2R,

for some positive constants a and C. Then there exist C* € R such

h(z) = Cremoe”,
The reader can see the reference [17] for the proof.
Now we are in a position to state and prove the g-analogue of the Hardy’s theorem

Theorem 7 Suppose f € L1, satisfying the following estimates

f(z)| < Ce 3%, vz e R}, 8)

Fonf(@)] < Ce3, VzeR,

where C' is a positive constant. Then there exist A € R such that
f(2) = Acg v Fqu (e_%x2> (z), VzeC.
Proof. We claim that F, f is an analytic function and there exist C’ > 0 such that

| Fouf(2)] < Cle2l” vzec.
We have o
Fpuf ()] < can /0 F @iy (22, )22+ dy.

From the Lemmal/ll if |z| > 1 then there exist o; > 0 such that

01

2v41 2
zZ|T zZI, < —F5

2, (z2,¢%)| = el Wz e R}

‘2’211-1-1(

Then we obtain

F <C 006—%(1‘—\2\)2(1 1122 C ©_1 d 122
|Fowf(2)] < Coieqy . m ql | € < Coicqu o 1+ a2 ql| € .

Now, if |z| <1 then there exist oo > 0 such that

2 j, (22, ¢?)| < 09e”, Va € R;.

14



Therefore
o) 1 9 o) 1 o L
|‘7:f1,1/f(z)| S Ca2cq,u [/ 6—51‘ +xdq$:| S 00-26[1’1/ [/ 6—51‘ +xdq$:| e§|z| ,
0 0
which leads to the estimate (). Using Lemma 2, we obtain
Fouf(z) = const.e”2%, VzeC,
and by Theorem [I, we conclude that

142

f(z) = const.Fg,, <e_2 > (z), VzeC.

Corollary 2 Suppose f € L1, satisfying the following estimates
f(2)] < Ce™™, ¥z eRy,

\Fouf(x)] < Ce ™ VY eR,

where C,p, o are a positive constant and po = %. We suppose that there exist a € R;r such that

a’p = % Then there exist A € R such that

f(z) = Acq v Fqu <e_0t2) (2), VzeC.

Proof. Let a € R/}, and put
fa(z) = f(az),

1
-Fq,l/fa(x) = W-Fq,uf(x/a)‘

In the end, applying Theorem [7] to the function f,. |

then

Corollary 3 Suppose f € Lg1, satisfying the following estimates
f(z)| < Ce™, vz eR],

|Fowf(2)] < Ce™ Wz R, 9)
where C,p,o are a positive constant and po > %. We suppose that there exist a € ]R;r such that
a’p = % Then f = 0.

Proof. In fact there exists ¢/ < o such that po’ = %. Then the function f satisfying the
estimates of Corollary [2], if we replacing o by ¢’. Which implies

-Fq,l/f(l') = Const.e_"lxz, Y € R.
On the other hand, f satisfying the estimates (), then

o'x?

< Ce " VzeR.

‘const.e_

This implies F; , f = 0, and by Theorem [I] we conclude that f = 0. |
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5 The ¢g-Fourier-Neumann Expansions

The little g-Jacobi polynomials are defined for v, 5 > —1 by [15]

—-n

, B n+u+ﬁ+17q
Pu(z;4”,475q) = 201 < ! q;qa:>-
We define the functions
24+2n 2v+2. 2
9 — 1 (q »q 54 ) 2, 2 2
Pyn(w;¢%) = 0gu(n)g " )(q2+2n+2u,q2;q2)zp”(x L)
and )
Joront1(q"T;q
Ton(;¢%) = 04,(n) =+ n—gi_nug—l ),
where

1— q2u+4n+2
ogw(n) = 17_(1

Consider L7 5 as an Hilbert space with the inner product

1
o) = | rwatedge
The ¢-Paley-Wiener space is defined by
1
PW} = { fE€Lyay: fx)=cqn /0 u(t)j, (ot g*)t* T dyt, we zgﬁz} :

Proposition 4 PW/ is a closed subspace of L2, and with the inner product given in (3) is
an Hilbert space.

Proof. In fact, given f € L;2, and let {f,}nen be a sequence of element of PW, which
converge to f in L?-norm. For n € N, there exist u,, € Ly 5 such that

1
fulz) = cq7,,/0 un(t)j,,(a:t,q2)t2”+1dqt.

Moreover
Jim [ fr = fllg2 = 0.
This give
nh—>n;o ”]:qu/fn - fq,VfH%?,V =0,
and then
1 00
lim [ / Foyofnl@) — Fou fla) Py + / Fyf (@) 222 dy| =0,

which implies
| Faut @ iz =0 % Foufla) =0, Vo € RO ocl.

Then f € PW/. |
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Proposition 5 We have
]:q,u(jy,n)($) = Py,n(x; q2)X[0,1} (l‘), Vr € R;—

As a consequence

1
/0 Pl/,n(x; q2)PI/,m(x; q2)332u+1 dqx = 5n,m-

Proof. The following proof is identical to the proof of Lemma 1 in [I]. Using an identity
established in [12] [13]

/0 ("t 0%) Jo (g™t 47 )dyt

_ (1 . q)qn()\—l)—l—(m—n)p (q1+)\+9_ua q2ﬂ+2; qz)oo

(P A0+ g2 %)

1-Apu+0 1—A+u—0
X 901 <q q2/ﬁ2 q2;q2m—2n+1+)\+9—ﬂ> ’ (10)

where n,m € Z and 0, u, A € C such that Re(1 — A4+ 60+ ) > 0, 6, u are not equal to a negative
integer and
A+0+1=p)/2, m—n+A+0+1—p)/2

are not a non-positive integer [13].

To evaluate F; ,(Jy.n)(z) when z = ¢™ < 1, we take in (I0)
q"=z,u=v,0=v+2n+1,A=0

then

':L'_V

o0
: q/ (2t ¢*) Ty yoni1 (¢ ¢%) dgt
—qJo

_ . (n)q_"(”“) (q2+2”,q2”+2;q2)oo 5 vt g=2n
v (q2+2n+2u7q2;q2)002 1 q21/+2

— Py,n($; q2)-

]:q,v(ju,n)(x) = Jq,u(n)

7% q2x2>

To evaluate Fy ., (Jym)(z) when z = ¢" > 1, we consider in (I0)
=z, u=v+2m+1,0=v,12=0
In this way, 1 + A + 0 — = —2m. This gives for m € N a factor
(@72:6%)oc = 0

on the numerator and then
Fou(Tvm)(@) =0, x>1
By setting A=1,0=v+2n+1,and p =v+2m+1in, it is clear that, for n,m =0,1,2,...,
dgx 1

o
J ;%) Mrigt) = = ——6
/0 v+ont+1(q" w5 q ) vr2m+1(¢"' T3 q°) x aq,y(n)Q n,m
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and then -
/0 Ton (@563 Ty (x5 62) 2 T dgx = 610 -

Now we use the arguments of g-Bessel Fourier analysis provided in this paper to show that
(Ponxio)s PrmXpo,1]) = (Fau(Tom)s Fau(Tom)) = (Tvins Tvm) = Onm- (11)

Another proof of the orthogonality of the little g-Jacobi polynomials can be found in [15] |

Proposition 6 The systems
{Tvntnzo:  {BuntnZo

forme two orthonormals basis respectively of the Hilbert spaces PW] and 55,2'

Proof. From (IIJ) we derive the orthonormality. To prove that the system {7, ,}>2 is complet
in PW7, given a function f € PW/ such that

(f, Jom) =0, VneN.

Then
<]:q,1/(f)7]:q,u(u7u,n)> - 0, \V/TL S N,

which implies
<fq,u(f)7PV7nX[0,1}> = <Jr ,I/(f)X[O,l}a Pu,n> = <-Fq,u(f)7pu,n> = 07 Vn € N.
From the definition of the polynomial P, , we conclude that

(Fyu(£),t2") =0, VneN.

Then
Cq,v Z(_l)n 2 2qn(n;jl-|)—2 2 <]: ,V(f)at2n> ?" =0, Vre R;‘,
= (@2, ¢*)n(@®*2,¢*)n

which can be written as
2
fqﬂ,(f)(a:) =0, Vze ]R;r.

By the inversion formula (2)) we conclude that f = 0. From (Il we derive the orthonormality.

To prove that the system {P,,};% is complet in Ly 5, given a function f € Ly, such that

(f|Pyn) =0, VYneN

Then
(flt*™) =0, VneN.

Which leads to the result. [ |
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Proposition 7 Let A € R then
Cq (N3 ¢%) ZJWAq wo(2), Vo e[0,1]NR;.

As a consequence we have

e —2(v+1)
Z [Pnu(x;qQ)]2 = xi, Ve e [0,1] NR;
n=0 7 1- q
and for all X € Rf
o qV
nl/ )\ = T A 119,
nz_:o ‘7 q 2(1 _ q))\1+2u

|

Proof. Let A € R and consider the function

| >

a0, NRE =R, @ cgui (A3 ¢%).

Then ¢ € Ly 5 and we can write

[e.e]

UA(@) = Y (Wa|Poy) Pau(a), Vae[0,1]NR;.

n=0

Note that

<1/}>\’Pn,l/> = <1/})\7 n,vX[0,1 > <1/})\7 (jn V)> = ‘qu,y(jn,u)()‘) = jn,u()‘;qz)‘

Then we deduce the result. Using the Parseval’s theorem and (I2]) we obtain

> —2(v+1)
) 2 . 2 o X
7;:0: [Pnﬂ/(xv q )] - ”wl‘Hq,Zu - 1— q

The second identity is deduced also from the Parseval’s theorem

[e.e]

S [TnnXia))]” = N2, o),

n=0
and the following relation proved in [14]
1 1— v—1
[t 1 - 0=
0 2a

X [aJVH (aq; ¢*)J,(a; %) — Jot1(aq; %) o (a; ¢*) — T, 1 (aq; ¢*) T, (a; qz)] :
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