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Abstract 

In this work, is presented an empirical correlation on the thermal conductivity of the 

Lennard-Jones fluid based on extensive non-equilibrium molecular dynamics 

simulations results (103 points). Finite size and cutoff radius effects are investigated and 

taken into account to develop the correlation. This last, composed of low density, 

residual and critical enhancement contributions, is built for a wide range of 

thermodynamics states, even at the vicinity of the critical point, and yields an average 

absolute deviation of 1.29 % compared to our simulations. In addition, a careful 

analysis of the different contributions to the microscopic flux is carried out which sheds 

light on the underlying mechanism of the results. Finally, are discussed the limitations 

of the proposed model when applied to real simple fluids and mixtures using a standard 

corresponding states scheme and the van der Waals one-fluid approximation.  
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1.  Introduction  

An accurate knowledge of thermal conductivity is essential in various fields such as 

fluid mechanics, chemical engineering, or industrial processing of materials. But, 

despite numerous models, an accurate modeling of this property is still lacking 

especially in dense fluid mixtures [1]. On way to improve the theoretical understanding 

of the thermal conductivity behavior in dense fluid, as well to provide a physically 

based correlation, is the use of molecular dynamics (MD) simulations on model fluids 

such as the widely used Lennard-Jones (LJ) fluid model.  

Nevertheless, compared to viscosity [2-6] or even more self diffusion [7-10], there is a 

lack of systematic studies of the amplitude of thermal conductivity of the Lennard-Jones 

fluid, even if some recent results have been published [11-14]. In particular, to the best 

of our knowledge, it only exists one work (theoretically based) [14] which provides a 

relation to estimate the LJ thermal conductivity. This lack of MD data on thermal 

conductivity of the LJ fluid is surprising as long as it exists various efficient schemes to 

compute this transport property: the classical equilibrium molecular dynamics (EMD) 

method [15] and different non-equilibrium molecular dynamics (NEMD) approaches 

[13, 16-18]. 

So, in this work, using the simple Lennard-Jones (LJ) fluid model as a basis, a large 

number of NEMD simulations (based on the algorithm proposed in reference [18]) for 

various thermodynamic states have been performed (even close to the critical point). 

The goal is twofold: 

-First, improve the understanding of the energy transport in LJ fluids (in particular close 

to the critical point) by a careful analysis of the microscopic contributions to the heat 

flux. 

-Second, as already done by us for viscosity [2], construct a simple and accurate 

correlation on thermal conductivity of the Lennard-Jones fluid for a wide range of 

thermodynamic states. Then, quantify to which extent such a correlation, which deals 

only with translational mode of energy transfer, could provide a good estimation on 

simple real pure fluids and mixtures when combined with a standard corresponding 

state scheme. 
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It is worth emphasizing that, apart from the two goals mentioned above, such a 

correlation could be useful as well when coupling computational fluid dynamics (CFD) 

and MD [19-23]. In fact, a very accurate knowledge of transport properties at the 

microscopic level of the fluid model, usually the Lennard-Jones one, is required to 

inject the proper quantities in the macroscopic equation, otherwise the convergence in 

the overlapping region will not be achieved. 

In a first part, are presented the effects of the numerical parameters of the MD 

simulations (N, number of particles, rc, cutoff radius) on thermal conductivity. Then, 

based on the results of more than 100 points of simulations covering from T
*
=0.6 to 4.0 

and up to ρ*
=0.9, a simple correlation applicable from gas to dense systems and even 

close to the critical point is proposed. Simultaneously, an analysis of the results in terms 

of heat flux contributions is provided. In a last part, this correlation is applied to some 

simple pure fluids and mixtures discussing the intrinsic limitations of the LJ fluid 

model. 

2. Theory and model 

2.1. Interaction potential  

To model the fluid particle interactions, we have used the Lennard-Jones 12-6 potential, 

which is, for a molecule i interacting with a molecule j: 
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where εij is the potential strength, σij the distance at which the potential is equal to zero, 

and rij the intermolecular distance. 

When dealing with mixtures, the crossmolecular parameters between unlike particles i 

and j appearing in eq. (1) have to be defined using a set of combining rules. In this 

work, we have chosen to use the classical Lorentz-Berthelot (LB) combining rules: 
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2.2. Microscopic law of the corresponding states  

The law of the corresponding states postulates that, with an adequate scaling procedure, 

different fluids, at the same reduced conditions, have superposing thermodynamic phase 

diagrams. Ιn this scheme, the reduced LJ temperature and density are respectively 

defined by: 

 
x

BTk
T

ε
=*  (4) 

 
V

N x

3
* σ

ρ =  (5) 

where kB is the Boltzmann constant, T the temperature, N the number of particles, V the 

volume of the simulation box, σx and εx the characteristic LJ potential parameters of the 

studied fluid. The reduced pressure which is a unique function of T
*
 and ρ*

 for the LJ 

potential is: 

 
x
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where P is the pressure of the system.  

In addition, this microscopic formulation of the corresponding states implies that, for a 

given potential shape, reduced dynamic properties are unique function of T
*
 and ρ*

; for 

the thermal conductivity such an approach yields: 
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where mx is the characteristic molecular mass of the fluid and λ the thermal 

conductivity. 

2.3. van der Waals one-fluid approximation 

In mixtures, σx, εx and mx, appearing in eqs. (4-7), have to be defined by a one-fluid 

approximation which allows to describe the mixture as a single pseudocomponent 

“equivalent” to the mixture. To do so, we have chosen the van der Waals one-fluid 

approximation (vdW1) which provides usually reasonable results: 

 
x i i

i

m x m=∑  (8) 
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where the xi are the molar fractions and σij and εij are calculated using eqs. (2) and (3).  

2.4. Heat flux decomposition 

During the stationary state of the non equilibrium molecular dynamics simulations, it is 

possible to estimate the local instantaneous internal energy flux, JU, by using its 

microscopic formulation (Irving-Kirkwood) which is composed of three terms [18]: 

 
U k p co

J J J J= + +  (11) 

where Jk corresponds to the kinetic energy transferred by a moving particle, given by: 
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Jp corresponds to the potential energy transferred by a moving particle, given by: 

 ( )p

1
J v v

i i

iCV
φ= −∑  (13) 

and Jco is the energy transferred by collision with other particles: 

 ( )
1

J v v F  r
co i ij ij

i j iCV >

 = − − ⋅ ∑∑  (14) 

where Vc is the control volume, vi the velocity of particle i, v the barycentric velocity of 

the system, φi the potential energy of particle i in the field of all other particles, Fij the 

force acting on i due to j and rij is the vector from the position i to the position j. 

In addition, in pure fluids, the internal energy flux, JU, computed by eq. (11) is equal to 

the heat flux, Jq, given by the Fourier’s law:  

 Tq ∇−= λJ  (15) 

which is not the case in mixtures if the mass fluxes are not equal to zero [24].  

Thus, in the linear regime, it is possible to consider that the thermal conductivity is 

composed of three terms: 

 copK λλλλ ++=  (16) 

where λk and λp correspond respectively to the kinetic and potential contributions and 

λco to the collisionnal part (configurational). The two first quantities could be gathered 
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to form the translational contribution. It is worth noticing that such a decomposition is 

different from the one sometimes used in equilibrium molecular dynamics simulations 

[11], which induces byproducts between translational and configurational contributions. 

2.5. Non-Equilibrium Molecular Dynamics 

One major purpose of this study is to have a reliable database on the reduced thermal 

conductivity λ*
 of the LJ fluids. To compute this transport property in Lennard-Jones 

fluids using molecular dynamics, a large number of techniques are available. They are 

based on either equilibrium [15], synthetic nonequilibrium [17], or boundary driven 

non-equilibrium approaches [13,16,18]. Among them we have chosen a boundary non-

equilibrium molecular dynamics scheme, the HEX (Heat EXchange) algorithm 

developed by Hafskjold et al. [18], simple to handle and providing reliable results. In 

this scheme a biperiodical heat flux is imposed to the simulation, and after a transient 

state, the thermal conductivity is deduced using the Fourier’s law and the measured 

temperature profile. 

To do so, the simulation box is divided into Ns slabs (in our simulations Ns=32), of 

identical thickness and volume, along the z direction, see figure 1. Slabs 1 and Ns are 

defined as the “hot” ones and slabs Ns/2 and Ns/2+1 as the “cool” ones. The heat flux is 

generated by an exchange, at each time step, of kinetic energy between the cool slabs, at 

the center, and the hot slabs, at the extremities of the box, so that the temperature 

increases in the hot slabs and decreases in the cool slabs (while keeping the linear 

momentum constant). By conduction, the generated heat flux, 

 J
2

imp c
q

x y

E

tL L

∆
=  (17) 

where ∆Ec is the kinetic energy exchanged during the simulation time t ; Lx, Ly, the box 

lengths in x and y directions, leads to a temperature gradient. The slabs where the 

exchanges are performed, as well as their first neighbors, have been discarded to 

measure the temperature gradient because of non linear behavior in these regions [18], 

see figure 2.  

It should be noted that, in mixtures, the thermal conductivity deduced using this scheme 

corresponds to an effective thermal conductivity, which is composed by part of a 

thermodiffusion (Dufour effect) contribution [24] due to the fact that a molar fraction 
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gradient appears. Nevertheless, in systems studied here this contribution is at the highest 

a few percent only. 

Besides, as long as the Irving-Kirkwood microscopic formulation of the heat flux, eqs. 

(11)-(14), is strictly speaking valid only in homogeneous systems [25] (which is not the 

case in the NEMD scheme chosen) we have verified that the ratio between the imposed 

heat flux, eq. (17) and the computed one, using eq. (11), is always close to unity. It has 

been found that the deviations were lower than 1 % which means that the procedure is 

consistent. 

2.6. Technical details 

The code used is homemade [26] and uses the Verlet velocity algorithm [15] to integrate 

the equations of motion. The Verlet neighbor list coupled with a cell list method [15] 

has been used to save CPU time. The reduced time step,
x

xx m
tt

σ

ε
δδ =*

, has been 

taken equal to 0.002. Usual periodic boundary conditions and minimum image 

convention were applied. To avoid a temperature drift during the simulation, we have 

used a Berendsen thermostat with a very long coupling constant to perturb as less as 

possible the system, this constant being equal to 1000 time steps [27]. It has been 

verified that such thermostat does not affect the heat flux contribution (see section 2.4) 

results. Simulations have been performed on systems composed of 1500 Lennard-Jones 

12-6 spheres, having a 2.5σ cutoff radius, except when stated. The influence of these 

numerical parameters is discussed in section 3. 

After equilibration and the NEMD transient state (at least 10
5
 time steps) simulations 

were performed during at least 2.5.10
6
 nonequilibrium time steps (five runs of 5.10

5
 

time steps each). To avoid a non-linear response of the system, a relatively weak 

reduced heat flux, 
x

x

x

x

qq

m

εε

σ
JJ =*

, ranging from 0.07 to 0.3, depending on the 

thermodynamic state, has been applied. It should be noted that, for each simulation, a 

great care has been taken to obtain a linear thermal gradient and to avoid phase 

transition (by analyzing the density gradient). An example of one temperature profile is 

addressed in figure 2. Using these parameters, the estimated errors (using the subblocks 
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average method [15] with subblock composed of 5.10
5
 timesteps to ensure the statistical 

independence) lie between 1 and 9%, depending on the state, see the appendix.  

3. Preliminary results  

3.1. System size 

By performing simulations on systems composed of 500 to 8000 particles, we have 

studied the influence of the system size on the thermal conductivity computed by the 

NEMD scheme we used [18], for four thermodynamics states (ρ*
=0.3 and 0.8, T

*
=1 and 

2.5). As the simulation box is always cubic, width, height and depth vary in the same 

proportion.  

Contrary to what has been found recently by Mountain [28], which uses a similar non-

equilibrium algorithm (but keep Lz constant when varying N), non-negligible finite size 

effects have been noticed, see figure 3, as noted previously in a supercritical state [26]. 

In addition, it has been found that these finite size effects are dependent on the 

thermodynamic states as noted recently by Heyes et al. [29] for the self diffusion of the 

hard-sphere fluids, see figure 3. The underestimation of thermal conductivity observed 

increases with T
*
 and decreases with ρ*

. 

Quite interestingly, as it is shown in figure 3, we found a linear decrease of λ*
 with N

-1/2
 

whatever the thermodynamic state. It should be noted, as shown in [29], that due to the 

system size accessible, the discrimination between a dependence with N
-1/2 

or the more 

usual N
-1/3 

is hard to achieve. For the case studied here, the N
-1/2

 scaling provides 

slightly better results than the N
-1/3

 one. Using this finding, we propose a corrective term 

that enables to deduce values of the thermal conductivity in the thermodynamic limit 

*

∞λ , from the values obtained for a finite number of particle, λ*
: 

 ( )5.0**
1

−
∞ += Nαλλ  (18) 

where α is a function of T
* 

and ρ*
. 

To estimate α, following the trends noticed in figure 3, we have assumed that this 

correction could be simply expressed as: 

 
*

*

ρ
α

B
AT +=   (19) 
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where A and B are numerical constants. By regressing these coefficients on the 

simulations results we have obtained A=0.7436 and B=1.1193, results are shown in 

figure 3. 

By analyzing the dependence of the three contributions to the thermal conductivity, see 

eq. (16), further information could be gathered. First, see figure 4, it appears that all 

three contributions are affected by finite size effects, and all scale as N
-1/2

. In addition, 

the two translational contributions, λk
*
 and λp

*
, are approximately two times more 

affected by the size of the system than the collisional contribution, λco
*
. This means that 

the behavior of λ*
 with the size of the system is mainly related to the one of the 

translational contribution (λk
*
+λp

* 
). Such a result explains why the dependence of λ*

 on 

the size of the system increases with T
*
 and decreases with ρ*

 because an increase of 

temperature and/or a decrease of density favors the transfer of energy by a moving 

particle (translational contribution) relatively to the transfer of energy by collisions 

(collisional contribution). This point is dealt with in details in section 4.4. 

3.2. Cutoff radius 

Cutoff radius may affect the amplitude of the computed transport properties, as for 

instance when dealing with thermodiffusion [26]. Therefore, simulations for various 

cutoff radius (between 2 and 4σ) have been performed for four different 

thermodynamics states, see figure 5, on a fixed number of particles, equal to 1500.  

For the tested thermodynamic states, it has been found that the thermal conductivity 

values do not appear to be sensitive to the cutoff radius value. More precisely, values 

obtained for different rc lie within the error bars of each other, see figure 5, as noticed 

previously in a supercritical state [30] and for other direct transport properties in the 

liquid state by Meier [11]. This trend is consistent with the fact that direct transport 

properties (like viscosity, mass diffusion or thermal conductivity) are believed to 

primarily depend on the occurrence of collisions and not on the nature of the collisions 

(related to the shape of the potential). Therefore, in the following, we have used the 

2.5σ cutoff radius (rc
*
=2.5) which appears to be a good compromise between reliable 

results and CPU time needs for the computation of thermal conductivity and which is 

probably the most widely used in the literature. 
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3.3. Validation of results with regard to literature 

As a test concerning the values provided by our simulations (taking into account the 

finite size correction, eqs. (18-19)), a comparison with the recent data obtained by 

Nasrabad et al. [14] (which uses an EMD approach) and Mountain [28] (which 

compares NEMD and EMD results) has been performed. Thermodynamic conditions 

simulated cover from T
*
=0.7 to T

*
=3.6 and from ρ*

=0.3 to ρ*
=0.9. To estimate the 

reliability of our results, we have calculated the bias, the average absolute deviation 

(AAD) and the maximal deviation (∆max) between our values and those coming from 

references [14] and [28]:  
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All these quantities are expressed in percentages. 

The results are summarized in Table 1 and they clearly indicate that our values are 

consistent with recent literature data (using both EMD and NEMD approaches), even if 

our values, on average, slightly overestimate those of references [14] and [28] (around 3 

%). This slight discrepancy may probably be imputed to the fact that no finite size 

effects have been taken into account in their simulations. 

4. Thermal conductivity correlation 

4.1. Reduced thermal conductivity expression 

As proposed usually in the literature [31-32], to construct the thermal conductivity 

correlation, we have assumed that λ* can be expressed as a sum of a low-density 



 11

contribution, λ0
*
, a residual thermal conductivity λr

∗, and a critical thermal conductivity 

enhancement λc
*
: 

 
* * * * * * * * * * *

0( , ) ( ) ( , ) ( , )
r c

T T T Tλ ρ λ λ ρ λ ρ= + +  (23) 

For λ0
*
, we use the first-order approximation of the Chapman-Enskog approach applied 

to the LJ potential which, in reduced units, is: 
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π
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where Ωv is the collision integral, which is a function of T
*
, that can be estimated using 

the correlation proposed by Neufeld et al. [33], applicable for T
*
 ranging from 0.3 to 

100.  

To model the residual thermal conductivity, resulting from the interaction between 

particles, a simple heuristic formulation, inspired by the work of Nasrabad et al. [14] 

and the one of Lemmon et al. [32], is proposed. The dependence of λr
∗
 with density and 

temperature is modeled by: 

 

2

* * * * * *3( , ) ( ) exp( ( ) ) 1
r

T A T B Tλ ρ ρ
 

= − 
 

 (25)  

where A and B are linear functions of the reduced temperature:  

 
* *( )A T CT D= +  (26) 

 
* *( )B T ET F= +  (27) 

where C, D, E, F are coefficients fitted on molecular dynamics simulations results.  

Lastly, λc
*
, which characterizes the enhancement due to the proximity of the critical 

point, is given by the following expression which relates this enhancement to the 

isothermal compressibility one as it is done in the work of Mathias et al. [34]: 

 ( )* * *2 *
b

c Ta Tλ ρ χ=  (28) 

where χT
*
 is the reduced isothermal compressibility and a, b two positive coefficients 

fitted on molecular dynamics results. To calculate χT
*
 we have used the LJ fluid 

equation of state (EOS) of Kofala and Nezbeda [35]. Besides, it is worth emphasizing 

that such a formulation, contrary to the one proposed by Matthias et al. [34], implies 

that λc
*→0 when ρ*→0 (and so λ*→λ0

*
 when ρ*→0 as expected). 
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4.2. Critical enhancement 

As mentioned in the previous section, it is well known that close to the critical point, the 

thermal conductivity tends to diverge following a scaling law [36]. Contrary to 

viscosity, this enhancement is not restricted to the immediate vicinity of the critical 

point and is noticeable using molecular dynamics simulations, even if such results are 

scarce [11, 37]. Nevertheless, in molecular simulations, this enhancement due to long 

range correlations could not properly be caught because of the finite size of the system 

simulated. In addition, the way this contribution is modeled in this work, eq. (28), 

implies the computation of χT through an equation of state, the one of Kolafa and 

Nezbeda [35], which is not particularly aimed at taking into account the effects of the 

critical point. Therefore, the way the critical enhancement is modeled in this work could 

only be considered as a first attempt. 

To adjust parameters a and b of eq. (28), we have performed simulations on the 

isotherm T
*
=1.35 (close to the critical one), for 11 values of ρ*

 varying from 0.25 to 0.4 

(values that are believed to embody the critical one). Large systems composed of 8000 

particles have been used. Simulations have been performed during at least 5.10
6
 time 

steps. A particularly weak reduced heat flux equal to 0.0025 has been used. In addition, 

to augment the fitting database, EMD values coming from Meier [11] have been added 

for the same isotherm (with two sets of values for ρ*=0.3 and 0.35). It should be noted 

that the difference between EMD (Meier) and NEMD (ours) values is inherent to the 

NEMD method. Even if we apply a particularly small reduced heat flux, a weak 

temperature gradient is induced, so the simulations are not performed exactly on the 

isotherm T
*
=1.35, contrary to those of Meier. 

Figure 6 clearly shows a thermal conductivity enhancement, for both types of 

simulations, with a maximum (up to 25 % of the total value) located close to ρ*
=0.3 

which is consistent with the location of the critical point (which is located close to ρc
∗
 

=0.3108 and Tc
*
=1.3396 [35]). In addition, it appears that the model chosen to describe 

λc
*
 is able to correctly reproduce the MD results when using eq. (28) with a=0.11 and 

b=0.45, see figure 6. 
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4.3. Correlation regression of the residual contribution 

To regress the four coefficients needed in our formulation of the residual contribution, 

λr
*
, we have used a database composed of 92 new points of simulations of our own, in 

addition to the 11 points on the isotherm T
*
=1.35 (see previous section), covering from 

9.03.0
* ≤≤ ρ  and *0.6 4T≤ ≤ . The thermal conductivity values used for the 

regression take into account the finite size correction, eq. (18) and eq. (19) and are 

provided in the appendix. The regression was performed in order to minimize ∆max, 

with a bias constrained to zero. The coefficients obtained are summarized in Table 2. 

The AAD between the MD values and those obtained with the correlation is equal to 

1.29 %, and the ∆max is equal to 4.12 %. All deviations are shown in figure 7. If the 

points located on the close critical isotherm T
*
=1.35 are omitted then AAD = 1.18 % 

and ∆max = 3.22 %. Compared to the inherent statistical errors of the MD simulations, 

and to the wide range of thermodynamic conditions tested, even close to the critical 

point, such a low AAD can be considered as excellent. Thus, this simple empirical 

correlation adequately represents the thermal conductivity of our NEMD results on the 

LJ fluid over the domain *0 0.9ρ≤ ≤  and *0.6 4T≤ ≤ , which covers gas, liquid, and 

supercritical phases even in the vicinity of the critical point.  

As a further test of the correlation proposed, see figures 7 and 8, we have applied it on 

data coming from the literature which uses different approaches to compute thermal 

conductivity, EMD for the work of Nasrabad et al. [14] and a new NEMD scheme for 

the work of Hulse et al. [13]. In addition, the EMD and NEMD results of Mountain [28] 

have been added for the comparison. These figures clearly exhibit that there is a good 

agreement between the results provided by our correlation and those coming from the 

literature, the deviations being always lower than 14 %. Besides, it is worth noticing 

that our correlation yields results closer to the EMD data of Nasrabad et al. [14] than 

their own theory. Our correlation yields AAD=3.74% with ∆max = 8.28 %, whereas their 

model yields AAD=14.92% and ∆max=78.62%. 

4.4. Heat flux contributions 

On figure 8 are shown the relative contributions to the heat flux for three different 

isotherms, T*=1, 1.35 and 2.5, versus the reduced density. As expected, the collisional 

contribution monotonically increases with density (in a non-linear way) and decreases 
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with temperature whereas the kinetic one decreases with density and increases with 

temperature in a symmetric manner. For the range of temperatures tested, these two 

contributions become of the same order for ρ*≈0.3-0.4. 

The case of the potential contribution is more interesting, see figure 8. This contribution 

is always rather small, around 5 % of the whole heat flux as already noticed by [38], and 

weakly depends on the density, except close to the critical point where its contribution 

climbs up to 14 %. Thus, we can suspect that the enhancement of the thermal 

conductivity (close to the critical point) is related to the increase of the potential heat 

flux contribution. This finding is consistent with the abnormal behavior of thermal 

conductivity in nanofluids (unexpected increase compared to value in the pure fluid), 

which seems to exhibit the same peculiar increase of the potential contribution to the 

heat flux [38].  

5. Numerical results for real fluids  

The Lennard-Jones fluid model has shown to be able to provide reasonable results 

concerning the prediction of viscosity and mass diffusion of simple fluids for a large 

variety of thermodynamic states, see for instance [2,3,7-8]. So, we have applied our 

correlation for the prediction of the thermal conductivity of real fluids to see to which 

extent such an approach is applicable. 

In order to use a unique set of molecular parameters to predict all thermophysical 

properties, we have taken the values of the molecular parameters, ε and σ, from [39]. 

These parameters have been adjusted in order to reproduce both pressure and viscosity 

and are provided in Table 3 for the species studied here. Then, using the correlation, 

eqs. (23)-(28), and the relations (4)-(7), it is possible to obtain the predicted thermal 

conductivity for a peculiar species in the chosen state (T, ρ). Additionally, for mixtures, 

the Lorentz-Berthelot combining rules, eqs. (2) and (3) are used to define the 

crossmolecular parameters, and eqs. (8)-(10) are applied for the calculation of the 

pseudocomponent representative of the mixture (vdW1). It should be emphasized that 

the scheme proposed here to predict thermal conductivity is entirely predictive 
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5.1. Pure compounds 

We have first applied the correlation to four simple nonpolar molecules, Argon, 

Methane, Oxygen and Nitrogen for a large range of thermodynamic states (which cover 

gas, liquid and supercritical states), see Table 4. The database used for comparison is 

based on specific correlations for each compound, which corresponds to the best 

possible fit of a large variety of experimental results [40-43].  

Results shown in Table 4 clearly indicate that the scheme proposed is able to provide a 

good estimation of Argon thermal conductivity, with a slight systematic overestimation 

see figure 9, but yields non negligible deviations (underestimation) for non monoatomic 

molecules. More precisely, except for nitrogen, predictions are reasonable in dense 

phase (deviations being <10 %) and increase in more diluted ones (deviations varying 

from 15 to 55 %), as it can be seen in figure 9. Thus, as expected, the scheme seems to 

be acceptable only for strictly spherical molecules like noble gases and provides 

generally better results in dense phases for non spherical molecules.  

In fact, the LJ fluid suffers from various weaknesses. First, it represents the decay of the 

repulsive interaction between particles by an inverse twelve-power dependence on 

intermolecular separation, which was chosen mainly for mathematical convenience and 

has no physical soundness [44]. Second, the molecular parameters have not been 

readjusted on thermal conductivity values, see the preceding section, which explain as 

well why results on Argon are not as good as those on viscosity [39]. Third, and even 

more important for thermal conductivity in Methane, Oxygen and Nitrogen, this model 

relies on a spherical approximation of the molecule without intramolecular interactions. 

Therefore, neither rotational nor vibrational degrees of freedom modes are taken into 

account [1]. So, the nonsphericity of the molecule as well as low density and high 

temperature (which favors rotation and vibration) will increase the underestimation of 

the proposed approach compared to experiments as it has been noticed, see figure 9. 

Thus, a possible first outlook of this study would consist to extend the proposed thermal 

conductivity formulation (valid only for translation modes) to take into account rotation 

modes through a third molecular parameter related to the non sphericity (by doing a 

similar work on Lennard-Jones chains as done for mass diffusion in reference [45] for 

example). 
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5.2. Case of mixtures 

We have then applied our correlation on two simple liquid binary mixtures (Ar/Kr and 

Ar/CH4) for which data were available in the work of Mikhailenko et al. [46-47]. For 

both systems, xAr varies from 0 to 1 with a step of 0.2. Thermodynamic conditions are 

provided in Table 5. 

Results in Table 5 show apparently that the proposed correlation combined with the 

vdW1 is rather efficient to predict the thermal conductivity in mixtures compared to 

what it produces on pure fluids (where non negligible deviations may occur, see 

preceding section), see Table 4. Nevertheless, contrary to what was expected, we have 

obtained very satisfying results on the Ar-CH4 system whereas in Ar-Kr mixtures 

results are only reasonable. In fact, it can be deduced from figure 10, for the Ar-CH4 

mixture, that there is a balance between the overestimation of thermal conductivity for 

pure argon and the underestimation of λ for pure methane, which explains the 

abnormally good results obtained, see Table 5. 

Concerning the Ar-Kr mixture, the deviations yielded by the correlation are larger in 

mixtures than on pure fluids (with a maximum located around xAr≈0.7), see figure 10. 

This could be due to a weakness of the vdW1 which has been already noticed for 

viscosity prediction in asymmetric mixtures [48-51]. To verify this hypothesis, we have 

performed one simulation on the Ar-Kr mixture for the case where the deviation is the 

highest, i.e xAr=0.6 at T=140 K (22.4% of overestimation when using the vdW1). We 

have found that the result of the simulation on the mixture is improved compared to the 

one provided by the vdW1 but still overestimates the experimental value by 15%, this 

deviation being more important than the one on pure fluids. Therefore, we can deduce 

that the overestimation of the thermal conductivity comes not only from the one fluid 

approximation, but as well from another reason which may be the Dufour effect (see 

section 2.5), the combining rules used or that experimental results of Mikhailenko et al. 

[46] are partly incorrect (they noticed a non monotonic behavior of λ with xAr which is 

rather surprising).  

6. Conclusions and outlooks 

In this work, an accurate empirical correlation for the thermal conductivity of the LJ 

fluid, using NEMD simulations results, has been built. In a first part, it is shown that the 



 17

cutoff radius does not affect the simulations results on thermal conductivity whereas 

finite size effects, increasing with T
*
 and decreasing with ρ*

, which scale as N
-1/2

, are 

noticed. These trends are explained by looking carefully to the three contributions to the 

microscopic heat flux (potential, kinetic and collisional). It appears that all three 

contributions are affected by finite size effects (and all scale as N
-1/2

) but the two 

translational ones (potential + kinetic), predominant over the collisional one when 

increasing T* and decreasing ρ*, are the most affected. Using the simulations results, a 

simple empirical finite size effects correction has been proposed.  

Then, simulations have been performed on an isotherm close to the critical one 

(T*=1.35), and the results show unambiguously a clear enhancement of the thermal 

conductivity (up to 25% of the total value) close to the critical density (ρ*≈0.3). In 

addition, it has been noticed that this enhancement corresponds to an abnormal increase 

of the potential contribution to the heat flux (15% of the total heat flux) compared to 

what occurs in sub and supercritical states (usually below 5% of the total heat flux). 

Taking into account the correction to finite size effects and the critical enhancement, a 

simple heuristic correlation on thermal conductivity based on 103 new points of NEMD 

simulations has been constructed. This correlation is composed of low-density (using a 

classical Chapman-Enskog approach), residual and critical enhancement contributions, 

this last being related to isothermal compressibility. The proposed correlation has been 

adjusted in order to be efficient for *0 0.9ρ≤ ≤  and *0.6 4T≤ ≤  (which covers gas, 

liquid, supercritical phases), even the vicinity of the critical point. The average absolute 

deviation between simulations and the correlation is 1.29% and the maximum deviation 

is 4.12%, which can be considered as excellent, compared to the large variety of states 

covered. In addition, it has been shown that this correlation compares favorably with 

literature data on the LJ thermal conductivity and is by far more accurate than the 

theoretical scheme proposed by Nasrabad et al [14]. 

In a last part, the correlation, combined with a standard corresponding states scheme, 

has been applied to simple real fluids, pure compounds and mixtures, for a large range 

of thermodynamic states. Using molecular parameters adjusted on pressure and 

viscosity, this entirely predictive scheme is shown to provide reasonable results on pure 

simple fluids (Ar, N2, O2, CH4) especially in dense phases. However, peculiarly for low 

ρ* and high T*, the scheme proposed shows its limitations (underestimation) for 
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polyatomic molecules which store energy in rotational and vibrational modes which are 

not taken into account in the proposed scheme. Finally, results for two simple liquid 

mixtures (Ar-Kr and Ar-CH4) have been deduced thanks to a van der Waals one-fluid 

approximation combined with Lorentz-Berthelot rules. It is shown that this scheme 

provides good results on such systems, the deviations being of the order of those in pure 

fluids. Nevertheless, compared to experimental results, unexpected deviations were 

noticed for the Ar-Kr mixture (up to 22 %) that could not be imputed to the one fluid 

approximation alone. 
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Appendix 
 

Thermal conductivity of the LJ fluid. 

 

T
*
 ρρρρ

*
 λλλλ

*
 T

*
 ρρρρ

*
 λλλλ

*
    T

*
 ρρρρ

*
 λλλλ

*
 

0.600 0.750 5.239 ± 0.166 1.300 0.650 4.092 ± 0.151 1.800 0.600 3.838 ± 0.174 

0.600 0.800 5.885 ± 0.156 1.300 0.700 4.872 ± 0.173 1.800 0.650 4.482 ± 0.195 

0.900 0.650 3.914 ± 0.101 1.300 0.750 5.813 ± 0.210 1.800 0.700 5.303 ± 0.276 

0.900 0.700 4.549 ± 0.109 1.300 0.800 6.844 ± 0.292 1.800 0.750 6.144 ± 0.315 

0.900 0.750 5.398 ± 0.130 1.300 0.850 7.966 ± 0.395 1.800 0.800 7.316 ± 0.420 

0.900 0.800 6.363 ± 0.181 1.300 0.900 9.330 ± 0.472 1.800 0.850 8.481 ± 0.519 

0.900 0.850 7.471 ± 0.247 1.350 0.250 1.337 ± 0.102 1.800 0.900 9.853 ± 0.613 

0.900 0.900 8.617 ± 0.285 1.350 0.275 1.464 ± 0.091 2.000 0.300 1.699 ± 0.059 

1.000 0.600 3.403 ± 0.083 1.350 0.288 1.546 ± 0.123 2.000 0.400 2.171 ± 0.089 

1.000 0.650 3.932 ± 0.110 1.350 0.300 1.652 ± 0.087 2.000 0.450 2.498 ± 0.114 

1.000 0.700 4.627 ± 0.123 1.350 0.306 1.677 ± 0.132 2.000 0.500 2.916 ± 0.140 

1.000 0.750 5.497 ± 0.149 1.350 0.313 1.747 ± 0.145 2.000 0.550 3.448 ± 0.169 

1.000 0.800 6.499 ± 0.208 1.350 0.319 1.706 ± 0.117 2.000 0.600 3.962 ± 0.197 

1.000 0.850 7.575 ± 0.280 1.350 0.325 1.700 ± 0.109 2.000 0.650 4.653 ± 0.233 

1.000 0.900 8.807 ± 0.329 1.350 0.338 1.755 ± 0.099 2.000 0.700 5.412 ± 0.306 

1.100 0.600 3.405 ± 0.089 1.350 0.350 1.800 ± 0.075 2.000 0.750 6.228 ± 0.358 

1.100 0.650 4.007 ± 0.124 1.350 0.400 2.029 ± 0.082 2.000 0.800 7.471 ± 0.483 

1.100 0.700 4.723 ± 0.140 1.500 0.300 1.485 ± 0.051 2.000 0.850 8.646 ± 0.567 

1.100 0.750 5.568 ± 0.164 1.500 0.400 2.000 ± 0.070 2.000 0.900 10.142 ± 0.723 

1.100 0.800 6.591 ± 0.232 1.500 0.450 2.309 ± 0.081 2.500 0.300 1.886 ± 0.091 

1.100 0.850 7.838 ± 0.330 1.500 0.500 2.678 ± 0.093 2.500 0.400 2.397 ± 0.134 

1.100 0.900 8.973 ± 0.375 1.500 0.550 3.133 ± 0.097 2.500 0.450 2.812 ± 0.176 

1.200 0.500 2.539 ± 0.071 1.500 0.600 3.664 ± 0.135 2.500 0.500 3.186 ± 0.203 

1.200 0.550 2.984 ± 0.085 1.500 0.650 4.307 ± 0.153 2.500 0.550 3.554 ± 0.218 

1.200 0.600 3.461 ± 0.099 1.500 0.700 5.099 ± 0.216 2.500 0.600 4.249 ± 0.276 

1.200 0.650 4.093 ± 0.141 1.500 0.750 6.046 ± 0.255 2.500 0.650 4.888 ± 0.311 

1.200 0.700 4.828 ± 0.159 1.500 0.800 7.013 ± 0.349 2.500 0.700 5.791 ± 0.417 

1.200 0.750 5.749 ± 0.191 1.500 0.850 8.206 ± 0.414 2.500 0.750 6.539 ± 0.476 

1.200 0.800 6.727 ± 0.262 1.500 0.900 9.396 ± 0.477 2.500 0.800 7.733 ± 0.659 

1.200 0.850 7.896 ± 0.363 1.800 0.300 1.611 ± 0.074 2.500 0.850 8.85 ± 0.718 

1.200 0.900 9.170 ± 0.424 1.800 0.400 2.117 ± 0.097 2.500 0.900 10.366 ± 0.924 

1.300 0.450 2.227 ± 0.068 1.800 0.450 2.439 ± 0.107 4.000 0.300 2.396 ± 0.106 

1.300 0.500 2.571 ± 0.076 1.800 0.500 2.845 ± 0.120 4.000 0.600 4.929 ± 0.385 

1.300 0.550 2.993 ± 0.086 1.800 0.550 3.223 ± 0.133 4.000 0.900 11.481 ± 1.359 

1.300 0.600 3.548 ± 0.112     
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Figures Captions: 
 

Figure 1: A sketch of the simulation box subdivided into Ns slabs. The dark frame 

indicates the simulation cell. Slabs 1 and Ns are the “hot” ones. Slabs Ns/2 and Ns/2 + 1 

(black layers) are the cool ones. Kinetic energy is artificially transferred from the cool 

to the hot slabs and then flows back by thermal conduction. The temperature profile is 

calculated by determining the temperatures in the intervening slabs (3 to Ns/2-2 and 

Ns/2+3 to Ns-2).  

Figure 2: Typical temperature profile in the simulation box, subdivided into 32 slabs, 

for T*=1, ρ*=0.8, N=1500 atoms, shown as a function of slab number. The symbols 

represent the layer average temperature (errors bars are smaller than the size of the 

symbols and have been omitted). 

Figure 3: Evolution of the reduced thermal conductivity as a function of N
-1/2

, for 

different thermodynamic states: ○, ρ*
=0.3 and T

*
=1.5; �, ρ*

=0.3 and T
*
=2.5; □, ρ*

=0.8 

and T
*
=1; ◊, ρ*

=0.8 and T
*
=2.5. Dashed lines correspond to the linear regression.  

Figure 4: Dependence of the three contributions of thermal conductivity versus the size 

of the system for two different thermodynamic states, T
*
=1, ρ*

=0.8, grey symbols, 

T
*
=2.5, ρ*

=0.3, open symbols. Circles correspond to λk, down triangles to λp and 

squares to λco. 

Figure 5: Evolution of the reduced thermal conductivity as a function of the cutoff 

radius rc, for different thermodynamic states: ○, ρ*
=0.3 and T

*
=1.5; �, ρ*

=0.7 and 

T
*
=1; □, ρ*

=0.8 and T
*
=1; ◊, ρ*

=0.9 and T
*
=1. 

Figure 6: Critical contribution to the thermal conductivity along the isotherm T
*
=1.35. 

Circles correspond to our simulations, down triangles to those of Meier [11] and the 

dashed line to the results provided by the correlation, eq. (28). 

Figure 7: Deviations between MD results and those given by the correlation, eq. (23), 

versus T*, left and ρ*, right. Circles correspond to our simulations, squares to those of 

Hulse et al. [13], down triangles to those of Nasrabad et al. [14] and diamonds to those 

of Mountain [28]. 
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Figure 8: Contributions (in %) to the heat flux of the three terms, Jk, circles, Jp, down 

triangles, Jco, squares along three isotherms, T
*
=1 open symbols, T

*
=1.35 dark symbols 

and T
*
=2.5 grey symbols. 

Figure 9: Thermal conductivity deviations given by the correlation, eq. (23), on Argon 

[40], filled circles, Methane [41], open down triangles, Oxygen [42], filled squares and 

Nitrogen [43], open diamonds.  

Figure 10: Thermal conductivity deviations for the system Ar-Kr, open symbols, and 

Ar-CH4, full symbols, given by the correlation, eq. (23), combined with the vdW1 and 

LB combining rules, relatively to the values of Mikhailenko et al. [46-47] : squares, 

T=100 K, up triangles, T=110 K, down triangles, T=120 K, circles, T=130 K and 

diamonds, T=140 K. 
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Tables: 
Table 1: Deviations between our results on thermal conductivity (including finite size 

corrections eqs. (18-19)) and those coming from references [14,28]. 

 AAD (%) ∆max (%) Bias (%) 

Nasrabad et al. [14] (64 points) 3.59 8.28 -3.42 

Mountain [28] (NEMD, 14 points) 3.62 8.29 -3.18 

Mountain [28] (EMD, 14points) 4.57 16.79 -3.27 

 

 

Table 2: Coefficients used in the thermal conductivity correlation (eqs.(26), (27), (28)). 

C D E F a b 

0.00801212 0.09769765 0.00566383 4.69930247 0.11 0.45 

 

 

Table 3: Molecular parameters of the studied compounds [39]. 

Compound σ(Ǻ) ε(J/mol) 

Argon 

Krypton 

Methane 

Oxygen 

Nitrogen 

3.408 

3.645 

3.704 

3.368 

3.614 

989 

1372.8 

1212.6 

994.1 

820.5 

 

 

Table 4: Results obtained for different pure compounds on a wide variety of 

thermodynamic states. 

Compound ρmin-ρmax 

(Kg/m
3
) 

Tmin-Tmax 

(K) 

AAD(%) ∆max(%) database 

Argon 

Methane 

Oxygen 

Nitrogen 

3-1410 

1-446 

3-1238 

2-867 

90-452 

114-572 

93-464 

76-379 

5.1 

21.0 

14.1 

16.0 

13.6 

54.7 

27.0 

21.6 

Perkins et al. [40] 

Friend et al. [41] 

Laesecke et al. [42] 

Jacobsen et al. [43] 
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Table 5: Results obtained for simple binary mixtures using the scheme proposed in this 

work (with LB combining rules and vdW approximation). 

Mixture ρmin-ρmax (Kg/m
3
) Tmin-Tmax (K) AAD(%) ∆max(%) Database 

Ar + Kr 

Ar + CH4 

942-2412 

380-1312 

120-140 

100-140 

9.3 

3.3 

22.4 

11 

Mikhailenko  

et al. [46-47] 
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Figure 3 
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Figure 5 

rc

*

1.5 2.0 2.5 3.0 3.5 4.0 4.5

λ
*

0

2

4

6

8

10

 
Figure 6 
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Figure 7 
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Figure 8 
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Figure 9 
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Figure 10 
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