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ABSTRACT 

 The coalescence of polymer droplets is studied, in particular the final regime named 

collision. This phenomenon involves the complex deformation of the interface, a motion 

driven by the interfacial tension, and is mainly governed by the viscosity ratio. An accurate 

measurement technique of the collision time has been explored experimentally. In a recent 

paper [C. Verdier, C. R. Acad. Sci. Paris Série IV, 2000], a particular case of the collision was 

studied, corresponding to viscosities in the same range. One of the aims of the present work is 

to analyze collision, and to extend these previous results to a wider range of viscosity ratios. 

For droplets of equal size, three regimes are obtained, corresponding to power law 

dependence of the collision time as a function of the viscosity ratio. 

The flow field shows the importance of the area close to the neck, where most of the 

flow dissipations occur. By assuming that this flow gives rise to a competition between 

interfacial energies and shear viscous dissipations, a simple model is presented, based on a 

previous study [Brochard-Wyart F, de Gennes PG, Advances in Colloid and Interface 

Science, 1992], and it recovers two of the experimental regimes. The final one can also be 

predicted using results from Frenkel [J. Phys. USSR, 1945]. This theory is in qualitative 

agreement with the observed data. 

This experimental technique is simple and provides a new way to measure interfacial 

tension, when the viscosities of the two fluids are known. The advantage of the technique is 

that sample preparation is easy, and that it requires only an optical microscope. 
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INTRODUCTION 

 

  The mixing of two polymers is not quite fully understood, because it requires well-

controlled mixers, and the geometry of the blades is generally not simple. Complex flows 

result from such mixing and it becomes hard to control the size and dispersion of the droplets 

of one polymer into the other. As mixing goes on, coalescence and break-up of the droplets 

can happen simultaneously, although they have reasons for appearing respectively at small or 

high shear velocities. In fact such motions are combinations of both shear and elongational 

flows, depending on the point in the fluid mixture. Therefore, the application of simple flows 

is a first step towards the understanding of the mixing process. 

Taylor [1] studied well-defined flows such as shear and elongational ones, computed 

the droplet deformation, and found criteria for break-up. Grace [2] also paid attention to ideal 

flow situations and studied the critical conditions for break-up and coalescence over a very 

wide range of viscosity ratios. The break-up problem was again considered in shear and 

elongational flows using an isolated drop [3-4]. Recently, a few authors [5-6] used 

microscopy to control droplet size when shearing a polymer emulsion. This situation shows 

that critical regimes for coalescence [7] and break-up [1] can be established. The latter results 

are obtained by using a distribution of droplets in a moving fluid, and one assumes a certain 

probability of encounter for the coalescence process. For example, coalescence requires that a 

sufficient amount of time (te, interaction time) is necessary for the encounter to take place, 

therefore an example of such a probability is P=exp(-td/te), if td is the time necessary to drain 

the interstitial fluid. If the interaction time is long enough, then coalescence occurs (P≈1), 

otherwise the drainage is not completed (P≈0). These ideas are reviewed for example in 

Chesters’ paper [8]. 
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Let us now consider the ideal situation of a coalescence process with only two 

droplets. Three parts can be distinguished : the first one is the drainage of the interstitial fluid 

[8,9], which is very important and controls the total coalescence time. The second one is 

related to the opening of a tiny hole which leads to collision. Typically, this process occurs 

when the gap between the two droplets is smaller than a certain distance (usually about 

50
o

A ), which is probably fluid dependent. The last stage is the collision (or fusion) which 

corresponds to the merging of the two droplets, which is of interest here, and has not been 

studied so much in the literature. 

This situation has only been considered before in special cases, like for the flow of 

crystalline solids under the action of surface tension [10] and in the sintering of metallic 

powders [11]. A theoretical approach [12-13] based on mapping functions has also been 

found but can be applied for the two-dimensional case only. Finally, surface diffusion has also 

been studied through computations of the initial rapid process [14], showing the initial time 

dependence. Another recent approach [15] has analyzed the collision process when varying 

the viscosity ratio of the two fluids, thus showing a dependence of the collision time on the 

geometric mean 21ηη of the two viscosities (η1 for the droplet and η2 for the matrix). This 

latter work considers the collision as well as the evolution of the neck region, i.e. the point of 

largest curvature. The viscosity ratio has been varied over two decades, which corresponds to 

situations where the fluid viscosities are not so different. The fluids used were polymers at 

small enough rates so that the elasticity effects are negligible. Other studies can be found in 

the literature concerning the effect of viscoelasticity [16] and the role of copolymers [17] at 

the interface during coalescence, but are not the purpose here. 

In this work, the case of two droplets is considered, bearing in mind the main 

application, which is the understanding of the dynamics of a polymer emulsion. An overall 

picture of the role of the viscosity ratio on droplet collision is carried out, with the aim of 
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determining new regimes compared to the previous study [15]. In the first part, the 

experiment is recalled and new results are presented, over a very large viscosity ratio range 

(six decades). Three typical regimes are obtained. In the next part, the corresponding theory is 

proposed, based on the work of Brochard and de Gennes [18]. Also we made use of a 

previous result by Frenkel [10] to explain some of the data. A discussion is proposed next, 

and the application of this technique as a new interfacial tensiometer is suggested. This 

technique may be very adequate for the investigation of polymer systems. 

 

EXPERIMENTAL PART 

 

 The experimental system that was used for the observation of collision of the droplets is 

rather simple and has been presented before [15]. Therefore we will briefly summarize the 

method here, as well as the automated technique coupled with it. This technique has been 

used in order to reduce time consuming data processing. Also, the fluids that were used will 

be presented. Let us start with the experimental set-up. 

 

Set-up 
 

 An emulsion is first made after mixing two polymers for about two minutes. The mixing 

can be done manually for example, since the polymer are not too viscous. The system is then 

set to rest so that the air entrapped can be released. A small sample is taken from the mixture 

and put between a plate and a micro cover-glass. Observations are simply made with an 

optical microscope (Leica, DML model) using a magnification of x20 or x50, depending on 

droplet size (usually the radius varies between 5 µm and 30 µm). One needs to locate two 

droplets of approximately equal size, therefore there is a need for a sufficient number of 

droplets in the blend. This can be easily achieved by mixing enough amounts of polymer 1 
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inside polymer 2. Once the droplets are located and are close enough, the coalescence process 

can be visualized. The interstitial fluid 2 is slowly removed (drainage) until the drops actually 

come very close to each other. Sometimes, a flattening effect is observed, as described  

previously [8]. Finally a tiny hole is opened, and the collision process takes place. A video 

camera (3-CCD color, KY-F55B JVC model, 25 frames/s) is coupled to the microscope and 

films are made on a U-matic videorecorder (SP type, VO-9600P model). Photographs can be 

downloaded and measurements are made on a PC computer using the dedicated Labview 

software. A typical experiment is depicted in figures 1a-1f. Figure 1a shows two droplets of 

roughly equal radii getting very close together. In figure 1b, the droplets are touching and a 

hole is opening. After some time (figure 1c), the droplets have started to coalesced, until they 

look like one larger deformed droplet (figure 1d). The final stages are next shown while the 

fluids relax and longer times are needed (figures 1e) until the composite droplet finally 

reaches the shape of a sphere (figure 1f). 

 

System parameters 
 

 The system we are looking at (figure 2) is an axisymmetric two-droplet system. Two 

droplets (fluid 1) are imbedded into a matrix (fluid 2). The densities of inner and outer fluid 

are respectively ρ1 and ρ2. Their viscosities are respectively η1 and η2. The other parameters 

of the problem are droplet radii R1 and R2 and interfacial tension σ. L(t) is the distance 

between the droplets, is time dependant and decreases as time goes on. In this case, van der 

Waals forces act to bring the droplets close to each other. 

To simplify, we will be looking at almost equal sized droplets, so that R1 = R2. Two 

such droplets can be found because the system is a dispersion with a large number of droplets. 

In this problem, a relevant dimensional analysis [15] shows that the only important 

parameters are the characteristic time of collision tc (defined more precisely below), in its 
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dimensionless form σtc/η1R1, and the viscosity ratio η1/η2. Indeed the Suratman number 

S=σρ1R1/η1
2 can be neglected because of the high viscosities (> 1 Pa.s) of the fluids and 

gravity effects are also negligible in the experiment. Wall effects can also be neglected, by 

choosing droplets in the center of the fluid (between the plate and micro-cover glass). Let us 

also note that a typical velocity V is R1/tc so that σtc/η1R1 can also be interpreted as the inverse 

of the capillary number. Therefore we are looking at the dependence of the group σtc/η1R1 as 

a function of the viscosity ratio η1/η2. Fluid polymers with various viscosities will be chosen 

so that a large number of decades can be covered in terms of  η1/η2. 

 

Polymers 
 

The fluids are a set of silicones or polydimethylsiloxanes (PDMS, Rhône-Poulenc, 

47VT series, viscosities at 25°C: 1 Pa.s, 10 Pa.s, 30 Pa.s, 60 Pa.s, 100 Pa.s, 200 Pa.s, 1000 

Pa.s) and polyisobutylenes (PIB, D-series, BP-Chimie, viscosities at 25°C: 38 Pa.s, 130 Pa.s, 

430 Pa.s). The main advantage of these fluids is that they are melts at room temperature, and 

they have close enough refraction indexes (1.5 for PDMS and 1.41 for PIB) so that one can 

observe PDMS in PIB and vice versa. Note that this system has been used by several authors 

previously [5-6]. It will then be possible to cover a large range of viscosity ratio, basically 

ranging from 10
-3
 to 10

3
, in other words over 6 decades, which is equivalent to data obtained 

by Grace [2] for experiments on break-up. These polymers are known to have quite short 

relaxation times (a few milliseconds) therefore they behave like newtonian liquids. 

 

Collision time (tc) 

The characteristic time of collision will be defined as follows. As seen from 

observations in figure 1a-1f, the initial starting time of the collision is hard to determine, 

therefore, we avoid to define a time zero. It is better to plot the total length of the composite 
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droplet D(t) (figure 3) and determine the curve D(t)/D0 versus time t, where D0 = 2(R1 + R2). 

This curve shows an inflexion point at time ti. The inverse of the negative of the slope, which 

is homogeneous to a time will be defined as the collision time tc= - D0/D’(ti), where D’(t) is 

the time derivative of D(t). This is shown in figure 3, in the most general case where R1 ≠ R2. 

One needs to remember that this relation just gives a very precise (mathematical) way to find 

tc. Indeed, D(t)/D0 actually ranges between 1 and Re/(R1+R2) , where Re
3
 = R1

3
 + R2

3
 from 

mass conservation. In our case where R1 = R2 , Re = 2
1/3
 R1. Then D(t)/D0 decreases from 1 to 

2
-2/3 ≈ 0.63. This means that a more realistic coalescence time would be more likely in the 

range of 0.37 tc.  

Anyway, this definition is convenient because it is easy to determine tc experimentally 

and this definition will be used throughout this paper. 

 

Automated determination of tc 
 

Since a lot of experiments are required, in order to cover six decades, we choose an 

automated system for the measurements and the determination of tc. Videos are stored on a 

PC computer, and the required frames are kept to be analyzed later. Enough data points are 

chosen so that the rapid decay of D(t) can be monitored accurately. The distance D(t) is 

measured by pointing a line going through the droplets axis and the Labview  software 

enables to get the distance easily, after a calibration procedure has been used. One can then 

plot the ratio D(t)/D0 versus time. We choose to fit the data with the following function 

F(t)=D(t)/D0. 

tm

tmm
F(t)

2
1

2
21

+

+
=      (1) 

This function is a good candidate (figure 4) because it starts from 1 (t=0), and tends to m2 

(t→∞). The two parameters m1 (s
2
) and m2 (dimensionless) can be adjusted using simple 
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fitting tools available on classical graphics software. It is to be checked that m2 is of the order 

0.63 (see previous subsection). Also it is found that the curve F(t) is always in good 

agreement with the experimental data (see figure 4). 

 The other reason for choosing this function is that it shows of course an inflexion point, 

just like in the experiments. After doing some simple algebra, we find that the inflexion time ti 

is: 

 ti =
3

m1  (2) 

and the slope at the inflection point F’(ti)= -1/tc provides the required value of the collision 

time tc, once the determination of the two parameters m1 and m2 has been made using the 

automated technique : 

 tc =
( )2

1

m13

3
m

8

−
 (3) 

 Figure 4 shows a set of data, as well as the errors involved in the fitting procedure. The 

values of the two parameters are found numerically, by optimal fitting. We check that m1 is 

positive and that m2 is close to 0.63, which validates our technique. This systematic 

determination of the collision time will be used in all the experiments. 

 

  

 Experimental results 
 

The main results of the experimental part of this work are shown in figure 5. The plot of the 

dimensionless collision time σtc/η1R1 as a function of the viscosity ratio η1/η2  is given and 

reveals three different regimes, which correspond to well-defined slopes of –1, -0.5 (roughly) 

and 0. From the data we can exhibit three formulae for power-law relationships. 

 

0.001 <  η1/η2  < 0.1    slope –1         σtc/η1R1 ≅ 12 (η1/η2)
-1      

or  tc ≅ 12 η2 R1/σ        (4a) 
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0.1 <  η1/η2  < 10         slope -1/2       σtc/η1R1 ≅ 40 (η1/η2)
-0.5  

or  tc ≅ 40 (η1η2)
0.5  

R1/σ  (4b) 

10 <  η1/η2  < 1000      slope 0           σtc/η1R1 ≅ 12 (η1/η2)
0      

or  tc ≅ 12 η1 R1/σ             (4c) 

 

         In these formulae, σ is in N/m, tc is in s, η1 is in Pa.s and R1 is in m.  

             We recover the previous result [15] with the slope of –0.5 which corresponds to a 

collision time varying like η1η2  in other words like the geometric mean of the viscosities.  

Two new regimes are obtained which correspond to collision times varying like the highest 

viscosity. These regimes seem to be symmetric, because the corresponding constants, equal to 

approximately 12 (no dimension in formulae 4a and 4c) are the same. This result will be 

discussed in the next sections. 

 

THEORY 

 General framework 

 

 Let us look at the geometry of the problem. Two spheres of equal radii collide together 

and form a new droplet, whose shape can be approximated within good accuracy to the 

reunion of two spheres (see figure 6). We define the angle θ which is convenient for the 

calculations. θ is a function of time t. From mass conservation, and using the sphere 

approximation, we can recover the following result due to Frenkel [10], by considering the 

volume of each part of the spheres: indeed, the fluid density (ρ1) is assumed to be a constant 

therefore the volume of the new deformed drop is a constant equal to 8/3 π R1
3
 (the initial 

volume of both droplets). If R(θ) is the radius of each of the new spheres (at the beginning of 

collision), then we find, after some geometry: 

   R(θ) = 1/3

31   
θcos cosθ 32

4
R 









−+
     (5) 
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Note that R(θ) is measured from the center of the spheres (figure 6), and that this center a 

moving. Only the center of mass of the spheres is fixed. 

The velocity V at the cusp (see figure 6) can also be calculated as a function of geometry 

    V = 

.

sinθ R        (6) 

Formula (6) together with the use of (5) can be combined to obtain the rates 
.

R and 
.

θ , after 

some algebra: 

    =
.

R
2

3

)cosθ(1

θsin
V

+
      (7) 

    
.

θ  = 
2

3

)cosθ(1

θcos3cosθ2

R

V

+

−+
     (8) 

Note that V is actually a function of θ: V(θV = ). It is likely that V starts with a maximum as 

θ=0 and decreases as θ  increases. Indeed, the driving force (due to interfacial tension) is 

stronger when the radius of curvature is smaller. We are mainly concerned with the case of 

small θ , since we are trying to describe the first instants of the collision process, in order to 

find the characteristic collision time tc (steep part of the curve D(t)/D0, see figure 3). Other 

important parameters are the distance x(θ ) and length D(θ ) : 

    x(θ ) = R(θ ) sinθ       (9) 

    D(θ ) = 2 R(θ ) (1+ cosθ )     (10) 

 

Since we are looking at the first stages (rapid) of the collision process, we can make use of the 

following assumptions, to first order in θ : 

R(t) ≈ R1  x ≈ R1 θ  D ≈ 4 R1  

.

R ≈ /4Vθ3   

.

θ  ≈ V/R1 (11) 

This means that the collision time tc will be vary as θ0R1/V, where θ0 is some angle to be 

determined. In addition, the rate of change of  D(t), designed by 
.

D , can be approximated by 
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     ≈
.

D  - 2 V(θ ) θ      (12) 

From figure 3, which provides the collision time definition, we notice that tc actually 

corresponds to the maximum slope of D(t) or D(θ ), in other words to the value θ0 of the angle 

for which the maximum of the product V(θ )θ  is obtained. This will be used to predict the 

typical velocity V(θ0). 

 

 Energy balance 
 

 The flow involved inside and outside the droplet is rather complex, therefore, we will 

assume that most of the energy is produced by the driving force, i.e. interfacial tension, and 

dissipated through viscous flows in both fluids 1 and 2. We will make use of the ideas of de 

Gennes and Brochard [18-19], who studied the velocity profile inside the corner defined by a 

plane and an interface with a small angle [18]. Figure 7 is a good representation of the 

velocity field. We assume that the angle θ  is small. The profile is assumed to be parabolic, 

due to the lubrication hypothesis in that region of flow. This is valid in this case because, at 

the beginning of motion, there exists a very small gap between the droplets. 

 To determine the maximum slope from (12), we need to find the relationship V(θ ). 

Point A has velocity V(θ ). At point B, there are two components: VN and VT are respectively 

the normal and tangential components (with respect to the interface) of the velocity at B. 

There are different types of shear which need to be considered, which will lead to dissipation.  

We approximate VN  by 

     VN ≈Vθ        (13) 

where θ is considered to be rather small (less than 30° means the error is less that 5%). 

VT can be obtained by writing the continuity of the shear stress at point B, i.e. across the 

interface: η1VT/h = η2V/hθ , therefore 
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     VT ≈ 
θ

V

η

η

1

2       (14) 

Within polymer 1, there are two kinds of shear : 
h

Vθ

x

Vz ≈
∂

∂
  and  

h

V

z

V Tx ≈
∂

∂
. 

Within polymer 2, the shear 
z

Vx

∂

∂
, from Poiseuille flow, is of the order 

h θ

V
. 

From [18], we write the total dissipation Dv in the system, as the product of the viscosity and 

the square of the shear rate times the area of concern: 

 Dv =  η1 { (Vθ /h)
2
 h

2
 + (VT/h)

2
 h

2 } + η2 (V/θ h)
2
 θ h

2    
(15) 

It may be remarked that other terms can occur, which are logarithms, but such terms can be 

considered not to change very much, therefore there are included in the constants. Anyway, 

we are only interested by order of magnitudes, and not accurate numbers, due to the 

approximations already made. 

 

This dissipation is equilibrated by the driving power P, due to interfacial tension, acting in 

favor of the minimization of the total area. Here, P is given by [19]: 

   P = F V = 2 σ V cos θ  ≈ 2 σ V     (16) 

Letting ε = η1/η2 we then find: 

    
)V(η

σ

1 θ
  ≈  θ

2 
+

22θε

1
 + 

εθ

1
     (17) 

But the actual important parameter is
.

D . After combining (12) and (17),
.

D is found to be 

related to θ and ε by: 

    |
.

1Dη

σ |  ≈  θ  + 
32θε

1
 + 

2εθ

1
 = G(θ)    (18) 

where |Α| represents the absolute value of A. 
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Finding the maximum of |
.

D | is then equivalent to finding the minimum of (18), in other 

words the minimum of G(θ). The function G(θ) is first decreasing, then it goes through a 

minimum at θ0 until it increases again with an asymptotic behavior G(θ) ≈ θ (figure 8). The 

minimum is obtained for θ0 which is the solution of an equation of the fourth order and cannot 

be simplified. Let us look at the two limiting cases: 

 Assuming that ε>1/θ0, i.e. η1/η2>1/θ0 (neglecting the second term on the right side of 

(18)), we find that the minimum of (18) is obtained for θ0 ≈ ε
-1/3

. In this case :  

  |
.

1Dη

σ |  ≈  ε -1/3  and
   

V(θ0)
 ≈ 

1η

σ
ε 2/3  (19) 

From the previous section, we found that tc ≈ θ0R1/V so that σtc/η1R1 is equivalent to 

)V(θη

σ

01

, so that finally 

    
11

c

Rη

σt
 ≈  ε -2/3 ≈ (

2

1

η

η
)
 -2/3

      (20) 

This slope is not –0.5 but close to it, and considering experimental errors, it may be concluded 

that it is in reasonable agreement with the experimental data. 

  The other case corresponds to ε<1/θ0, when neglecting the third term on the right of 

(18), i.e. 
2

1

η

η
<1/θ0 and it is found that the minimum of (18) is obtained for θ0 ≈ ε

-1/2
. Then 

  |
.

1Dη

σ |  ≈  ε -1/2  and
   

V(θ0)
 ≈ 

1η

σ
 ε   (21) 

In other words 

    
11

c

Rη

σt
 ≈  ε -1   ≈ (

2

1

η

η
)
-1
     (22) 
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This gives an explanation of the first two slopes (regimes) obtained at very small and 

moderate viscosity ratios. Since we omitted the constants, it is not possible to determine the 

exact value of the limiting parameter 
2

1

η

η
 at the change of regimes, but we may conclude that 

the order of magnitude is correctly prescribed. 

 We finally consider the case when the viscosity ratio 
2

1

η

η
 is very large. In this 

situation, it is difficult to assume a particular type of flow. Therefore we may recall the 

solution by Frenkel [10], giving the growth of x(t) when the outer fluid viscosity is small (i.e. 

2

1

η

η
is very large). In fact this means that we neglect η2. In this case, x(t) is given by: 

     t
η  π2

σ3R
x

1

12 =       (23) 

In addition to (23), inspection of figure 6 leads to the relating for D(t): 

 

                                                   D(t)=2R + 2 22 xR −                                             (24) 

 

  To first order in θ, we can again assume that R ≈ R1. Thus : 

               

  












−+=  

η π2R

 t3σ
112RD(t)

11
1                    (25) 

F(t) now equals D(t)/4R1. It is a decreasing function of time with no inflexion point, but its 

maximum slope is at t=0 so that F’(0)= -1/tc (tc is the point of maximum slope in this case), 

therefore we find a formula for the collision time such that : 

                                            
3

8π

1ηR

cσt
=   ≈  8.4           (26) 
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 This value has the order of magnitude found previously and is in reasonable agreement 

with the data (8.4 compared to 12). 

 A possible improvement of the model is as follows. One needs to consider the exact 

flow field in the vicinity of the droplets. This will give rise to an exact calculation of the 

viscous dissipations and the interfacial tension driving power terms. They may actually 

involve not only shear effects but the elongational ones as well, because of the complexity of 

the flow involved. This problem will not be discussed here. It may also be considered 

numerically. Nevertheless, it can be concluded that this simple model is good enough to be 

able to predict the three regimes qualitatively, i.e. it is in reasonable agreement with the 

experiments. 

 

DISCUSSION 

 

 Results 
 

 The procedure presented in this work is complementary to previous studies which 

are mostly devoted to studies of the initial phase of coalescence, in other words the drainage 

problem [8-9]. In particular, Chesters and coworkers have also recently studied numerically 

the importance of the dispersed to continuous-phase viscosity ratio η1/η2 on the drainage 

problem between interacting drops [20]. They have found limiting cases corresponding to 

partially mobile or immobile interfaces. The aim of the present work was not to discuss the 

three stages of the coalescence process, but on the other hand to look at the collision 

mechanism. As already discussed before, the viscosity ratio is the major parameter. It is 

shown here that limiting regimes are found which are independent of the small viscosity: 

when η1/η2 is small, the time of collision is proportional to η2, the large viscosity. Similarly, 

when η1/η2 is large, tc is proportional to η1, the large viscosity. From the experiments, the 
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relation is given approximately by tc ≅ 12 ηR1/σ (where η is the large viscosity). Interestingly, 

the constant is the same in both cases, although there is no symmetry here. The first case is 

the one where one pushes a very viscous fluid, whereas the second one is related to motion of 

a very viscous fluid pushing a much less viscous one. Locally, at the neck, the velocity field is 

dominated by the interface velocities and all the dissipation comes from a very small region 

close to the apparent cusp. Therefore, we may explain this result by assuming that the local 

flow is the same in both cases, and that it controls the local dissipation. This is also the reason 

why the model of de Gennes and Brochard [18-19] is used here, for it assumes that the 

dissipation occurs only in a very small region close to the singular point. Most likely, the flow 

in such situations is close to a plug flow. Another interesting study would be to determine the 

exact shape of the velocity profile. 

The problem of the singular point is also of concern, because one may argue that 

figures 6 and 7 are drawn as if there was a cusp. One may also refer to other similar works 

where cusps are discussed, like when pulling a fluid with a cylinder, half immersed in this 

fluid [21-22]. Indeed, Newtonian and non-Newtonian fluids are considered to allow this type 

of situation, going from a cusp to a gradually smooth curvature. In particular, asymptotic 

analyzes can allow to treat such problems, and also allow the effect of interfacial tension. In 

our case, we consider that the shape of the free surface at the moving boundary point A is 

initially a cusp, but after a very small time, it certainly corresponds to a small (compared to 

R1) but finite radius of curvature. This can also be observed from figures 1a-1f. Probably 

another important problem would be the close experimental analysis of the so-called cusp, 

especially at very small times. 

Speaking about the theoretical part leads us to pose the question of the intermediate 

slope which is predicted by a power law of –2/3 instead of –0.5 experimentally. Nevertheless, 

it is likely that changing fluid 1 into 2 should not give the same result, except in the limiting 
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cases where one viscosity is dominant.  Generally speaking, the slope of –2/3 may seem quite 

reasonable. The errors on data points can allow one to think that a slope of –2/3 agrees also 

well with experimental points. Errors may be due to the fact that only approximately equal 

spheres are considered here, and that the influence of the radii ratio R1/R2 can affect some of 

the measurements. 

 Perspectives 
 

This work leads to the natural improvement of this technique into an interfacial 

tensiometer for polymers. Such apparatuses are well known to physicists and are of different 

types. The most common ones available nowadays are based on the filament break-up 

technique [23], or the retraction of an ellipsoid [24], whereas the spinning drop tensiometer 

[25-26] or the usual pendant-drop technique [27] are older techniques but still give valuable 

information. The technique proposed here can be used as a measuring device as well. It 

requires a microscope only, which is available in most research laboratories or private 

research centers. The mixing of the fluids is quite easy and the only needed parameters are the 

viscosities at the required temperature. The only quantity to be measured is the collision time. 

This is probably better achieved using a video-camera with a well-defined speed 

(frame/second). In the experiment, 40 ms (1/25 s) was the fastest time interval between the 

frames and it was fast enough for such fluids. It should be also perfectly adapted for highly 

viscous fluids like molten polymers. 

One the major advantages of the technique is that sample preparation is quite easy, and 

mixing of the fluids is easily achieved using small amounts. This is much better than in other 

techniques like the filament break-up for example, which requires to mold a long regular 

filament inside another polymer. The amount of time required for the experiments is of course 

viscosity dependent and may turn out to be long, but one may use higher amounts of fluid 1, 

in order to obtain many droplets. In such a system, one can then pick two very close droplets. 
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Thus we limit the time to drain fluid 2, since the initial conditions correspond to small gaps or 

films. Once the collision process has started, it is only required to capture the first instants, as 

described, and this method has the advantage to be time-saving. It is not needed to way until 

final relaxation. 

Temperature control may be one problem, if one wants to study (under a microscope) 

polymers which are in their molten state at high temperatures. Up to now, the author is only 

aware of heating systems to be operated with a microscope up to 100°C. On the other hand, it 

is possible to design heating systems (up to 250°C) to be operated under other visualization 

systems. The use of a macro lens coupled with a high resolution camera (1/3” size) can 

constitute an interesting solution. 

The final question is also to relate the collision time with the interfacial tension. The 

answer is given by formulae (4a-c). Depending on the viscosities of the fluids, one will have 

to use one formula, or the others. This may be an advantage, because the use of a low 

viscosity fluids is convenient. Indeed, they are easier to handle and the corresponding 

collision times are shorter. Still one has to be careful about the molecular weight dependence 

of interfacial tension in polymeric systems, which may affect the results [27]. 

Another interesting aspect will be the study of the influence of the viscoelastic 

properties of the polymers on droplet collision. This has been introduced by a few authors 

[16] and an interesting comparison may be drawn. Finally, the influence of copolymers (type, 

triblock or diblock, architecture, length, etc.) at the interface is also another possible 

application for such a tensiometer. 
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CONCLUSION 

 

 In this work, a simple experiment on droplet collision is presented. The effect of the 

viscosity ratio on the collision time has been considered with a wide range of fluids, covering 

about six decades of viscosity ratio. Three different regimes have been found experimentally. 

If the viscosity of one fluid (droplet or matrix) is much larger, then it governs collision. In the 

other intermediate case (viscosities in the same range), then the collision time varies 

approximately like the geometric mean of the viscosities, as observed previously. 

 Due to the very rapid growth of the neck, we have proposed a model considering the 

local viscous dissipations at the neck. This model gives a qualitative description of the 

viscosity ratio influence on the collision time.  

 Finally, an extension of this method to the design of a new interfacial tensiometer has 

been proposed, and its application for melts is possible. The influence of viscoelasticity and/or 

the influence of compatibilizers at the interface may also be interesting problems to consider 

with this technique. 
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FIGURE CAPTIONS 

 

 

Fig. 1 Collision of droplets of PIB (430 Pa.s) in PDMS (60 Pa.s) 

a) t=0s  b) t=10s  c) t=10.8s  d) t=12.4s  e) t=16.8s  f) t=21.6s 

 

Fig. 2 Schematic picture of the droplets and parameters 

 

Fig. 3 Typical dimensionless length D(t)/D0 vs. time t 

 

Fig. 4 Experimental curve with equation fit to determine m1 and m2 with PIB (130 Pa.s) in 

PDMS (100 Pa.s). Best comparison obtained for m1=7.24 s
2 
and m2 =0.61 

 

Fig. 5 Dimensionless collision time versus η1/η2 (T=25°C) 

 

Fig. 6 Geometry of the two-sphere model 

 

Fig. 7 Sketch of the flow in the neck region 

 

Fig. 8 Function G(θ) 
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FIGURE 4 
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FIGURE 5 
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FIGURE 6 
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FIGURE 8 
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