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Abstract 

Molecular Dynamics (MD) simulations of direct and derivative thermodynamic properties of 

the Mie n-6 fluid (n = 8, 10 and 12) have been performed for liquid to supercritical states. 

Using the results, has been carried out an in depth test of the monomer-monomer interaction 

estimation of a recently derived SAFT-VR equation of state (Lafitte et al. J. Chem. Phys., 

2006, 124, 024509) based on the Mie n–6 potential. For pure fluids, using an appropriate 

scaling, MD simulations show that density and isometric heat capacity are nearly independent 

of n whereas sound velocity and thermal pressure coefficient tend to increase with n. In 

addition, the results show that predictions provided by the equation of state are consistent with 

those coming from MD and catch correctly the trends of each property with n except for the 

heat capacity. The comparison is next extended to binary mixtures, with components differing 
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only in the value of the n-parameter, and demonstrates the reliability of the scheme (MX1b) 

used by Lafitte et al. to deal with this parameter in the SAFT-VR equation of state. In 

addition, is proposed a new empirical one-fluid approximation on the n-parameter thanks to 

MD simulations, which very favorably compares to one fluid model on n previously proposed 

in the literature. The consistency of this approximation is addressed by making use of it in 

combination with the SAFT-VR Mie EOS. It is shown that using such an approach, which is 

easier to handle than the MX1b one, yields slightly improved results compared to the MX1b 

ones.  
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1. Introduction 

The choice of adequate analytical intermolecular potential models is still a major 

challenge in order to accurately describe the behavior of dense fluids. In this context, the 

effective two parameters Lennard-Jones 12-6 (LJ) potential is the most widely used model for 

exploring the behavior of simple fluids (i.e. molecules for which the most important 

intermolecular forces are repulsion and van der Waals dispersion) in statistical physics and 

related scientific domains. This potential, despite its simplicity, mimics most of the features 

found experimentally in fluid states. However, from a theoretical point of view, it is well 

known that the LJ potential is not a true representation of even two-body interactions between 

argon atoms. In particular, it represents the decay of repulsive interaction by an inverse-

twelve power dependence on intermolecular separation which was chosen mainly for 

mathematical convenience and has no physical soundness1. This apparent weakness is of 

importance since it appears clearly that the structural properties of a simple fluid are primarily 

determined by the intermolecular short-range repulsive interactions2,3. Therefore, one way to 

improve the results, using simple effective potentials, could be the use of different forms of 

the repulsive part of the potential as done for transport properties in low density gases4. In this 

work, among the possible simple alternatives to the two parameters LJ 12-6 potential, we 

have chosen the three parameters Mie n-6 potential family that uses a 1/rn formulation of the 

repulsive part of potential (where r is the distance between particles). It should be mentioned 

that, recently, using molecular simulations, some interesting results on phase equilibria as 

well on transport properties have been obtained for this family of potential5-10. 

Apart from their direct use in molecular simulations, simple effective potentials can be used 

as the elementary bricks of modern molecular-based Equation Of State (EOS). Perhaps the 

most successful of such a molecular-based EOS applicable to a large class of fluids (not 

restricted to simple fluids) is the Statistical Associating Fluid Theory (SAFT) approach 
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proposed by Chapman et al.11,12 on the basis of Wertheim’s thermodynamic perturbation 

theory13-16. In this context, it is important to underline that while the important feature of this 

approach is that it explicitly takes into account non-sphericity and association effects, one of 

the crucial aspect remains the accurate modeling of the repulsion and the van der Waals 

interactions between the monomer segments constituting the chain molecule. In fact, a wide 

variety of choice has been already proposed in the literature17-19. However, it has been 

recently showed by Lafitte et al.20 that significant discrepancies between these models arise 

when they are used to predict second-order derivative properties (isobaric heat capacity, 

isobaric thermal expansivity, speed of sound etc). Thus, making the assumption that the 

weakness was mainly due to the way repulsive interactions were modeled, they proposed a 

modification in the original SAFT-VR equation in order to deal with the Mie n-6 potential 

(the SAFT-VR Mie) for describing the interaction between the monomer forming the chain. 

In particular, it has been shown significant improvements for both n-alkanes20 and alcohols21 

using this EOS for the estimation of all volumetric and derivative properties over wide 

pressure and temperature conditions without any deterioration of vapor-liquid coexistence 

curve. Moreover, they obtained a clear dependence of the parameters with the number of 

carbon atoms, which emphasizes the consistency of including the variable repulsive part as an 

extra pure component parameter. Regarding these encouraging results, it should be kept in 

mind that the adequacy of the equation to reproduce the properties of segments interacting 

through Mie n-6 potential has not yet been investigated, so that care must be taken when 

trying to transfer the value obtained for the repulsive exponent into other models. 

Therefore, the main aim of this paper is to provide an in depth analysis of the accuracy of the 

monomer contribution estimation in this SAFT-VR Mie EOS. To this end, Molecular 

Dynamics (MD) simulations have been performed on the Mie n-6 fluid, in the microcanonical 

ensemble (NVE), for different values of the repulsive exponent 8, 10 and 12 (the EOS having 
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been developed for n≤12) in order to obtain results on thermodynamic properties. The 

properties computed are the pressure, the potential energy, the isometric heat capacity, the 

thermal pressure coefficient and the sound velocity. This is done for a large variety of 

thermodynamic states (12 states covering liquids and supercritical phases). It should be 

mentioned that, to the best of our knowledge, this is the first time derivative thermodynamic 

properties have been computed through molecular simulation for the Mie n-6 fluid when 

n≠12. The MD results are then compared with the results provided by the SAFT-VR Mie 

EOS, allowing a clear assessment of the physical soundness of this new version and the 

interest of making use of the Mie n-6 potential to model direct as well as derivative 

thermodynamic properties. Moreover, is also investigated the reliability of the scheme used in 

the EOS to deal with mixtures, based on the MX1b mixing rule of Galindo et al.22. 

In addition, based on a previous work10 and using new Molecular Dynamics results, a new 

empirical one fluid approximation directly on the repulsive exponent is proposed in order to 

estimate direct and derivative properties in mixtures. Finally, this one fluid approximation 

,which is easier to handle that the MX1b scheme (which goes beyond the one fluid 

approximation), and others previously proposed in the literature are applied in combination 

with the SAFT-VR Mie EOS. 

2. Theory 

2.1 The Mie n-6 potential. 

In this work, the Mie n-6 potential which is the elementary brick of the SAFT VR Mie EOS, 

has been used to treat particle interactions. It can be expressed as, for an interaction between a 

particle i and a particle j: 
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where rij is the distance between particle i and j, εij the potential depth, 
ijm

r  the distance at 

which the potential is minimum and nij the stiffness of the repulsive slope of the potential. 

This potential can be rewritten in terms of σij, the position at which the potential is equal to 

zero (the “atomic diameter”): 
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It should be noted that, in this work, we have restricted ourselves to the cases where nij ≤ 12 

for which the SAFTR-VR-Mie EOS only applies20. In addition, as the binary mixtures studied 

have been restricted to systems for which only n differs between compounds, the energetic 

and the sizes parameters will be simply noted ε and σ in the following. 

To perform MD simulations on this potential, a simple truncation at a cutoff radius, rc, equal 

to 3.5σ has been used. Consequently, long range contributions due to the truncation have been 

introduced (see section 2.2.3). It should be mentioned that no corrections were applied to 

avoid the discontinuity of the force23 deriving from the potential at rij=rc. 

2.2 Molecular Dynamics 

2.2.1 Combining rules 

When dealing with mixtures one needs a set of combining rules on the molecular parameters. 

In this work, as long as only n differs between compounds a rule is only needed on the n 

parameter. Two different combining rules have been used for n, the simple arithmetic one: 
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and the one proposed for the SAFT-VR Mie EOS21 which reduces to: 
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 ( ) ( )
1

3 3 3 23 3 3ij ii jjn n n = + − −   (5) 

for the case where σii=σjj. 

2.2.2 Dimensionless and reduced units: 

As this work deals only with monomer-monomer interaction (spheres), it is convenient to use 

dimensionless thermodynamic variables24, which are for the potential energy (the 

configurational internal energy): 
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the temperature: 
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the density, 
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and the pressure 
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where kB is the Boltzmann constant, T is the temperature, N the number of particles, V the 

volume of the simulation box. All dimensionless quantities will be noted with a star as a 

superscript in the following. 

It should be mentioned that the link between ρ*, T* and P* is unique for a given potential and 

so differs between Mie n-6 potentials for different n, even if similarities exist10. So, in order to 

perform a consistent comparison between results for different n, the classical thermodynamic 

reduced conditions have been used. They are defined as:  
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where Tc
* is the dimensionless critical temperature, ρc

* the dimensionless critical density and 

Pc
* the dimensionless critical pressure which depend5,6 on n. For these critical dimensionless 

properties, we have used the data of Okumura et al.6 which are summarized in table I. By 

using such scaling, and assuming it as adequate, a given set of Tr and Pr will correspond 

approximately to the same physical state (relatively to the critical point) whatever the 

potential and its repulsive coefficient.  

To provide results in real units, methane has been chosen as the reference compound. We 

have taken σ= 3.7332 Å and ε= 1265.3 J/mol20 for the case where n=12. The scaling 

described above implies that σ= 3.7136 Å and ε= 1112.01 J.mol-1 for n=10 and σ= 3.7137 Å 

and ε= 915.84 J.mol-1 for n=8. These parameters have been used except when stated. 

2.2.3 Thermodynamic properties 

Concerning the configurational internal energy (potential energy), u, and the pressure, P, the 

usual MD formulations have been applied23. In addition, due to the use of truncated Mie n-6 

potential, long-range corrections noted with a subscript lr, have been included for pressure 

and for potential energy estimation. Using the general formulations25, after a few calculations 

is obtained:  
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where *
cutr  is the dimensionless cutoff radius (equal to 3.5 in the simulations). 

Concerning the second-derivative properties (thermodynamic response functions), it exists 

several ways to obtain them from molecular simulations25. The most accurate is the one based 

on statistical mechanics that involves the measure of fluctuations. In the microcanonical 
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ensemble (NVE), in which the simulations data have been collected, the dimensionless 

isometric heat capacity is expressed as25: 
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where Ek is the kinetic energy. 

The dimensionless thermal pressure coefficient, writes as25: 
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where 
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The adiabatic compressibility can be expressed as25: 
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where: 
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After some calculations, the dimensionless adiabatic compressibility can be rewritten for a 

Mie n-6 potential as: 
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with  
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The sonic velocity ω* is deduced from κs
* using the classical macroscopic thermodynamic 

relation: 
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The other derivative thermodynamic properties can be deduced from the previous ones using 

classical macroscopic thermodynamic relations. 

 

2.3 SAFT-VR Mie Equation of state. 

The residual Helmholtz free energy (ARES) of a mixture of associating chain molecules can be 

written as the addition of three contributions (monomer, chain and association) as: 
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Note that since we are treating non-associating spherical segments, the chain and the 

association contribution to the free energy are not considered here. Therefore the expression 

for the residual Helmholtz free energy is reduced to the monomer term which is obtained from 

the Barker-Henderson high-temperature expansion for hard-core systems up to second order, 

i.e. 

 MMHSRES aaaa 2
2

1 ββ ++=  (22) 

where we define TNkAa B=  as the reduced Helmholtz free energy per molecule. In this 

expression HSa represents the hard-sphere free energy of the mixture, and Ma1 and 
Ma2  are the 

first two terms associated with the attractive part of the Mie potential. 

The expression of Boublik26 and Mansoori et al.27 is used for the reference hard-sphere term: 
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where ρs is the number density of spherical segments. The packing fraction nζ is defined by: 
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BH
iiσ represents the hard-core temperature dependent diameter of the segments in the molecule 

i. Note that ix  is the mole fraction of type i segments in the system. The expression for the 

evaluation of the temperature dependent diameter is given by Barker and Henderson28: 

 ∫ 
















 −
−=

i

dr
Tk
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M
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ii
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0

exp1)(  (25) 

The mean-attractive term Ma1  of the mixture is the sum of the terms for each type of pair 

interaction22: 

 ∑∑=
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The analytical expression for ija1  for monomer segments interacting through Mie n-6 potential 

can be written as a sum of two Sutherland perturbation terms: 

 ( ) ( ), ,
1 1 1  6ij s ij s ij

ij ij ij ija C a n aλ λ = − = + =   (27) 

In the original paper on SAFT-VR, Gil-Villegas et al.17 showed that the mean-attractive term 

ijsa ,
1 could be expressed in terms of the contact value of 

HS
ijg and an effective packing fraction 

eff
3ζ : 
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In this expression VDW
ijα represents the van der Waals mean-field term for Sutherland fluids 

evaluated with the temperature dependent diameter BH
ijσ : 
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Note that BH
ijσ is the distance between centers of segment i and j at contact. It is given by the 

Lorentz Bethelot combining rule: 
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In this work, we have decided to use the mixing rule MX1b as defined in Gil-Villegas et 

al.17. Indeed, Galindo et al.22 showed that this approach is more convenient for the study of 

the global phase behavior, if compared to higher order approximation, while keeping the same 

degree of accuracy away from the critical region. 

In this context, the van der Waals one fluid theory is used to approximate the value of HS
ijg . 

Consequently, the radial distribution function for a hypothetical pure fluid HSg0  of average 

diameter BH
xσ is incorporated in equation (28) as: 

 ( ) ( ) ( )[ ]ij

effBH

x
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ijsij

ijs ga λζσλαρλ 30
,
1 ;−=  (31) 

where eff
xζ stands for an effective packing fraction22 related to the packing fraction of the 

mixture xζ . The effective packing fraction eff
xζ is approximated from: 
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The coefficients nc , which are functions of ijλ ,are given by the matrix17: 
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The radial distribution function at contact ( )eff
x

BH
x

HSg ζσ ,0  is obtained from the Carnahan and 

Starling29 equation of state as follows: 

 [ ]
( )30
 - 1

2 - 1
;

eff
x

eff
xeff

x
BH
x

HSg
ζ

ζ
ζσ =  (36) 



13 
 

The second perturbation term Ma2  is given by :
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where ija2  is related to 
ija1  as follows : 
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In this expression HSK  stands for the Percus-Yevick30 expression for the isothermal 

compressibility of a hard-sphere fluid, 
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Finally, it should be highlighted that the EOS with the present formulation for mixtures, the 

so-called MX1b mixing rule, turns out to be a combination of two approaches: the two fluids 

level which is of interest to maintain a good accuracy for the description of the structure of the 

fluid, and the simpler one fluid approximation which is used to derive the dispersive term in 

order to avoid inconsistencies in calculations close to the critical state. 

However, it is important to note that the simplest van der Waals one fluid approximation 

could be used at all levels in the EOS with the appropriately chosen molecular parameters to 

represent the “equivalent” pseudocompound, see section 2.4. A comparison between these 

two schemes is provided in section 4.2.2. 

2.4 One-fluid approximation 

The classical way to deal with thermophysical properties of fluid mixture in the liquid state 

community is to treat the mixture as a “pure” fluid by defining a pseudo compound 

“equivalent” to the mixture through a one-fluid approximation31-32. At the microscopic scale, 

for the LJ fluid, such formulation corresponds to the definition of the molecular parameters of 

the pseudo compound, σ1-fluid, ε1-fluid, starting from those of the pure compounds and those 



14 
 

defined through the combining rules. One aim of this work is to define to which extent such 

an approach can be efficient concerning the n parameter for the Mie potential (i.e. how to 

define n1-fluid in binary mixtures where only the repulsive stiffness n differs between 

compounds). To achieve such a goal, we have tested various one-fluid models on n: 

the linear one: 

 1 fluid i j ij

i j

n x x n− =∑∑  (40) 

one proposed in22: 

 3 3
1 fluid i j ij

i j

n x x n− =∑∑  (41) 

one related to a previous work10: 
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and two new empirical ones: 
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where xi is the molar fraction of component i. 

3. Simulations details 

3.1 Technical details. 

Simulations have been performed using a homemade code on systems composed of 1000 

particles. To integrate the equation of motion a Velocity Verlet algorithm has been applied 

with a dimensionless timestep of 0.002. To save CPU time, a Verlet neighbour list combined 

with a cell list23 has been used. Classical periodical boundary conditions were applied. 
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To obtain the thermophysical properties in the desired state, simulations have been performed 

in two steps: first the system has been driven towards the desired temperature and pressure, 

using Berendsen thermostat and barostat (NPT simulations)33 during 105 timesteps (with a 

coupling constant equal to 103 timesteps for the pressure and 5 102 timesteps for the 

temperature). Then, starting from this configuration, data have been collected during 1.5-3 106 

timesteps of NVE simulations to compute the thermodynamic properties using the relations 

provided in section 2.2.3. Data obtained during the NPT were discarded from the analysis. 

With these parameters, during the NVE simulations, the estimated errors (using the subblocks 

average method23 with subblock composed of 1.5 105 timesteps to ensure the statistical 

independence) are around 0.1-0.2% for T and u (and so omitted in the Appendix), below 1 % 

for P, below 3 % for the isometric heat capacity and the sound velocity and around 3-4 % for 

the thermal pressure coefficient, see Appendix A and C. 

To carry out a consistent comparison between MD and SAFT-VR results, first the MD 

simulations are performed to obtain all thermodynamic properties during NVE runs. Second, 

the MD values obtained for T and P are used as input parameters for the EOS which is then 

used to predict the thermodynamic properties (u, ρ, ω, γv and Cv) and allows the comparison 

on these properties.  

3.2 Validation. 

To assess the reliability of our MD results (in complement to the comparison with the EOS of 

Kolafa and Nezbeda34 already done in Galliero et al.35), simulations have been performed on a 

LJ pure fluid for which Meier36 provides recent accurate data on thermodynamic properties. 

The states chosen, ρ*=0.75 to 0.9 with a step of 0.5 at T*=1 and  ρ*=0.1 to 1 with a step of 0.1 

at T*=2.5, cover the range of thermodynamics conditions tested in this work. The deviations, 

Dev, have been evaluated thanks to: 

 ( ) MeierMeierworkthis χχχ −= _Dev  (45) 
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where χthis_work  represents our molecular dynamics value on the variable χ and χMeier the 

Meier’s36 one. The Absolute Average Deviation (AAD), for the NB values of deviation, is 

defined by: 

 ∑
=

=
NB

i

i
NB 1

)(Dev
1

AAD  (46) 

the maximum deviation by (DMax): 

 ( ))(DevmaxDMax i=  (47) 

and the bias by: 

 ∑
=

=
NB

i

i
NB 1

)(Dev
1

Bias  (48) 

Results provided in table II indicate that our computations are consistent with those of Meier 

the deviations being always small (within the error bars). This indicates that thermodynamics 

properties in such monophasic conditions are not strongly affected by the cutoff radius (when 

long range corrections are included), as Meier uses a 5σ cutoff whereas ours is equal to 3.5σ. 

In addition, it should be mentioned that deviations are, by part, due to the fact that our 

computations are performed in the NVE ensemble and not the NVT one (in this case the AAD 

on temperature is of 0.2 %). 

4. Results 

4.1 Comparison between MD and EOS results 

4.1.1 Pure fluids 

The main aim of this work is to quantify to which extent the SAFT-VR-Mie EOS is able to 

reproduce molecular simulation data of the Mie n-6 pure fluid, both concerning direct and 

derivative thermodynamic properties. Three different values of n have been tested, n= 8, 10 

and 12, covering the usual range found for this parameter using the EOS20. For each n, 12 

state points have been simulated and the results compared with what provided by the EOS. To 
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perform a consistent comparison between results for various n, the simulations have been 

performed for the same set (for each n) of reduced temperature and pressure. Nevertheless, 

due to the fact that the properties computation were performed during NVE simulations and 

not NPT ones, see section 3.1, Tr and Pr could slightly vary for different n. These points 

correspond to four different isotherms very close to, Tr=0.65, 0.75, 0.85 and 1.5 (130, 150, 

170 and 300 K for methane) and three isobars very close to Pr=1.98, 13.86 and 29.7 (10, 70, 

and 150 MPa for methane). State 1 will denote the state for which Tr=0.65 and Pr=1.98, state 

2 Tr=0.65 and Pr=13.86 and so on up to state 12, Tr=1.5 and Pr=29.7. Thus, states 1 to 9 are 

subcritical (liquid) and states 10 to 12 are supercritical. All molecular dynamics results are 

provided in Appendix A and all EOS ones in Appendix B. 

In tables III and IV, deviations have been computed using: 

 ( ) MDMDEOS χχχ −=Dev  (49) 

where χMD represents the molecular dynamics value of the variable χ and χEOS its predicted 

value using the SAFT-VR Mie EOS. AAD, DMax and Bias have been defined through 

equations (46-48). 

Concerning the efficiency of the EOS, table III shows that despite differences, results on 

direct and derivative properties provided by the EOS are consistent with those coming from 

MD compared to the fact that no adjustable parameters have been introduced. Results are 

somewhat better for ρ* and u* and are globally of a similar accuracy for the three derivative 

properties. It should be noted that the largest deviations on ρ* and u* have been obtained for 

the less dense system (state 10).  

In addition, generally, the EOS underestimates ω* and γv
* and overestimates Cv

*. Furthermore 

concerning the trends with n, table III shows that the prediction of the EOS on ω* and γv
* are 

not affected by the repulsive exponent whereas the prediction on Cv
*, and to less extent u* and 

ρ*, tends to slightly deteriorate with the decrease of n. 
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Another interesting point is to compare how the thermodynamic properties, provided by MD 

and the EOS, evolve with n for the different states studied. Such trend is shown on figures 1-2 

where the deviations shown correspond to: 

 ( ) LJLJMie χχχ −=Dev  (50) 

where χMie represents the value of the variable χ for the Mie potential (n=8 or 10)and χLJ the 

value for the LJ potential (n=12). Both values, χMie and χLJ, have been expressed in real units 

for this comparison. 

Molecular dynamics results show that, see figure 1.a, ρ is weakly dependent on n, this 

behavior being correctly reproduced by the EOS, figure 1.b. Thus, due to this weak 

dependence on n, an adjustment of the n parameter on ρ alone will not ensure a clear 

discrimination of the “adequate” n value when applied on real substance. 

Concerning derivative properties, MD simulations indicate that ω as well as γv are the lowest 

for the Mie 8-6 potential and tend to increase with n (this increase being more important at 

low T), see figure 2.a. Furthermore, the EOS correctly takes this behavior with n into account 

see figure 2.b. It should be noted that such a dependence of the Mie n-6 fluid shows clearly 

the non-conformal behavior between potentials having different n values. The case of the 

isometric heat capacity, Cv, is different, see figure 1. MD simulations yield an independent (or 

nearly) value with n, whereas the EOS predicts a slight increase; such a result explaining the 

trend noticed in table III. Besides, the increase of the sound velocity with n can be understood 

in a naïve way: decreasing n corresponds to a less stiff repulsion (a softer medium) between 

particles which should lowers the propagation of the sound as it is usually the case in solids. 

An interesting point, for the application of the EOS on real substances, is the fact that 

different n parameters lead to noticeably different ω values, for a similar ρ, which indicates 

that an adjustment of the n parameter on both ρ and ω (as done for the SAFT-VR Mie EOS20) 

will lead unambiguously to a unique discriminative value of n (at least for the monomer). 
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4.1.2 Mixtures 

Another important point is the way the SAFT-VR Mie EOS models mixtures composed of 

species differing only in their value of n. To do so, simulations on binary mixtures of particles 

having the same molecular parameters except n (n11=8, n22=12 and σ= 3.7136 Å and ε = 

1112.01 J.mol-1) have been performed. Three mole fractions have been investigated, x1=0.25, 

0.5 and 0.75. To treat cross interactions during MD simulations, the combining rule given by 

equation (5) has been used as in the EOS. Similarly to the pure fluid case, twelve different 

states have been simulated which corresponds in real units, to T = 130, 150, 170 (liquid) and 

300 K (supercritical) combined with P = 10, 70, and 150 MPa. All molecular dynamics results 

are provided in dimensionless units in Appendix C and all EOS ones in Appendix D. 

Table IV clearly indicates that the scheme used to model mixtures (at least concerning the n 

parameter) in the SAFT-VR Mie EOS is efficient, as long as deviations found are of the same 

order as on pure fluids, see table III. Furthermore, the main evolution of the deviations with 

the molar fraction is the increase on Cv
* ones with the concentration of compound 1 (n11=8) 

which is consistent with what found on pure fluids. 

4.2 One-fluid approximation on the n parameter 

4.2.1 Choice of the one fluid model 

Another interesting point, even if the EOS scheme for mixture is efficient, is to determine 

whether or not it is possible to mimic a mixture by an “equivalent” pseudocompound with a 

repulsive exponent n1-fluid defined by an adequate one-fluid approximation. To define the most 

appropriate rule among those tested, equations (40-44), the problem has been taken in reverse: 

simulations have been performed on binary mixtures (for which only n differs between 

compounds, n11=8 and n22=12) with various molar fractions and compared with those given 

by the n=10 pure fluid (σ = 3.7136 Å and ε = 1112.01 J.mol-1). The various compositions 

have been deduced from the five different one fluid approximations tested, equations (40-44). 



20 
 

For sake of simplicity, the linear combining rule on n, eq. (4), has been used. All simulations 

on mixtures have been performed for the same 12 states than on pure fluid using Τ  and ρ as 

simulations input parameters (with slight deviations on T as simulations have been performed 

in the NVE ensemble and not in the NVT one). For figures 3-5, deviations have been 

computed using  

 ( ) MixMixfluid χχχ −= −1Dev  (51) 

where χMix represents the MD value of the variable χ in the mixture and χ1-fluid its MD value 

using the one fluid model. AAD, DMax and Bias have been defined using respectively eqs 

(46-48). 

Quite surprisingly, deviations induced by the various one fluid models on Cv
*, ω* and γv

* 

remain limited, below 5 % and without a systematic trend, whatever the model chosen, see 

figure 4. On the contrary, the one fluid model may largely affects pressure, the worst results 

being those provided by the use of eq. (41), with AAD=16.21 %, and the better those induced 

by one of the empirical law, eq. (44), for which AAD=1.41 %. In addition, even if the 

deviations on u* remains limited, see figure 3, the trends are similar to those on pressure. 

From these results it appears that the “usual” one fluid models, eqs (40-41), are inappropriate, 

at least for pressure and to a less extent to energy, and that a better choice is the one provided 

by eq. (44), which yields an AAD below 1.5% for all properties studied, which is excellent 

compared to the various uncertainties. 

4.2.2 Application of the one fluid model using MD and EOS 

In order to confirm our previous results on the one fluid model, using eq. (44), simulations 

have been performed on the pseudocompounds “equivalent” to the mixtures studied in section 

4.1.2. In addition, the SAFT-VR Mie EOS combined with this one fluid model on n has been 

applied to these systems. For the studied mixtures, eq. (44) leads to n1-fluid=10.65 for x1=0.25, 

n1-fluid =9.57 for x1=0.5 and n1-fluid =8.7 for x1=0.75. Simulations on the one fluid model have 
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been performed so that T and P are the same as in the mixtures (with slight deviations on T 

and P as simulations have been performed in the NVE ensemble and not in the NPT one). It 

should be mentioned that, in this case, the combining rule defined by eq. (5) has been used as 

long as this rule is the one employed in the usual SAFTR-VR Mie EOS scheme on mixture. 

MD results shown on figure 5 are consistent with our previous findings which is that eq. (44) 

is an appropriate empirical one-fluid model for the parameter n when dealing with Mie n-6 

potentials. In fact, all thermodynamic properties, direct and derivative, are correctly estimated 

using the one fluid model whatever the state, the maximum deviation remaining below 3.5 %, 

see figure 5. This result is interesting as it shows that the choice of the combining rule (in this 

case eq. (5) whereas eq. (4) was used in the previous section) does not seem to affect the 

quality of the proposed one fluid model, which reinforce the fact that eq. (44) is adequate. 

Finally, we have applied the proposed one fluid approximation on n, eq. (44), together with 

the SAFT-VR Mie EOS to see to which extent such an approach is able to provide consistent 

results on mixtures. In table V, deviations have been defined by: 

 ( ) MDMDfluidEOS χχχ −= −1Dev  (52) 

where χMD represents the molecular dynamics value of the variable χ and χEOS-1fluid its 

predicted value using the EOS combined with the one fluid model. 

Results are summarized in table V. It is interesting to note, see tables IV-V, that this scheme 

provides slightly better results (except for u*) than those obtained using the usual scheme, the 

MX1b one which goes beyond a one fluid approximation on n. Such a result is interesting as 

long as a one-fluid approximation directly on the molecular parameter (here n) is more simple 

to handle. Nevertheless, further work should be performed in order to have a complete set of a 

van der Waals one-fluid approximation on the three molecular parameters, ε, σ and n, which 

is out of the scope of this paper. 
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5. Conclusion 

In this work, an analysis of the efficiency of a recently developed SAFTR VR Mie EOS20 to 

provide the direct and derivative thermodynamic properties of the Mie n-6 pure fluid for n 

varying from 8 to 12 has been carried on through in depth comparisons with molecular 

dynamics simulations in various thermodynamic states covering from liquid to supercritical 

states.  

On pure fluids, with an appropriate scaling, MD results show that ω and γv tend to increase 

with n (which is an expression of the non conformal behavior between potentials having 

different n values) whereas ρ and Cv are nearly independent of n. It should be noted that such 

behavior with n is crucial for adjusting this parameter on real substance. In addition, it has 

been shown that the EOS is able to correctly reproduce these general trends and amplitudes of 

the thermodynamic properties with n, except concerning Cv for which deviations may rise up 

to 20% (the EOS predicts a slight increase with n).  

Concerning mixture, for which only the n parameter varies between compounds, this EOS, 

combined with the previously used mixing rules MX1b, has shown to provide results as good 

as on pure fluid. These results unambiguously show that the monomer contribution of the 

SAFT-VR Mie EOS, based on the Mie n-6 potential, is adequately modeled by the EOS in 

pure fluids and mixtures, which ensures that the n parameter adjustment on both ρ and ω 

makes sense in the application of the EOS to real fluids20,21. 

Elsewhere, a test of various one fluid approximations on n has been achieved using MD 

simulations between mixtures and their “equivalent” pseudocompounds. It has been shown 

that the “usual” one fluid models for n, eqs (40-41), may induce non negligible deviations on 

pressure, up to 30% and 50 % respectively, but small ones on other properties. To fix this 

weakness, following a previous work10, an empirical one-fluid approximation, eq. (44), is 

proposed which provides excellent results on all properties, AAD being always lower than 
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1.5%. Finally, it is shown that the combination of this new one-fluid approximation on n with 

the EOS is able to provide results on mixtures slightly improved, except on u compared to 

those yielded by the MX1b approach (which goes beyond the one fluid approximation) and is, 

by far, easier to handle. 
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Appendix A: 

MD results on pure fluids for different n. Values in parenthesis represent the error on the last 
digits (errors on u* and T* are below 0.2 % and ρ* is imposed). 
 

n T
* ρ∗ u

* 
P

* 
Cv

* ω∗ γv
* 

0.856 0.7965 -5.648 0.248(1) 2.448(29) 5.155(102) 5.097(153) 
0.851 0.8809 -6.141 1.747(3) 2.690(33) 6.552(123) 6.774(184) 
0.852 0.9446 -6.419 3.713(4) 2.895(35) 7.702(174) 8.155(264) 
0.985 0.7411 -5.176 0.256(1) 2.248(25) 4.599(93) 3.912(138) 
0.985 0.8442 -5.802 1.735(3) 2.507(23) 6.229(110) 5.638(183) 
0.987 0.9165 -6.138 3.725(5) 2.727(34) 7.477(155) 7.032(273) 
1.120 0.6765 -4.655 0.259(1) 2.117(22) 3.968(72) 2.960(65) 
1.119 0.8081 -5.478 1.728(3) 2.381(27) 5.902(102) 4.830(185) 
1.118 0.8894 -5.877 3.706(4) 2.589(35) 7.249(103) 6.184(217) 
1.960 0.1489 -0.988 0.246(1) 1.651(18) 1.876(29) 0.198(19) 
1.977 0.6021 -3.770 1.733(3) 1.906(25) 4.471(83) 1.945(76) 

12 

1.968 0.7408 -4.520 3.706(5) 2.105(26) 6.200(127) 3.195(132) 
0.973 0.7834 -6.026 0.280(1) 2.416(25) 4.991(108) 4.401(162) 
0.971 0.8762 -6.564 1.941(2) 2.686(24) 6.397(111) 5.828(134) 
0.976 0.9460 -6.835 4.145(5) 2.885(37) 7.537(123) 7.066(196) 
1.122 0.7276 -5.532 0.281(1) 2.247(21) 4.480(101) 3.459(94) 
1.117 0.8411 -6.227 1.925(2) 2.514(31) 6.118(92) 4.995(153) 
1.125 0.9191 -6.554 4.154(4) 2.74(28) 7.342(184) 6.260(273) 
1.271 0.6634 -4.990 0.272(1) 2.098(31) 3.893(53) 2.609(81) 
1.275 0.8063 -5.893 1.949(2) 2.384(32) 5.853(98) 4.289(143) 
1.271 0.8940 -6.294 4.166(3) 2.607(25) 7.170(90) 5.542(196) 
2.253 0.1469 -1.075 0.279(1) 1.631(15) 1.988(23) 0.192(20) 
2.243 0.6060 -4.131 1.937(3) 1.923(17) 4.583(103) 1.846(67) 

10 

2.247 0.7478 -4.886 4.161(5) 2.132(25) 6.243(87) 2.985(108) 
1.184 0.7831 -6.854 0.356(1) 2.411(31) 4.926(116) 3.821(159) 
1.184 0.8884 -7.459 2.358(3) 2.634(17) 6.377(74) 4.96(141) 
1.176 0.9711 -7.739 5.040(6) 2.874(25) 7.535(171) 6.184(195) 
1.359 0.7272 -6.323 0.332(1) 2.252(25) 4.463(87) 3.069(97) 
1.364 0.8545 -7.103 2.366(2) 2.517(38) 6.138(122) 4.392(152) 
1.358 0.9443 -7.438 5.058(4) 2.723(19) 7.381(181) 5.465(133) 
1.549 0.6652 -5.746 0.345(1) 2.109(21) 3.993(67) 2.392(110) 
1.541 0.8213 -6.764 2.356(3) 2.406(30) 5.910(99) 3.863(154) 
1.544 0.9188 -7.166 5.081(3) 2.604(37) 7.234(144) 4.903(151) 
2.721 0.1479 -1.267 0.333(1) 1.617(11) 2.156(18) 0.189(15) 
2.722 0.6228 -4.845 2.349(3) 1.942(21) 4.795(84) 1.760(62) 

8 

2.726 0.7731 -5.648 5.046(5) 2.147(29) 6.448(137) 2.761(90) 
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Appendix B: 

SAFT-VR Mie EOS results on pure fluids for different n. 
 

n T
* ρ∗ u

* 
P

* 
Cv

* ω∗ γv
* 

0.856 0.788 -5.635 0.248 2.597 4.481 4.077 
0.851 0.883 -6.110 1.747 2.665 6.036 5.894 
0.852 0.952 -6.354 3.713 2.728 7.397 7.442 
0.985 0.733 -5.195 0.256 2.440 4.084 3.450 
0.985 0.847 -5.804 1.735 2.534 5.797 5.127 
0.987 0.925 -6.111 3.725 2.616 7.232 6.641 
1.120 0.667 -4.681 0.259 2.297 3.627 2.687 
1.119 0.812 -5.502 1.728 2.427 5.555 4.461 
1.118 0.898 -5.877 3.706 2.525 7.041 5.954 
1.960 0.141 -0.889 0.246 1.632 1.933 0.190 
1.977 0.597 -3.728 1.733 1.999 4.340 1.927 

12 

1.968 0.745 -4.523 3.706 2.158 6.076 3.217 
0.973 0.787 -6.281 0.28 2.704 4.484 4.018 
0.971 0.889 -6.810 1.941 2.789 6.097 5.603 
0.976 0.961 -7.074 4.145 2.864 7.491 7.085 
1.122 0.729 -5.756 0.281 2.528 4.073 3.251 
1.117 0.853 -6.466 1.925 2.648 5.855 4.889 
1.125 0.934 -6.792 4.154 2.742 7.314 6.325 
1.271 0.659 -5.160 0.272 2.371 3.591 2.524 
1.275 0.817 -6.111 1.949 2.526 5.626 4.252 
1.271 0.908 -6.526 4.166 2.644 7.143 5.687 
2.253 0.139 -0.978 0.279 1.639 2.061 0.184 
2.243 0.599 -4.111 1.937 2.051 4.432 1.850 

10 

2.247 0.752 -4.956 4.161 2.226 6.176 3.061 
1.184 0.762 -7.149 0.356 2.895 4.285 3.346 
1.184 0.881 -7.778 2.358 2.981 6.031 4.791 
1.176 0.966 -8.075 5.04 3.072 7.526 6.179 
1.359 0.700 -6.517 0.332 2.684 3.871 2.709 
1.364 0.846 -7.372 2.366 2.811 5.833 4.228 
1.358 0.939 -7.735 5.058 2.919 7.371 5.551 
1.549 0.626 -5.787 0.345 2.487 3.431 2.095 
1.541 0.812 -6.981 2.356 2.674 5.625 3.732 
1.544 0.913 -7.404 5.081 2.796 7.221 5.010 
2.721 0.137 -1.179 0.333 1.664 2.244 0.181 
2.722 0.599 -4.702 2.349 2.123 4.595 1.709 

8 

2.726 0.760 -5.593 5.046 2.311 6.360 2.806 
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Appendix C: 

MD results on mixture for three molar fractions x1. Values in parenthesis represent the error 
on the last digits (errors on u* and T* are below 0.2 % and ρ* is imposed). 
 

x1 T
* ρ∗ u

* 
P

* 
Cv

* ω∗ γv
* 

0.972 0.7712 -5.739 0.268(1) 2.369(31) 4.895(89) 4.352(122) 
0.974 0.8683 -6.306 1.935(1) 2.632(27) 6.422(112) 5.918(195) 
0.974 0.9412 -6.614 4.164(4) 2.854(34) 7.637(150) 7.257(208) 
1.123 0.7105 -5.217 0.280(1) 2.191(19) 4.349(99) 3.286(95) 
1.122 0.8324 -5.967 1.932(2) 2.469(31) 6.128(132) 5.001(172) 
1.123 0.913 -6.327 4.160(3) 2.714(27) 7.410(187) 6.444(157) 
1.268 0.6387 -4.622 0.260(1) 2.057(28) 3.659(69) 2.414(78) 
1.273 0.7973 -5.615 1.948(1) 2.345(27) 5.849(78) 4.285(141) 
1.273 0.8862 -6.036 4.157(4) 2.583(33) 7.213(133) 5.670(167) 
2.247 0.1454 -1.014 0.283(1) 1.625(14) 2.035(25) 0.190(16) 
2.244 0.5937 -3.895 1.949(2) 1.897(23) 4.557(105) 1.798(42) 

0.25 

2.248 0.7380 -4.667 4.169(3) 2.098(19) 6.278(142) 2.956(118) 
0.973 0.7942 -6.268 0.285(1) 2.454(34) 5.114(111) 4.511(142) 
0.972 0.8821 -6.775 1.921(2) 2.693(29) 6.436(147) 5.856(145) 
0.974 0.9524 -7.051 4.15(2) 2.939(30) 7.549(143) 7.206(233) 
1.120 0.7412 -5.785 0.281(1) 2.260(25) 4.630(87) 3.528(93) 
1.118 0.8495 -6.446 1.948(2) 2.532(24) 6.196(99) 5.008(162) 
1.123 0.9267 -6.773 4.191(3) 2.752(39) 7.389(155) 6.230(181) 
1.270 0.6807 -5.229 0.272(1) 2.143(19) 4.051(63) 2.813(93) 
1.271 0.8162 -6.090 1.971(2) 2.434(31) 5.904(111) 4.458(97) 
1.272 0.9004 -6.475 4.171(4) 2.601(31) 7.195(132) 5.454(183) 
2.238 0.1481 -1.125 0.272(1) 1.640(12) 1.973(28) 0.194(21) 
2.250 0.6155 -4.320 1.952(2) 1.935(21) 4.658(88) 1.889(53) 

0.5 

2.239 0.7555 -5.088 4.152(5) 2.138(33) 6.287(133) 2.998(114) 
0.973 0.8166 -6.823 0.281(1) 2.542(31) 5.246(83) 4.696(87) 
0.976 0.8984 -7.278 1.967(2) 2.787(23) 6.449(87) 5.939(195) 
0.971 0.9667 -7.539 4.161(6) 2.963(32) 7.493(132) 6.935(193) 
1.121 0.7686 -6.363 0.277(1) 2.358(19) 4.833(67) 3.792(133) 
1.119 0.8664 -6.951 1.951(2) 2.609(39) 6.219(99) 5.067(191) 
1.123 0.9407 -7.253 4.174(4) 2.818(25) 7.313(121) 6.205(202) 
1.270 0.7165 -5.840 0.274(1) 2.212(20) 4.355(82) 3.054(95) 
1.270 0.8331 -6.584 1.930(3) 2.459(27) 5.950(132) 4.364(142) 
1.272 0.9150 -6.948 4.148(5) 2.693(27) 7.121(121) 5.562(188) 
2.244 0.1510 -1.248 0.262(1) 1.659(11) 1.924(21) 0.199(20) 
2.240 0.6413 -4.812 1.943(2) 1.986(18) 4.732(43) 2.031(62) 

0.75 

2.239 0.7737 -5.546 4.145(5) 2.197(18) 6.267(111) 3.103(96) 
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Appendix D: 

SAFT-VR Mie EOS results on mixture for three molar fractions (using MX1b). 

x1 T
* ρ∗ u

* 
P

* 
Cv

* ω∗ γv
* 

0.972 0.777 -5.862 0.268 2.618 4.316 3.793 
0.974 0.874 -6.422 1.935 2.701 6.019 5.444 
0.974 0.951 -6.707 4.164 2.782 7.478 7.011 
1.123 0.718 -5.328 0.28 2.445 3.889 3.018 
1.122 0.838 -6.087 1.932 2.567 5.782 4.737 
1.123 0.923 -6.436 4.16 2.666 7.295 6.246 
1.268 0.651 -4.705 0.26 2.293 3.363 2.275 
1.273 0.803 -5.757 1.948 2.456 5.559 4.129 
1.273 0.896 -6.173 4.157 2.570 7.112 5.586 
2.247 0.153 -0.925 0.283 1.630 2.080 0.183 
2.244 0.602 -3.840 1.949 2.009 4.409 1.782 

0.25 

2.248 0.740 -4.674 4.169 2.178 6.173 3.001 
0.973 0.788 -6.499 0.285 2.801 4.461 3.969 
0.972 0.887 -6.999 1.921 2.869 6.016 5.459 
0.974 0.960 -7.261 4.15 2.936 7.415 6.925 
1.120 0.733 -5.986 0.281 2.612 4.079 3.256 
1.118 0.854 -6.663 1.948 2.717 5.827 4.824 
1.123 0.935 -6.979 4.191 2.803 7.274 6.231 
1.270 0.667 -5.403 0.272 2.446 3.632 2.570 
1.271 0.820 -6.319 1.971 2.589 5.622 4.240 
1.272 0.908 -6.703 4.171 2.693 7.095 5.596 
2.238 0.139 -1.037 0.272 1.654 2.036 0.185 
2.250 0.605 -4.289 1.952 2.082 4.457 1.875 

0.5 

2.239 0.755 -5.132 4.152 2.255 6.171 3.071 
0.973 0.806 -7.147 0.281 3.002 4.544 4.049 
0.976 0.898 -7.596 1.967 3.046 6.029 5.418 
0.971 0.969 -7.845 4.161 3.107 7.351 6.789 
1.121 0.755 -6.641 0.277 2.788 4.209 3.405 
1.119 0.866 -7.248 1.951 2.873 5.834 4.824 
1.123 0.943 -7.540 4.174 2.947 7.210 6.125 
1.270 0.698 -6.095 0.274 2.609 3.832 2.793 
1.270 0.832 -6.888 1.93 2.727 5.616 4.257 
1.272 0.918 -7.250 4.148 2.822 7.043 5.533 
2.244 0.140 -1.157 0.262 1.681 1.997 0.187 
2.240 0.626 -4.800 1.943 2.168 4.510 1.984 

0.75 

2.239 0.769 -5.611 4.145 2.336 6.166 3.118 
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Tables: 

Table I : Dimensionless critical properties6 used to define reduced quantities. 

n Tc
*
 ρc

*
 Pc

*
 

12 1.313 0.304 0.125 

10 1.494 0.3 0.14 

8 1.814 0.298 0.17 

 

Table II: Comparison of our MD results for a pure LJ fluid with those coming from36 for 

different states. 

 P
*
 u

*
 Cv

*
 ω*

 γv
*
 

AAD (%) 0.49 0.1 0.32 0.23 0.58 

DMax (%) 1.47 0.32 1.66 0.64 1.51 

Bias (%) 0.45 -0.1 -0.09 0.2 -0.15 
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Table III: Deviations, eq. (49), between MD and SAFT-VR Mie results for the 12 state 

points studied and three different repulsive exponents. 

n  u
* 

ρ* Cv
*
 ω*

 γv
*
 

AAD 1.23 1.14 4.00 5.97 7.88 

DMax 10.01 5.06 8.53 13.07 20.00 12 

Bias -0.98 -0.45 1.59 -5.47 -7.76 

AAD 3.72 1.45 5.53 4.11 3.11 

DMax 8.94 5.60 13.02 10.15 8.71 10 

Bias 2.16 0.23 5.41 -3.49 -1.99 

AAD 3.49 2.47 11.22 5.47 4.94 

DMax 6.88 7.04 20.09 14.09 12.44 8 

Bias 1.69 -2.47 11.22 -4.79 -4.04 
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Table IV: Deviations, eq. (49), between MD and SAFT-VR Mie results in binary mixtures 

for the 12 state points studied. 

x1  u
* 

ρ* Cv
*
 ω*

 γv
*
 

AAD 2.39 1.29 4.98 4.96 4.82 

DMax 9.57 5.04 11.62 11.84 12.85 0.25 

Bias 0.56 1.29 4.18 -4.59 -4.56 

AAD 3.30 1.32 6.95 5.53 4.83 

DMax 8.50 6.12 15.58 12.77 12.01 0.5 

Bias 1.76 -0.65 6.94 -5.00 -3.99 

AAD 3.89 1.42 9.64 5.93 5.10 

DMax 7.84 7.52 18.23 13.39 13.78 0.75 

Bias 2.55 -1.28 9.64 -5.29 -5.02 
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Table V: Deviations, eq. (52), between MD and SAFT-VR Mie + one fluid approximation on 

n, eq.(44), results in binary mixtures for the 12 state points studied. 

x1  u
* 

ρ* Cv
*
 ω*

 γv
*
 

AAD 3.27 1.41 4.93 4.14 3.13 

DMax 10.14 5.03 11.51 10.18 10.01 0.25 

Bias 1.45 0.36 4.27 -3.78 -2.66 

AAD 3.74 1.35 6.64 4.87 4.04 

DMax 9.58 6.18 14.82 11.43 9.95 0.5 

Bias 2.07 -0.11 6.56 -4.34 -2.70 

AAD 3.89 1.37 9.00 5.61 4.72 

DMax 8.88 7.63 17.20 12.71 12.99 0.75 

Bias 2.36 -1.07 9.00 -4.97 -4.61 
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Figure captions: 

Figure 1: Deviations, eq. (50), on ρ (circles) and Cv (triangles) for a given n (n=10, grey 

symbols, n=8, open symbols) relatively to the results for n=12. a) MD results and b) EOS 

ones. 

Figure 2: Deviations, eq. (50), on ω (circles) and γv (triangles) for a given n (n=10, grey 

symbols, n=8, open symbols) relatively to the results for n=12. a) MD results and b) EOS 

ones. 

Figure 3: Deviations, eq. (51), between mixture and one fluid values, a) on P*, and b) on u*, 

for different states induced by the various one fluid model: circles, eq (40), down triangles, eq 

(41), squares, eq (42), diamonds, eq (43) and up triangles, eq (44). 

Figure 4: Deviations, eq. (51) between mixture and one fluid values, on Cv
* (circles), ω* 

(triangles) and γv
* (square) for different states induced by the various one fluid model. a) eq 

(40), open symbols, eq (41), black symbols, eq (42), grey symbols; b) eq (43), open symbols, 

eq (44), grey symbols. 

Figure 5: Deviations, eq. (51), a) on P* (circles) and u* (triangles) and b) Cv
* (circles), ω* 

(triangles) and γv
* (square), induced by the one fluid model described by eq. (44) for different 

molar fraction (x1=0.25, open symbols, x1=0.5, grey symbols and x1=0.75 black symbols). 
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Figure 2 
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Figure 3 
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Figure 4 

a) b) 

State number

1 2 3 4 5 6 7 8 9 10 11 12

D
e

v
ia

ti
o

n
s

-4

-2

0

2

4

State number

1 2 3 4 5 6 7 8 9 10 11 12

D
e

v
ia

ti
o

n
s

-4

-2

0

2

4

 



40 
 

Figure 5 

a) b) 

State number

1 2 3 4 5 6 7 8 9 10 11 12

D
e

v
ia

ti
o

n
s

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

State number

1 2 3 4 5 6 7 8 9 10 11 12

D
e

v
ia

ti
o

n
s

-4

-3

-2

-1

0

1

2

 

 


