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Abstract 

In this work, using extensive molecular dynamics simulations of several 

thermophysical properties, it is proposed to analyze possible relationships (in the 

corresponding states sense) between monoatomic fluids for which the repulsive interactions 

are modeled by an inverse n-power form, the Lennard-Jones 12-6 (LJ), or by an exponential 

one, the exponential-6 (Exp-6). To compare results between them, two possible definitions of 

Exp-6 potentials “equivalent” to the LJ one are proposed. In pure fluids, for a large range of 

thermodynamic conditions, the properties computed are the surface tension, liquid/vapour 

equilibrium densities, one-phase potential energy, pressure, isometric heat capacity, thermal 

pressure coefficient and self-diffusion, shear viscosity, thermal conductivity. Additionally, 

thermodiffusion (Soret effect) has been considered in “isotopic” equimolar mixtures. It is 

shown that, despites similarities exhibited by alike radial distribution functions, differences 

exist between the thermodynamic properties values provided by the LJ fluid and the two 

“equivalent” Exp-6 fluids. Nevertheless, quite surprisingly, when temperature and density are 

used as inputs, all three direct transport properties are shown to be nearly independent of the 
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choice of the potential tested. Unexpectedly, these similarities hold even for thermodiffusion 

which is a priori very sensitive to the nature of the interactions. These results indicate that the 

use of an Exp-6 potential form to describe non bonded/non polar interaction in molecular 

simulation is an alternative (more physically acceptable) to the LJ potential when dealing 

simultaneously with thermodynamic and transport properties. However, when only transport 

properties are considered (including thermodiffusion), the Exp-6 potential form should not 

lead to any differences compared to the LJ one. 
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1. Introduction 

When performing classical molecular simulations of fluid thermophysical properties, 

the major issue concerns the choice of efficient, but simple, analytical inter and intra 

molecular potential forms in order to accurately describe the structure and the dynamic of 

dense fluids. In this context, the non bonded/non polar interactions (repulsion and van der 

Waals dispersion) are usually modelled with an effective pair potential, the Lennard-Jones 12-

6 (LJ) one. When used on simple fluids (e.g. Argon), this two parameters potential mimics 

most of the features experimentally found in fluid states, despite its simplicity compared to 

quasi-exact potentials
1
. However, it represents the decay of the repulsive interaction by an 

inverse twelve-power dependence on intermolecular separation, which was chosen mainly for 

mathematical convenience and has no physical soundness
2
. Such an intrinsic weakness may 

be of importance because the structural properties of a simple fluid are principally determined 

by the intermolecular short-range repulsive interactions
3-4

 as implicitly postulated by the 

widely used perturbation scheme. 

One alternative to the LJ potential is the use of a variable repulsive exponent (Mie n-6 

potential), but the problem of an inverse n-power formulation remains. The Exponential-6 

(Exp-6) potential family provides a more physically based alternative
5
 to describe the 

repulsion interaction (through an exponential form). This analytic form of the interaction 

potential has shown to be suitable to deal with very dense systems like those encountered in 

shock waves studies
6
. However, when performing molecular simulations, far less attention 

has been paid to the Exp-6 ones compared to the classical LJ and Mie n-6 potentials. This lack 

is especially obvious when dealing with transport properties. Nevertheless, it should be 

mentioned that interesting molecular simulations results on the Exp-6 potential family have 

been found recently
7-13

, in particular in order to develop Equation of States (EoS)
14

. In the 



4 

following, by LJ or Exp-6 fluids, we mean monoatomic fluids where interactions are 

described by LJ or Exp-6 potentials respectively. 

Using extensive molecular dynamics (MD) simulations on simple monoatomic fluids, 

it is proposed in this paper to quantify the differences on the values of some thermophysical 

(static and dynamic) properties computed for a fluid where the repulsion is described by an 

inverse n-power (the LJ one, n=12) and two “equivalent” fluids where the repulsion is 

described by an exponential formulation. In other words, it is analysed to which extent a 

corresponding states scheme (for each property) may exist between the LJ and the Exp-6 

fluids. By doing so, the aim is to clarify for which thermophysical properties the Exp-6 

potential, which is a more physically acceptable potential form than the inverse n- power one, 

could be an alternative to the LJ potential for describing non-polar/non bonded interactions of 

real fluids in molecular simulations. The thermodynamic conditions considered range from 

moderate to dense states for subcritical and supercritical temperatures (up to two times the 

critical one). The quantities computed are radial distribution functions, interfacial properties 

(equilibrium densities and surface tension), thermodynamic properties (potential energy, 

pressure, isometric heat capacity and thermal pressure coefficient) and transport properties 

(self-diffusion, shear viscosity, thermal conductivity and thermodiffusion in simple mixture).  

In a first part, the LJ and Exp-6 interaction potentials are described together with the 

way the two “equivalent” Exp-6 potentials are defined. Then, the MD methods (as well as 

some technical details) used to estimate the various thermophysical properties are provided. 

Finally, all the results obtained on structural, interfacial, one-phase thermodynamic and 

transport properties are discussed. A particular emphasis is put on the thermodiffusion (Soret 

effect
15

) results, this transport property being the most interesting from the interactions (and 

so the potential shape) point of view
16-17

. 

 



5 

2. Theory 

2.1. Interaction potentials 

In this work, two different kinds of effective truncated potentials have been used to 

describe interactions between particles, the Lennard-Jones 12-6 and the Exponential-6 

potentials, which can be written respectively as: 
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where ε is the potential strength, rm the distance at which the potential is minimum, α the 

stiffness of the repulsive slope and r the intermolecular separation. Usually, the Lennard-

Jones 12-6 potential is rewritten in terms of, σ, the “atomic diameter”, which is the distance at 

which the potential is null: 
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For both potential families a cutoff radius equal to 3.15rm (≈3.5σ for the LJ potential) has 

been applied during simulations. 

2.2. Relationships between the potentials 

In order to define an Exp-6 potential “equivalent” to the LJ one, different alternatives 

can be chosen. As previously done in the work of Lim
18

, one way to find a relationship 

between both potentials (i.e. find the appropriate α in eq. (2)) is to equate their values, slopes 

and curvatures at the equilibrium distance, rm: 
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By definition, eq. (5) is fulfilled as long as, at the equilibrium distance (the position of the 

minimum of the potential), the slopes of both potential functions are zero. The two other 

relations, eqs. (4,6), combined with the definition of both potentials, eqs. (1-2), lead to the 

following relation on α: 

 072192 =+− αα  (7) 

As α should be greater than 6, the only physically acceptable solution is: 

 772.13
2

7319
≈

+
=α  (8) 

Another way to define an Exp-6 potential “equivalent” to the LJ one (eq. (5) being 

always respected) is to impose that their values are equal at the equilibrium distance, eq. (4), 

and at the distance, σ, for which the potential is equal to zero : 

 ( ) ( )
σσ ==− =

rLJrExp UU 6  (9) 

Using the fact that for a LJ potential σ6/12=mr , eqs. (4, 9) lead to: 

 338.14≈α  (10) 

In the following, the exponential 13.772-6 potential is noted Exp1 and the exponential 

14.338-6 one is noted Exp2. Differences versus distance between Exp1 (or Exp2) and LJ 

potentials as well as between Exp2 and Exp1 potentials are shown on Fig. 1. It is interesting 

to note that, at short distances, both Exp-6 potentials are less repulsive (i.e. they are softer) 

than the LJ potential.  
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2.3. Molecular Dynamics simulations 

In order to compare results provided by the Exp1, Exp2 and LJ fluids, a homemade 

molecular dynamics code
13

 has been used. For sake of simplicity, all properties have been 

expressed in reduced units, using ε as the energy scale, σ as the length one and m, the 

molecular weight, as the mass one. They are noted with a star as superscript. 

2.3.1. Radial distribution function and thermodynamic properties 

The radial distribution function (RDF), g(r), in a homogenous system, is computed 

thanks to
1
: 
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where N is the number of particles, V the volume and rij the vector between centers of 

particles i and j. This quantity is of primary importance to analyze the structural correlations 

in a fluid
1,19

. 

In one-phase systems, the usual static properties are computed: density, ρ*, 

temperature, T*, potential energy, Upot* and the pressure P*. Concerning Upot* and P* in one 

phase systems, long-range corrections
1
 are taken into account. In addition to these static 

properties, two second derivative thermodynamic properties have been computed
19

, the 

isometric heat capacity, Cv
*
, and the thermal pressure coefficient, γv

*
: 
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where Ek is the kinetic energy and 
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In addition, the surface tension has been estimated along the liquid vapor coexistence line 

during diphasic simulations using the classical mechanical route
20

: 

 ( ) ( )[ ]∫
+∞

∞−

−= ******
dzzPzP TN  γ  (15) 

where PN
*
(z

*
) and PT

*
(z

*
) are respectively (relatively to the interface) the normal and 

tangential components of the pressure at the position z
*
. 

It is well known that the use of a truncated potential (as done in this work with a cutoff 

radius equal to 3.15rm) affects the amplitude of the surface tension computed and the 

equilibrium densities 
21-22

. The way to introduce long range corrections in such 

inhomogeneous systems is still disputed
22

. In this work, long range corrections that influence 

the properties of the diphasic systems do not have been introduced because only relative 

deviations between results provided by LJ and Exp1/Exp2 fluids (with the same cutoff radius) 

are considered. 

2.3.2. Transport properties 

The first transport property that has been estimated in this work is the mass self-

diffusion, D
*
. To do so, the Einstein route

19
 has been used during equilibrium molecular 

dynamics simulations:  
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where t* is the time and r*i the position vector of particle i. 

To compute the other transport properties, i.e. the shear viscosity, η∗
, the thermal 

conductivity, λ∗
, and the thermal diffusion factor, αT, a boundary driven nonequilibrium 

molecular dynamics scheme proposed by Müller-Plathe
23

 has been used.  

For η∗
, it consists in imposing a biperiodical flux of transverse linear momentum. To 

do so, the simulation box is divided into Ns slabs, then the two particles located respectively 
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in slab 1 and Ns with the highest momentum along the desired direction are exchanged with 

the two ones located in slab Ns/2 and Ns/2+1 which have the lowest momentum. Concerning 

λ∗
 the procedure is similar, but the biperiodical heat flux is induced by an exchange of kinetic 

energy. This procedure keeps constant the overall energy and momentum and corresponds 

simply to a redistribution in the simulation box of a certain amount of momentum for 

viscosity and kinetic energy for thermal conductivity. This exchange is done every A time 

steps (exchange/swap frequency) to avoid too large gradients and a non linear response. Once 

this boundary driven nonequilibrium molecular dynamics scheme is applied, after a transient 

state, a biperiodical gradient of transverse linear momentum for viscosity and of temperature 

for thermal conductivity will establish. Then, the property of interest is simply deduced from 

the Newton’s law for viscosity and Fourier’s law for thermal conductivity
24

. 

Concerning thermodiffusion in mixtures (the so called Soret effect in condensed phase 

which couples mass flux and thermal gradient
15

), the procedure is similar to the one for 

thermal conductivity
25

, i.e. imposition of a biperiodical heat flux using the procedure 

described previously. First, the biperiodical thermal gradient will establish, then after a longer 

duration a biperiodical concentration gradient, due to thermodiffusion, will take place in the 

simulation box. This enables to determine the thermal diffusion factor
15

 which writes for a 

binary mixture: 
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where x1 is the molar fraction of the first species of the mixture. 

2.3.3. Simulation details 

Classical periodic boundary conditions combined with a Verlet neighbors list have 

been applied. A reduced timestep, h
*
, equal to 0.002 has been employed. To integrate the 

equation of motion, the velocity Verlet algorithm is used
1
. To maintain the desired 
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temperature during simulations, a Berendsen
26

 thermostat with a large time constant equal to 

1000h
*
 has been utilized. In order to estimate errors on the variables computed, the subblocks 

average method has been applied
1
. 

For simulations in one-phase fluid, a cubic simulation box containing 1500 particles 

has been employed. To obtain thermodynamic properties, runs of 2 10
6
 timesteps have been 

used to collect data. Concerning transport properties, after discarding the transient states, data 

have been collected during between 3 and 10 10
6
 timesteps to ensure a sufficient statistic. For 

viscosity, an exchange period, A, equal to 300 timesteps has been used, whereas for thermal 

conductivity and thermal diffusion this swap period was varying from 60 to 300 timesteps 

depending on the thermodynamic state in order to ensure a linear response
27-28

. 

For simulations involving a vapor-liquid interface, a non-cubic simulation box 

composed of 1500 to 2000 particles has been employed. In order to construct the initial 

system (which contains a planar liquid slab surrounded by its vapor), the procedure described 

in Ref. [29] has been used. To compute surface tension and vapor/liquid densities along the 

coexistence line, data have been collected during 5 10
5
 timesteps. 

Using these parameters, the uncertainty on the values is below 1 % for pressure, 

around 2 % for isometric heat capacity, 3% for mass diffusion and thermal pressure 

coefficient, 4% for viscosity and thermal conductivity, 5 % for surface tension and 10 % for 

thermal diffusion, see Appendix I-IV.  

3. Results 

3.1. Radial distribution function 

The first quantity computed is the RDF of the LJ, Exp1 and Exp2 fluids for two dense 

states: ρ*
=0.9, T

*
=1.0 (subcritical) and ρ*

=0.9, T
*
= 2.5 (supercritical). As the results are 

nearly undistinguishable between LJ, Exp1 and Exp2 fluids, only the LJ RDF, see Fig. 2, and 
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the differences between the LJ RDF and the Exp1 and Exp2 ones, see Fig. 3, are shown for 

the two states.  

As expected for such dense states, the fluid is highly structured especially for the 

lowest temperature system, see Fig. 2. In addition, there exists not only a strong first shell but 

also secondary and even ternary peaks indicating a long range structure. Concerning the 

differences between RDF obtained for the Exp-6 and LJ fluids, results shown in Fig. 3 

(relatively to those given in Fig. 2) clearly indicate that the structure of these fluids are very 

similar especially for the lowest temperature and between Exp2 and LJ fluids. More precisely, 

the differences mainly occur at short distance in the first shell. In fact, it appears, see Fig. 3, 

that the Exp-6 RDF are larger than the LJ one for the shortest distance. This result is 

consistent with the fact that both Exp-6 potentials are less repulsive than the LJ one, see Fig. 

1. 

3.2. Interfacial properties 

For the three fluids tested (LJ, Exp1 and Exp2) and for five different temperatures 

(T*=0.7-1.1 with a step of 0.1), the vapor-liquid equilibrium densities, ρv
*
 and ρl

*
, together 

with the associated surface tension, γ*
, have been computed. All simulation data are provided 

in Appendix I. It should be noted here that the interfacial properties obtained for the LJ fluid 

exhibit some deviations compared to those provided by other techniques
22,30

. These deviations 

are present on the whole temperature range and not only close to the critical point (where 

finite size effects become large). Nevertheless, as mentioned in section 2.4, this is mainly due 

to the use of a truncated potential (with a rather small cutoff radius equal to 3.15rm) without 

long range corrections. Notice that our results are in excellent agreement with those provided 

by Dunikov et al.
21

 which provide values for a LJ truncated potential (at 3.5σ≈3.14rm) without 

long range corrections. They found that at T*=0.9, γ*
=0.472, ρv

*
=0.0218, ρl

*
=0.725 and at 

T*=1, γ*
=0.291, ρv

*
=0.0432, ρl

*
=0.665 whereas we obtained respectively, 
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γ*
=0.47±0.02, ρv

*
=0.0217±0.005, ρl

*
=0.725±0.003 and γ*

=0.29±0.03, ρv
*
=0.041±0.004, 

ρl
*
=0.667±0.004. In addition, apart from finite size effects that may occur, the cutoff radius 

employed (without long range corrections) implies an underestimation of the critical 

temperature
21

, if this temperature is extrapolated from the results of the surface tension using 

a classical scaling law
20

. 

Concerning the densities along the coexistence line, Fig. 4 shows that both definitions 

of the Exp-6 potential “equivalent” to the LJ one provide results quite similar to the LJ ones 

with deviations increasing with temperature. More precisely, Exp-6 vapor densities are larger 

than LJ ones whereas Exp-6 liquid densities are smaller than LJ ones. In addition, the Exp1 

fluid yields results closer to those of the LJ fluid than the Exp2 fluid especially in the liquid 

phase, see Table I and Fig. 4.  

Concerning surface tension, see Fig. 5 and Table I, γ*values provided by all three 

fluids are close to each other but those yielded by the Exp2 fluid are always lower than the 

Exp1 ones which are lower than the LJ ones. Considering that γ* in such simple fluids follows 

a classical scaling law behavior
20

, these results indicate that the critical temperature of the LJ 

fluid should be the highest among the three and that the critical temperature of the Exp 2 fluid 

is the lowest one (for the system studied). It is satisfying to notice that this is consistent with 

the work of Panagiotopoulos
31

 which (using Grand canonical
 
histogram reweighting Monte 

Carlo calculations) estimated that the LJ fluid critical temperature equals to 1.299 whereas the 

Exp 14-6 fluid one equals to 1.253. Using a polynomial interpolation to fit the values given in 

ref. [31], it can be estimated that the critical temperature equals 1.268 for the Exp1 fluid and 

1.235 for the Exp2 fluid. 

3.3. One-Phase thermodynamic properties 

In addition to the interfacial properties, various thermodynamic quantities (pressure, 

P
*
, potential energy, U

*
, isometric heat capacity, Cv

*
 and thermal pressure coefficient, γv

*
) 
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have been computed for seven different thermodynamic states covering from supercritical gas 

to very dense liquid. These states are summarized in Table II (the critical point
31

 is located at 

Tc
*
=1.299, ρc

*
=0.316 and Pc

*
=0.123). It is worth to note that states 6 and 7 correspond to very 

dense states (states for which RDF have been computed, see section 3.1), the density being 

more than two times the critical one and the pressures being respectively roughly 30 and 90 

times the critical one. All simulations data are provided in Appendix II. 

Table III indicates that second derivative thermodynamic properties values (heat 

capacity and thermal pressure coefficient) provided by both Exp1 and Exp2 fluids are close to 

those of the LJ fluid, whereas larger deviations exist on pressure and potential energy values. 

It is interesting to note, see Fig. 6, that the deviations between Exp-6 and LJ fluids values of 

pressure and potential energy are not markedly higher in dense states (3-7) than in moderately 

dense ones (1-2). Such result is unexpected as long as dense states correspond to conditions 

where the repulsive part of the potential is of primarily importance. 

Concerning second derivative thermodynamic properties, Fig. 7 indicates that, apart 

from the moderate densities conditions (ρ*=0.3, state 1 and 2), Exp1 and Exp2 fluids yield 

Cv
*
 values slightly higher than the LJ fluid ones and somewhat lower results for γv

*
. In 

addition, it is worth to note that deviations are generally larger in dense states than in 

moderately dense ones. 

All results obtained for thermodynamic properties (one-phase and interfacial) indicate 

that, on average, the Exp1 fluid yields values closer to the LJ fluid ones than the Exp2 fluid. 

Nevertheless, none of both Exp-6 fluids is able to reproduce accurately the thermodynamic 

behavior of the LJ fluid. This is interesting as it clearly demonstrates (see Figs. 6-7) that a 

perfect corresponding states scheme between the LJ and the Exp-6 fluids is not reachable 

when dealing with thermodynamic properties. It should be noted that this point has already 

been noticed in Ref. [13]. Hence, when used to predict real fluids thermodynamic properties 
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by molecular simulations, in cases where the LJ potential (or more generally the Mie n-6 

potential family) reveals deficiencies, the choice of an Exp-6 potential form may be a 

physically acceptable alternative as shown by Errington et al.
8
. In addition, such a potential 

form may also be used to construct molecular based Equations of States
12,32-33

 as done 

recently with success for the Mie n-6 potential
34,35

. 

3.4. Direct transport properties 

Corresponding states approaches
36

 are frequently employed to estimate 

thermodynamic properties of simple real fluids, but they can also apply, to a reasonable 

extent, to transport properties as well
37

. In fact, strictly speaking, if one assumes that a 

corresponding states law holds perfectly between two compounds, this should be verified both 

for thermodynamic and transport properties. 

Thus, as previously done for thermodynamic properties, for the same thermodynamic 

states given in Table II, direct transport properties including self-diffusion, D
*
, shear 

viscosity, η*
, and thermal conductivity, λ*

, have been computed using MD simulations for the 

LJ, Exp1 and Exp2 pure fluids. Results are provided in Appendix III. 

Keeping in mind the intrinsic uncertainties on the MD values (see section 2.6), the first 

most striking result is that values yielded by Exp1 and even more Exp2 fluids are very close 

to those provided by the LJ fluid in all cases, see Fig. 8. The deviations are always smaller 

than 7.5 % for the Exp1 fluid and 3.5 % for the Exp2 one, see Table IV. This indicates that a 

corresponding states behavior exists between the Exp2 and the LJ fluids (not too close from 

the critical point) when restricted to transport properties and when temperature and densities 

are used as inputs. 

Besides, see Fig. 8, the deviations on self-diffusion (slightly overestimated by Exp1 

and Exp2 fluids compared to the LJ fluid values) and viscosity (slightly underestimated by 

Exp1 and Exp2 fluids) values are roughly symmetric compared to the zero line. Such a 
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behavior is consistent with the Stokes-Einstein equation which implies that the product 

between mass diffusion and viscosity is function only of temperature and of particle size
24

 and 

seems to make sense even for non colloidal systems
38,39

. 

Concerning a possible link between results shown on Figs. 6 and 8 (i.e. a link between 

results on thermodynamic and transport properties), the situation is not simple. For instance, 

in state 6, for both Exp1 and Exp2 fluids, pressure and self-diffusion are slightly 

overestimated whereas viscosity is underestimated compared to LJ fluid values. This is 

contradictory to the fact that, in simple non polar dense fluids, mass diffusion decreases with 

pressure whereas viscosity increases. In fact, this clearly demonstrates that a simultaneous 

corresponding state between Exp-6 and LJ (or more generally Mie n-6) fluids, for both 

thermodynamic and transport properties is not reachable. This could be interesting in order to 

circumvent some of the difficulties encountered by molecular simulations (when the LJ 

potential is used to describe non bonded/non polar interaction) to reproduce both 

thermodynamic and transport properties
14,40

 of real fluids with the same set of molecular 

parameters.  

3.5. Thermodiffusion 

Thermodiffusion is the less well understood and modeled transport property in fluid 

mixtures
16

. In addition, this transport process is considered to be the most sensitive to the 

interaction potential shape, at least in low density conditions
41

. Therefore, for the 

thermodynamic states indicated in Table II, the thermal diffusion factor, αT, has been 

computed for the three fluids studied in this work. To limit the complexity of the problem, 

only ideal “isotopic” equimolar mixtures have been studied
42

, i.e. equimolar mixtures for 

which rm and ε are equal for both compounds. The compounds are only differentiated by their 

mass. We have employed m2=10m1 to obtain a sufficiently significant relative separation 

between the two species
42

. Simulation results are given in Appendix IV. 



16 

Unexpectedly, see Fig. 9, it appears that both Exp1 and Exp2 fluids are able to provide 

αT values very close to those given by the LJ fluid: the Average Absolute Deviation (AAD) 

between Exp1 and LJ results is equal to 2.3 % and AAD between Exp2 and LJ results is equal 

to 1.9 %.  

This behavior noted on αT is interesting as it unambiguously shows that, as for direct 

properties, for a given set of T* and ρ*, thermal diffusion in “isotopic” mixtures is not largely 

affected by the choice of the shape of the repulsive part of the potential used to describe the 

interactions (at least between Exp-6 and LJ) in moderate to dense systems (ρ*=0.3-0.9). 

Consequently, thermal diffusion (with the precision accessible by MD simulations at that 

time) cannot systematically be used to discriminate between potential shapes to describe non 

bonded/ non polar interactions as commonly believed. However, in more complex mixtures, 

this property can be a good molecular description probe as long as it has been shown that the 

description of other interactions is of primary importance on the amplitude and even the sign 

of thermodiffusion
17,39,43-44

. 

4. Conclusion 

In this work, using extensive MD simulations, we have carried out a careful analysis 

of the similarities between fluids described by potentials where the repulsion is modeled by an 

inverse n-power repulsion or by an exponential one. This has been done by studying structure, 

interfacial, thermodynamic and transport properties (including thermodiffusion) of Lennard-

Jones 12-6 and two “equivalent” Exp-6 fluids (using two different definitions of what means 

“equivalent”), for a large range of thermodynamic conditions. 

Despites similarities reflected by very similar radial distribution functions, it has been 

noted that no perfect corresponding states scheme could be established between Exp-6 and LJ 

fluids when dealing with both interfacial (equilibrium densities and surface tension) and one-

phase thermodynamic properties (potential energy, pressure, isometric heat capacity and 
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thermal pressure coefficient). In addition, it has been shown that the values of these properties 

provided by the Exp1 fluid (α=13.772, the softer one), are generally closer to the LJ fluid 

ones than those provided by the Exp2 fluid (α=14.338).  

Concerning direct transport properties in pure fluids (self-diffusion, shear viscosity 

and thermal conductivity), results for all the three fluids have been found to be very similar 

for a given set of T* and ρ*, even in very dense phases (ρ*=0.9). This is particularly obvious 

between LJ and Exp2 fluids results, the deviations being always smaller than 3.5 %. Even 

more surprising, when analyzing the thermodiffusion (Soret effect) in “isotopic” mixtures 

(m2/m1=10), which is, a priori, a transport property very sensitive to the nature of the 

interactions, deviations between Exp-6 and LJ fluids results remain always small and within 

their respective error bars (below 3.6 % for all states studied between Exp2 and LJ fluids). 

These results on transport properties, clearly demonstrates that, for the tested range of 

thermodynamic conditions and using T* and ρ* as inputs, a nearly perfect corresponding 

states law on transport properties (including thermodiffusion) exists between Exp-6 and LJ 

fluids (especially between Exp2 and LJ fluids). Nevertheless, a corresponding states scheme 

valid for all properties (static and dynamic, simultaneously) between these fluids is 

unreachable as the deviations between results for Exp-6 and LJ fluids for both thermodynamic 

and transport properties are not linked. 

From these results, it can be deduced that the use of an exponential form of the 

repulsive part of the potential to describe non bonded/non polar interactions is an alternative 

(more physically acceptable) to the more usual inverse n-power formulation when used to 

predict simultaneously thermodynamic and transport properties of real dense fluids by 

molecular simulations. However, when only transport properties (including thermodiffusion) 

are involved and if T* and ρ* are used as inputs (for ρ* up to 0.9), the Exp-6 potential form 

should not lead to any differences compared to the more usual LJ one.  
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Appendix I:  

Interfacial properties (equilibrium densities and surface tension) of the LJ, Exp1 and Exp2 

fluids. Values in parenthesis represent the uncertainties on the last digit. 

T* LJ Exp1 Exp2 

ρv* ρl* γ* ρv* ρl* γ* ρv* ρl* γ* 

0.7 0.0032(11) 0.823(3) 0.90(4) 0.0038(12) 0.824(2) 0.84(3) 0.0045(5) 0.813(3) 0.78(3) 

0.8 0.009(13) 0.776(2) 0.69(2) 0.0105(16) 0.776(3) 0.64(3) 0.0130(8) 0.762(3) 0.61(2) 

0.9 0.0217(15) 0.725(3) 0.47(2) 0.025(3) 0.723(2) 0.44(2) 0.028(2) 0.706(3) 0.39(3) 

1 0.041(4) 0.667(4) 0.29(3) 0.051(4) 0.660(5) 0.27(3) 0.058(5) 0.641(4) 0.23(3) 

1.1 0.086(5) 0.594(6) 0.15(4) 0.098(6) 0.581(8) 0.12(3) 0.113(5) 0.542(6) 0.08(4) 

 

Appendix II:  

One-phase thermodynamic properties (potential energy, pressure, isometric heat capacity and 

thermal pressure coefficient) of the LJ, Exp1 and Exp2 fluids. Values in parenthesis represent 

the uncertainties on the last digit. 

State LJ Exp1 Exp2 

U* P* Cv* γv* U* P* Cv* γv* U* P* Cv* γv* 

1 -2.066 0.225 1.94(2) 0.559(8) -2.000 0.24 1.95(3) 0.560(9) -1.947 0.255 1.93(5) 0.552(10) 

2 -1.826 0.746 1.670(10) 0.512(5) -1.750 0.756 1.680(10) 0.520(8) -1.704 0.773 1.675(9) 0.510(6) 

3 -4.039 4.38 2.000(9) 2.59(3) -3.826 4.32 2.040(7) 2.526(15) -3.746 4.443 2.038(6) 2.546(15) 

4 -5.530 1.026 2.385(15) 4.82(7) -5.357 1.111 2.45(4) 4.749(14) -5.253 1.18 2.433(22) 4.76(9) 

5 -4.407 7.16 2.158(10) 3.56(4) -4.148 6.98 2.22(7) 3.49(7) -4.067 7.17 2.208(14) 3.48(4) 

6 -6.049 3.29 2.695(34) 6.71(17) -5.840 3.37 2.81(4) 6.65(21) -5.741 3.45 2.79(4) 6.70(18) 

7 -4.580 11.63 2.360(13) 4.83(7) -4.270 11.21 2.400(20) 4.52(8) -4.193 11.51 2.414(17) 4.65(7) 
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Appendix III:  

Direct transport properties (self-diffusion, viscosity and thermal conductivity) of the LJ, Exp1 

and Exp2 fluids. Values in parenthesis represent the uncertainties on the last digit. 

State LJ Exp1 Exp2 

D* η* λ* D* η* λ* D* η* λ* 

1 0.675(17) 0.315(10) 1.43(7) 0.663(21) 0.311(10) 1.42(9) 0.685(14) 0.312(16) 1.43(8) 

2 0.995(20) 0.406(16) 1.73(9) 0.987(25) 0.406(16) 1.73(11) 0.993(19) 0.413(19) 1.75(10) 

3 0.260(9) 1.25(4) 5.36(19) 0.276(5) 1.21(7) 5.17(25) 0.271(10) 1.23(9) 5.25(24) 

4 0.068(2) 2.08(11) 6.12(24) 0.068(2) 2.02(8) 6.10(24) 0.067(2) 2.05(10) 6.13(22) 

5 0.188(5) 1.78(10) 7.26(24) 0.198(4) 1.73(10) 7.05(30) 0.194(5) 1.765(61) 7.18(27) 

6 0.036(1) 4.13(16) 8.43(32) 0.037(1) 3.90(17) 8.26(33) 0.036(1) 4.02(16) 8.41(37) 

7 0.132(3) 2.77(9) 9.86(42) 0.139(3) 2.57(10) 9.41(38) 0.134(3) 2.67(23) 9.61(36) 

 

Appendix IV:  

Thermal diffusion factors in “isotopic” equimolar mixtures (m2/m1=10) for the LJ, Exp1 and 

Exp2 fluids. Values in parenthesis represent the uncertainties on the last digit. 

State αT LJ αT Exp1 αT Exp2 

1 0.80(12) 0.80(15) 0.78(15) 

2 0.91(10) 0.91(9) 0.93(10) 

3 2.07(12) 2.04(18) 2.01(13) 

4 2.36(14) 2.49(16) 2.40(29) 

5 2.32(18) 2.29(20) 2.33(15) 

6 2.34(29) 2.26(30) 2.35(31) 

7 2.48(15) 2.44(13) 2.36(13) 
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Tables: 

 

Table I: Interfacial properties Average Absolute Deviations (AAD), in percentage, compared 

to LJ results of both Exp1 and Exp2 potentials. Values in parenthesis represent the Maximum 

absolute Deviation. 

 Vapor density Liquid density Surface tension 

Exp1 18.1 (25.9) 0.7 (2.2) 9.9 (20) 

Exp2 37.2 (44.4) 3.7 (8.8) 21.5 (43.3) 

 

 

Table II: Thermodynamic states studied in the one-phase systems 

State 1 2 3 4 5 6 7 

ρ* 0.3 0.3 0.7 0.8 0.8 0.9 0.9 

T* 1.5 2.5 2.5 1 2.5 1 2.5 

 

 

Table III: Thermodynamic properties average absolute deviations (in percentage) compared 

to LJ results of both Exp1 and Exp2 potentials. Values in parenthesis represent the Maximum 

absolute Deviation. 

 P
*
 Utot

* 
Cv

* 
γv* 

Exp1 3.7 (8.3) 4.6 (6.8) 2.1 (4.1) 2.2 (6.4) 

Exp2 5.6 (15.0) 6.6 (8.4) 1.9 (3.6) 1.6 (3.9) 
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Table IV: Transport properties AAD (in percentage) compared to LJ results of both Exp1 and 

Exp2 potentials. Values in parenthesis represent the Maximum absolute Deviation. 

 D
*
 η* λ* 

Exp1 2.7 (5.3) 3.4 (7.3) 2.0 (4.5) 

Exp2 1.3 (2.1) 1.8 (3.5) 1.0 (2.6) 
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Figure captions: 

Figure 1: Left, differences between Exp1(continuous line) or Exp2(dashed line) and LJ 

potentials values versus the distance (r* = r/σ going from 0.95 to 3.5). Right, differences 

between Exp2 and Exp1 potentials values versus the distance. 

Figure 2: RDF of the LJ fluid at ρ*
=0.9 and T

*
=1 (full line) or T

*
=2.5 (dashed line). 

Figure 3: Differences between Exp1 (dashed lines) or Exp2 (full lines) RDF and LJ ones; left 

at ρ*
=0.9 and T

*
=1 and right at ρ*

=0.9 and T
*
=2.5. 

Figure 4: Vapor (left part) and liquid (right part) densities along the coexistence line for 

various temperature and three different fluids, circles: LJ, triangles: Exp1 and squares: Exp2. 

Figure 5: Surface tension versus temperature for three different fluids, circles: LJ, triangles: 

Exp1 and squares: Exp2 

Figure 6: Deviations (in %) on pressure, circles, and potential energy, down triangles, 

between Exp1 (open symbols)/Exp 2 (full symbols) fluids results and LJ fluid ones for 

various thermodynamic states, see Table II. 

Figure 7: Deviations (in %) on isometric heat capacity, circles, and thermal pressure 

coefficient, down triangles, between Exp1 (open symbols)/Exp 2 (full symbols) fluids results 

and LJ fluid ones for various thermodynamic states, see Table II. 

Figure 8: Deviations (in %) on self-diffusion, circles, viscosity, squares, and thermal 

conductivity, down triangles, between Exp1 (open symbols)/Exp 2 (full symbols) fluids 

results and LJ fluid ones for various thermodynamic states, see Table II. 

Figure 9: Thermal diffusion factor deviations (in %) between Exp1 (open circles)/Exp 2 (full 

circles) fluids results and LJ fluid ones for various thermodynamic states, see Table II. 
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Figure 1: 
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Figure 2: 
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Figure 3: 
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Figure 4: 
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Figure 5: 
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Figure 6: 
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Figure 7: 
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Figure 8: 
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Figure 9: 
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