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Geometric aspects of transversal Killing spinors

on Riemannian flows

Nicolas Ginoux∗, Georges Habib†

Abstract. We study a Killing spinor type equation on spin Riemannian flows.

We prove integrability conditions and partially classify those Riemannian flows

M carrying non-trivial solutions to that equation in case M is a local Riemannian

product, a Sasakian manifold or 3-dimensional.

Mathematics Subject Classification: 53C12, 53C27

Key words: Foliations, Spin Geometry

1 Introduction

Killing spinors on Riemannian spin manifolds are smooth sections of the spinor
bundle of which covariant derivative is proportional to the Clifford multiplica-
tion. Those manifolds carrying non-zero Killing spinors have been well under-
stood for a long time, see e.g. [10] for a survey. Such a manifold is Einstein; if
it is furthermore compact and non Ricci flat, then it cannot carry any non-zero
non-trivial parallel form (see e.g. [16]). In particular, the existence of non-zero
Killing spinors imposes very rigid conditions to the geometry of the underlying
manifold.

In this article we transpose the Killing spinor equation to the set up of Rieman-
nian flows [12], which roughly speaking, are local Riemannian submersions with
1-dimensional fibres (see Section 2 for the definition). These contain among oth-
ers all S1-bundles with totally geodesic fibres, all manifolds carrying a non-zero
parallel form and all Sasakian manifolds [11]. In the definition of that equation -
that we call transversal Killing spinor - we allow the first derivatives of the spinor
field to behave differently along the leaves and along the orthogonal distribution
of the foliation respectively, see Definition 3.1. There are several motivations for
this study. Historically those spinor fields first appear in the limiting case of
an eigenvalue estimate proved by B. Alexandrov, G. Grantcharov and S. Ivanov
for the Dirac operator on compact Riemannian spin manifolds with a parallel
1-form [1, eq. (8)]. On the other hand, they stand for the most natural tools in
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the study of the spectrum of the Dirac operator on submersions over real space
forms [15, 14].

The paper is organized as follows. In the first part we recall basic facts on spin
Riemannian flows. In the second one, we prove integrability conditions for spin
Riemannian flows admitting non-zero transversal Killing spinors, see Theorem
3.4. It should be noticed that the resulting geometric conditions hold up to
homothetic deformations of the metric along the leaves (see Lemma 3.3). We
describe then in Proposition 3.6 important examples of Riemannian flows carry-
ing transversal Killing spinors, which arise as submersions over manifolds with
Killing spinors. Examining group-equivariance conditions we formulate in Sec-
tion 4 more precise statements in case the flow is a local Riemannian product
or flat and which we illustrate on 3-dimensional Bieberbach manifolds [23]. In
Section 5, we translate the results of Theorem 3.4 in the Sasakian setting. In
that case transversal Killing spinors can be related to classical ones, see Propo-
sition 5.3. As an example, we describe all transversal Killing spinors on the
Berger spheres (here beware of our definition of Berger spheres, see Subsection
5.3). In the last section, we restrict ourselves to 3-dimensional Riemannian flows
and simplify the conditions of Theorem 3.4. We end with the classification of
compact 3-dimensional η-Einstein minimal Riemannian flows carrying non-zero
transversal Killing spinors.

Acknowledgement. The authors would like to thank the universities of Nancy
and Potsdam as well as the Sonderforschungsbereich 647 “Raum - Zeit - Ma-
terie. Analytische und Geometrische Strukturen” of the Deutsche Forschungs-
gemeinschaft for their support in the preparation of [14] and this paper. It’s
also a pleasure to thank Bernd Ammann, Christian Bär and Oussama Hijazi for
valuable comments.

2 Preliminaries

For preliminaries on Riemannian spin foliations we refer to [15, Chap. 1].

Throughout the paper the triple (Mn+1, g,F) will denote an (n+1)-dimensional
Riemannian manifold endowed with a Riemannian flow F given by a smooth
unit vector field ξ [12]. That means F defines a 1-dimensional foliation of M sat-
isfying for all Z,W orthogonal to ξ the relation (Lξg)(Z,W ) = 0 [24] where Lξ

is the Lie derivative in the direction of ξ. Recall from the hypothesis on the flow
being Riemannian, the endomorphism field h := ∇Mξ (known as the O’Neill
tensor [22]) of the normal bundle Q = ξ⊥ is skew-symmetric w.r.t. the induced
metric g. We denote by κ := ∇M

ξ ξ the mean curvature of the flow. The flow is
called minimal if κ = 0, which is equivalent to the integral curves of ξ being
geodesics or to the stronger assumption ξ being a Killing vector field on (M, g).
Since ξ has length 1, we have κ ∈ Γ(Q) and g(h(Z), ξ) = 0 for every Z ∈ Q
(hence h actually maps Q into Q). In particular one may associate a 2-form Ω
to h on Q through Ω(Z,W ) := g(h(Z),W ) for all sections Z,W ∈ Γ(Q).

Moreover, the normal bundle Q → M carries a natural covariant derivative ∇
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defined for every section Z of Q by [26]

∇XZ :=

∣∣∣∣∣∣

[ξ, Z]Q if X = ξ

(∇M
X Z)Q if X ∈ Γ(Q),

where ∇M denotes the Levi-Civita connection on TM and (·)Q the orthogonal
projection onto Q ⊂ TM . From its definition the covariant derivative ∇ can
be expressed in terms of the Levi-Civita connection ∇M through the following
Gauss-type formula

∣∣∣∣∣∣

∇M
ξ Z = ∇ξZ + h(Z) − g(Z, κ)ξ

∇M
Z W = ∇ZW − g(h(Z),W )ξ

(1)

for every Z,W ∈ Γ(Q).

Since TM = Rξ ⊕ Q the normal bundle Q→ M is spin (as a vector bundle) if
and only if TM is, and in that case spin structures on TM and Q respectively
are in one-to-one correspondence. If we assume M to be spin and carry a fixed
spin structure, then so does Q. In that case M carries its own spinor bundle
ΣM → M as well as the spinor bundle of Q, that we denote by ΣQ → M .
Actually there exists a unitary isomorphism of Hermitian vector bundles (that
we denote by the identity map ϕ 7→ ϕ)

ΣM −→

∣∣∣∣
ΣQ if n is even
ΣQ⊕ ΣQ if n is odd

satisfying, for every Z ∈ Γ(Q) and ϕ ∈ Γ(ΣM) [5, 18]

• W.r.t. the Clifford multiplications “·” in ΣM and “ ·
Q
” in ΣQ respectively

ξ · Z · ϕ =

∣∣∣∣∣∣

Z ·
Q
ϕ if n is even

(Z ·
Q
⊕− Z ·

Q
)ϕ if n is odd.

• The Clifford action of iξ is given by

iξ· =

∣∣∣∣∣∣∣∣

IdΣ+Q ⊕−IdΣ−Q if n is even

(
0 IdΣQ

IdΣQ 0

)
if n is odd.

• W.r.t. the spinorial Levi-Civita connections ∇M on ΣM and ∇ on ΣQ
one has [15, eq. (2.4.7)]

∣∣∣∣∣∣

∇M
ξ ϕ = ∇ξϕ+ 1

2Ω · ϕ+ 1
2ξ · κ · ϕ

∇M
Z ϕ = ∇Zϕ+ 1

2ξ · h(Z) · ϕ.
(2)
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In particular the covariant derivative ∇ is metric on ΣM : if 〈· , ·〉 denotes a
natural Hermitian inner product on ΣM , then X〈ϕ, ψ〉 = 〈∇Xϕ, ψ〉+ 〈ϕ,∇Xψ〉
for all X ∈ Γ(TM) and ϕ, ψ ∈ Γ(ΣM). It also follows from (2) that the Clifford
action of ξ is ∇-parallel: ∇X(ξ · ϕ) = ξ · ∇Xϕ for every X ∈ Γ(TM) and
ϕ ∈ Γ(ΣM). Therefore, if one defines Σ+M and Σ−M by

Σ±M := Ker
(
iξ · ∓IdΣM

)
,

then ΣM splits into the orthogonal and ∇-parallel direct sum ΣM = Σ+M ⊕
Σ−M . Furthermore both Σ+M and Σ−M have the same rank since they are
exchanged by the Clifford action of any non-zero section Z ∈ Γ(Q). In the case
where n is even, one has Σ±M = Σ±Q, however in the case where n is odd
Σ±M never coincides with one of the two copies of ΣQ hence with one of the
eigenspaces Σ±M of the Clifford action of the complex volume form of M .

In the following almost all Riemannian flows under consideration will be mini-
mal, i.e., ξ will be a (unit) Killing vector field. More precisely, we shall mainly
deal with the following families of Riemannian flows, which of course are not
disjoint from each other: the case where ξ is the fundamental vector field of a
free isometric S1-action with totally geodesic orbits, the case where ξ is parallel,
corresponding to local Riemannian products of a one-dimensional manifold with
an n-dimensional one (this is also equivalent to κ = 0 and h = 0), and the case
where ξ is the Reeb vector field of a Sasakian manifold

Definition 2.1 A Riemannian manifold is called Sasakian if and only if it is
a Riemannian flow (Mn+1, g,F) satisfying

i) κ = 0, i.e., the flow is minimal,

ii) h2 = −IdQ, i.e., h is an almost-Hermitian structure on Q,

iii) ∇h = 0, i.e., h is parallel on Q (hence is a Kähler structure on Q).

It can be easily checked that this definition is equivalent to the usual one, where
one requires ξ to be a unit Killing vector field satisfying

∣∣∣∣
(∇Mξ)2 = −IdTM + ξ♭ ⊗ ξ
(∇M

X ∇Mξ)(Y ) = g(ξ, Y )X − g(X,Y )ξ

for all X,Y ∈ Γ(TM). From Definition 2.1 the normal bundle Q of any Sasakian
manifold carries a canonical Kähler structure. In particular such a manifold is
always odd-dimensional. We shall from now on denote m := n

2 . In the following
we shall also omit to write F for the flow and consider a Sasakian manifold as
a triple (M2m+1, g, ξ).

If now a Sasakian manifold M is spin, then the Clifford action of the 2-form Ω
(which is then the Kähler form of Q) splits ΣM into the following orthogonal
and ∇-parallel decomposition [17]:

ΣM =

m⊕

r=0

ΣrM, (3)
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where ΣrM is the eigenbundle associated with the eigenvalue i(2r − m) of Ω
for every r ∈ {0, . . . ,m}. W.r.t. the Clifford action of iξ one has Σ+M =⊕

r even ΣrM and Σ−M =
⊕

r odd ΣrM , that is iξ·|ΣrM
= (−1)rIdΣrM [13].

Moreover, the subspaces Σ0M and ΣmM can be characterized by the property
that for all Z orthogonal to ξ we have

h(Z) · ψ0 = iZ · ψ0 and h(Z) · ψm = −iZ · ψm. (4)

Replacing the metric by a positive scalar multiple of it obviously preserves the
structure of Riemannian flow. There exists however a less trivial type of flow-
preserving deformations of the metric that we will need in the next sections and
which are called D-homothetic:

Definition 2.2 (S. Tanno [25]) Let (Mn+1, g,F) be a Riemannian flow. given
by a unit vector field ξ. A D-homothetic deformation of g is a metric gt on M
of the form

gt := t2g|Rξ
+ tg|Q

for some real number t > 0.

A D-homothetic deformation of g may be obtained as follows: first rescale g by
a factor t in the direction of the flow, then multiply the obtained metric by t.
It is first to be noticed that a D-homothetic deformation of a Riemannian flow
is again a Riemannian flow, more precisely:

Lemma 2.3 Let (Mn+1, g,F) be a Riemannian flow given by a unit vector field
ξ and gt := t2g|Rξ

+ tg|Q be a D-homothetic deformation of g with t ∈ R∗
+. Then

(Mn+1, gt,F) is a Riemannian flow described by the unit vector field ξ
t
:= 1

t
ξ.

If furthermore ξ
t
, ∇

t
, h

t
, κt denote the corresponding objects for gt, then the

following holds:

i) One has ξ
t
= 1

t
ξ, h

t
= h and κt = 1

t
κ.

ii) On Q one has ∇
t
= ∇.

iii) If furthermore M is spin, then there exists a unitary isomorphism

ΣgM −→ Σgt
M

ϕ 7−→ ϕt

s.t., if “ ·” denotes the Clifford multiplication on Σgt
M ,

• ξ · ϕ = ξ
t
·ϕt and Z · ϕ = 1√

t
Z ·ϕt for every Z ∈ Γ(Q).

• ∇
t

Xϕ
t = ∇Xϕ

t
for every X ∈ Γ(TM).

iv) If (Mn+1, g, ξ) is Sasakian, then so is (Mn+1, gt, ξt).

The proof of Lemma 2.3 consists of elementary computations and identifications
that we leave to the reader.
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3 Transversal Killing spinors

3.1 Definition

We generalize in some sense the Killing spinor equation (see e.g. [7, 16] for
references on that topic) to the set up of Riemannian flows.

Definition 3.1 Let (Mn+1, g,F) be a spin Riemannian flow given by a unit
vector field ξ. Let α, β ∈ C. An (α, β)-transversal Killing spinor on M is a
smooth section ψ of ΣM satisfying, for all Z ∈ Γ(Q),

∣∣∣∣∣∣

∇ξψ = α ξ · ψ

∇Zψ = β ξ · Z · ψ.
(5)

If α = 0, then ψ is called a basic β-Killing spinor (see also [15]), and if α =
β = 0 it is called basic parallel or transversally parallel spinor.

First note that an (α, β)-transversal Killing spinor is a parallel section of ΣM

w.r.t. the covariant derivative ∇̃ defined by

∇̃Xϕ := ∇Xϕ− αg(X, ξ)ξ · ϕ− βξ ·X · ϕ− βg(X, ξ)ϕ

for allX ∈ Γ(TM) and ϕ ∈ Γ(ΣM). Hence if an (α, β)-transversal Killing spinor
vanishes at one point it vanishes everywhere on M .

Notes 3.2

1. If ψ is an (α, β)-transversal Killing spinor on (Mn+1, g,F), then ξ · ψ is
an (α,−β)-transversal Killing spinor. Therefore β can always be changed
into −β, independently of the dimension or the orientation of the manifold.
This is in general not possible for α, see e.g. Notes 5.9.

2. Let ψ be an (α, β)-transversal Killing spinor and ψ = ψ+ + ψ− its de-
composition w.r.t. the Clifford action of iξ (i.e., iξ · ψ± = ±ψ±). Then
ψ± satisfies ∇ξψ± = αξ · ψ± and ∇Zψ± = βξ · Z · ψ∓ for all Z ∈ Γ(Q)
(this follows from the action of ξ being ∇-parallel and from ξ ·Z = −Z · ξ
for all Z ∈ Γ(Q)). Therefore ψ± is again a transversal Killing spinor only
if β = 0; if β 6= 0, then ψ vanishes as soon as ψ+ or ψ− vanishes on a
non-empty open subset of M .

3. If α and β are real, then any (α, β)-transversal Killing spinor has constant
length on M , since in that case it can be easily checked that the covariant
derivative ∇̃ above is metric.

4. In the particular case where h = 0 and κ = 0, i.e., M carries a parallel
unit vector field, then (0, β)-transversal Killing spinors for some β ∈ R are
exactly the spinor fields defined by B. Alexandrov, G. Grantcharov and
S. Ivanov in [1, eq. (8)] and studied in [1, Thm. 3.1].

5. We notice that Th. Friedrich and E. C. Kim defined on a Sasakian manifold
M the notion of quasi-Killing spinor of type (a, b) [13, page 23] which are
a-Killing (for the Levi-Civita connection on M) in the direction of the
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normal bundle Q and (a+ b)-Killing in the direction of ξ. They show that
the condition of the flow being η-Einstein is sufficient and necessary for the
existence of such spinors. In that case and for a suitable choice of a and b
(the product a(a+ b) could be not zero) they are solutions of the so-called
Einstein-Dirac equations. Here we point out that the notion of transversal
Killing spinors is in general different from the quasi-Killing spinors since
in our consideration it is Killing for the transversal connection.

6. A similar equation appears in [19, page 137 eq. (8.3)], where however the
connection ∇ denotes the Levi-Civita connection of ΣM (in our notation
it corresponds to ∇M ).

In the following subsections we want to characterize those Riemannian flows
that admit non-trivial (α, β)-transversal Killing spinors. The following lemma
follows straightforward from Lemma 2.3.

Lemma 3.3 Let (Mn+1, g,F) be a spin Riemannian flow. For a fixed t ∈ R∗
+

let gt := t2gξ + tg|Q be a D-homothetic deformation of g. If ψ is an (α, β)-

transversal Killing spinor on (Mn+1, g,F), then ψ
t

is an (αt, β
t
)-transversal

Killing spinor on (Mn+1, gt, ξ
t
:= 1

t
ξ) with αt := α

t
and β

t
:= β√

t
.

3.2 General integrability conditions for transversal Killing

spinors

Theorem 3.4 Let (Mn+1, g,F) be a spin Riemannian flow given by a unit
vector field ξ carrying an (α, β)-transversal Killing spinor ψ. Let RicM and
ScalM denote the Ricci tensor and the scalar curvature of (M, g) respectively.
Then for any local orthonormal basis {ej}1≤j≤n of Q one has

RicM (ξ) · ψ = (|h|2 − |κ|2)ξ · ψ + 4nαβψ + 2αξ · κ · ψ + κ · Ω · ψ

+4h(κ) · ψ −

n∑

j=1

ξ · ej · ∇
M
ej
κ · ψ

+
1

2

n∑

j,k=1

ej · ek · ∇ej
h(ek) · ψ +

n∑

j=1

ξ · ej · ∇ξh(ej) · ψ

and for every Z ∈ Γ(Q),

RicM (Z) · ψ = −4α(h(Z) + βZ) · ξ · ψ + 2h2(Z) · ψ + 4(n− 1)β2Z · ψ

+
1

2

n∑

j=1

ξ · ej · ∇Zh(ej) · ψ −
n∑

j=1

ξ · ej · ∇ej
h(Z) · ψ

−∇ξh(Z) · ψ + g(Z, κ)(−2αψ + ξ · Ω · ψ − κ · ψ)

+∇M
Z κ · ψ − h(Z) · ξ · κ · ψ.

Furthermore, one has

ScalMψ = (4n(n− 1)β2 − |h|2 − 2|κ|2)ψ − 8nαβξ · ψ + 8αξ · Ω · ψ

−

n∑

j,k=1

ξ · ej · ek · ∇ek
h(ej) · ψ + 2

n∑

j=1

ej · ∇ξh(ej) · ψ
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+4ακ · ψ + 2ξ · κ · Ω · ψ − 2

n∑

j=1

ej · ∇
M
ej
κ · ψ.

Proof. Plugging Equations (5) in (2) gives with the use of (1) that for Z,W ∈
Γ(Q)

∇M
Z ∇M

Wψ = ∇M
Z

(
βξ ·W · ψ +

1

2
ξ · h(W ) · ψ

)

= βξ · ∇ZW · ψ +
1

2
ξ · h(∇ZW ) · ψ +

1

2
ξ · ∇Zh(W ) · ψ

+
β

2

(
h(Z) ·W · ψ + h(W ) · Z · ψ

)

+
1

4
h(Z) · h(W ) · ψ + β2W · Z · ψ.

By the fact that the torsion of ∇M is zero we get from (1) that [Z,W ] =
∇ZW −∇WZ − 2g(h(Z),W )ξ so that

∇M
[Z,W ]ψ = βξ · (∇ZW −∇WZ) · ψ +

1

2
ξ · h(∇ZW −∇WZ) · ψ

−2g(h(Z),W )
(
αξ · ψ +

1

2
Ω · ψ +

1

2
ξ · κ · ψ

)
.

We deduce that

RM
Z,Wψ = ∇M

[Z,w]ψ − [∇M
Z ,∇M

W ]ψ

= −2g(h(Z), w)
(
αξ · ψ +

1

2
Ω · ψ +

1

2
ξ · κ · ψ

)

−
1

2
ξ · (∇Zh(W ) −∇Wh(Z)) · ψ

+
1

4
(h(W ) · h(Z) · ψ − h(Z) · h(W ) · ψ) + β2 (Z ·W · ψ −W · Z · ψ) .

On the other hand since [Ω, Z] = 2h(Z), one has

∇M
Z ∇M

ξ ψ = ∇M
Z

(
αξ · ψ +

1

2
Ω · ψ +

1

2
ξ · κ · ψ

)

=
α

2
h(Z) · ψ − αβZ · ψ +

1

2
∇M

Z Ω · ψ +
β

2
ξ · Z · Ω · ψ

+βξ · h(Z) · ψ +
1

4
ξ · h(Z) · Ω · ψ +

1

2
ξ · h2(Z) · ψ

+
1

4
h(Z) · κ · ψ −

1

2
g(h(Z), κ)ψ +

β

2
κ · Z · ψ +

1

2
ξ · ∇M

Z κ · ψ

and, still using (1),

∇M
ξ ∇M

Z ψ = ∇M
ξ

(
βξ · Z · ψ +

1

2
ξ · h(Z) · ψ

)

= βξ · ∇ξZ · ψ +
1

2
ξ · h(∇ξZ) · ψ +

β

2
κ · Z · ψ

+βξ · h(Z) · ψ + αβZ · ψ +
β

2
ξ · Z · Ω · ψ

+
1

4
κ · h(Z) · ψ +

1

2
ξ · ∇ξh(Z) · ψ +

1

2
ξ · h2(Z) · ψ

+
α

2
h(Z) · ψ +

1

4
ξ · h(Z) · Ω · ψ.
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Moreover by the vanishing of the torsion on M we get [Z, ξ] = −∇ξZ+g(Z, κ)ξ.
We deduce that

RM
Z,ξψ = −∇M

∇ξZψ + g(Z, κ)∇M
ξ ψ − [∇M

Z ,∇M
ξ ]ψ

= g(Z, κ)

(
αξ · ψ +

1

2
Ω · ψ +

1

2
ξ · κ · ψ

)
+ 2αβZ · ψ −

1

2
∇M

Z Ω · ψ

−
1

2
h(Z) · κ · ψ −

1

2
ξ · ∇M

Z κ · ψ +
1

2
ξ · ∇ξh(Z) · ψ.

Recalling that from its definition Ω satisfies Ω(ξ, ·) = 0 one can compute the
Clifford action of ∇MΩ and find that for every Z ∈ Γ(Q),

∇M
Z Ω · ψ = h2(Z) · ξ · ψ +

1

2

n∑

j=1

ej · ∇Zh(ej) · ψ.

We can hence rewrite

RM
Z,ξψ = g(Z, κ)

(
αξ · ψ +

1

2
Ω · ψ +

1

2
ξ · κ · ψ

)
+ 2αβZ · ψ −

1

2
h2(Z) · ξ · ψ

−
1

2
h(Z) · κ · ψ −

1

2
ξ · ∇M

Z κ · ψ +
1

2
ξ · ∇ξh(Z) · ψ

−
1

4

n∑

j=1

ej · ∇Zh(ej) · ψ.

Applying [16, p.156] for the local orhonormal frame {ej}1≤j≤n+1 of TM with
en+1 = ξ we obtain

RicM (Z) · ψ = 2

n+1∑

j=1

ej · R
M
Z,ej

ψ

= −4α(h(Z) + βZ) · ξ · ψ + 2h2(Z) · ψ − h(Z) · ξ · κ · ψ

+
1

2

n∑

k=1

ξ · ek · ∇Zh(ek) · ψ −
n∑

k=1

ξ · ek · ∇ek
h(Z) · ψ −∇ξh(Z) · ψ

+4(n− 1)β2Z · ψ + g(Z, κ)(−2αψ + ξ · Ω · ψ − κ · ψ) + ∇M
Z κ · ψ.

This shows the second identity of Theorem 3.4. On the other hand

RicM (ξ) · ψ = 2αξ · κ · ψ + κ · Ω · ψ + 4h(κ) · ψ + (|h|2 − |κ|2)ξ · ψ + 4nαβψ

+
1

2

n∑

j,k=1

ej · ek · ∇ej
h(ek) · ψ −

n∑

j=1

ξ · ej · ∇
M
ej
κ · ψ

+

n∑

j=1

ξ · ej · ∇ξh(ej) · ψ.

This shows the first identity of Theorem 3.4. We compute now the action of the
scalar curvature of M :

ScalMψ = −

n+1∑

j=1

ej · RicM (ej) · ψ

9



= (4n(n− 1)β2 − |h|2 − 2|κ|2)ψ − 8nαβξ · ψ + 8αξ · Ω · ψ

−

n∑

j,k=1

ξ · ej · ek · ∇ek
h(ej) · ψ + 2

n∑

j=1

ej · ∇ξh(ej) · ψ

+4ακ · ψ + 2ξ · κ · Ω · ψ − 2

n∑

j=1

ej · ∇
M
ej
κ · ψ.

This shows the third identity and achieves the proof of Theorem 3.4. �

Note 3.5 Under the hypotheses of Theorem 3.4, if one furthermore assumes
that ψ is a non-zero (α, β)-transversal Killing spinor with real α and β, that
κ = 0 and ∇h = 0 (e.g. if M is a local Riemannian product or if M is Sasakian)
then necessarily αβ = 0. From Theorem 3.4 the scalar curvature of M must
indeed satisfy the condition

ScalMψ = (4n(n− 1)β2 − |h|2)ψ − 8nαβξ · ψ + 8αξ · Ω · ψ,

where ψ is the (α, β)-transversal Killing spinor on M . Taking the Hermitian
product with ξ · ψ and identifying the real parts one obtains 0 = −8nαβ|ψ|2.
Since ψ does not vanish identically we deduce that αβ = 0.

3.3 Examples of transversal Killing spinors

We construct a first important family of examples of Riemannian flows with
transversal Killing spinors. Recall for the next proposition that the unit circle
S1 carries two different spin structures, the trivial one that we call (δ = 0)-spin
structure and the non-trivial one that we call (δ = 1)-spin structure. We also
recall that a β-Killing spinor on a Riemannian spin manifold Nn is a section ψ
of ΣN satisfying

∇N
Xψ = βX ·

N
ψ

for every X ∈ Γ(TN). If a non-zero such spinor field exists, then Nn is Einstein
with scalar curvature 4n(n−1)β2 (see e.g. [16, Prop. 5.12] or [7]), hence β must
be either real or purely imaginary. The classification of the Riemannian spin
manifolds with non-trivial β-Killing spinors was achieved in [27, 4, 6].

Proposition 3.6 Let N be an n-dimensional Riemannian spin manifold car-
rying a β-Killing spinor ψ for some β ∈ C and M

π
−→ N be a Riemannian

submersion which is either a S1-bundle with totally geodesic fibres over N or
the second projection of the Riemannian product M := R × N onto N . Let M
be endowed with the spin structure induced by that of N and the trivial spin
structure on S1 or R respectively. Then the following holds:

i) The spinor ψ on N induces a (0, β)-transversal Killing spinor on M .

ii) In the second case (M = R × N) if moreover β = 0 then ψ induces an
(α, 0)-transversal Killing spinor on M for any α ∈ C. Furthermore for
α ∈ R the spinor field ψ descends to the Riemannian product S1 × N if
and only if α ∈ πδ

L
+ 2πZ

L
, where L is the length of the unit circle.

Proof. We recall the following lemma about spinors on submersions and S1-
bundles, see [19, Chap. 1] or [3]:
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Lemma 3.7 Let M
π

−→ N be as in Proposition 3.6. Then the following state-
ments hold:

1. The manifold M defines a minimal spin Riemannian flow w.r.t. the unit
fundamental vector field ξ given by the S1-action or ∂

∂t
respectively and

carries a spin structure which is induced by those of N and the trivial one
on S1 or R respectively.

2. The spinor bundle of Q can be identified with π∗ΣN , in particular ξ ·
X∗ · ϕ = X ·

N
ϕ for every X ∈ Γ(TN), where X∗ ∈ Γ(Q) denotes the

horizontal lift of X to M .

3. For every ϕ ∈ Γ(ΣN) (which is identified to ϕ ◦ π ∈ Γ(π∗ΣN)) one has

∣∣∣∣
∇X∗ϕ = ∇N

Xϕ
∇ξϕ = 0

for every X ∈ Γ(TN). Besides a spinor φ on M is projectable on N if
and only if ∇ξφ = 0.

Proof of Proposition 3.6 (continued). Since ψ is a β-Killing spinor on the
base manifold N , then we deduce from Lemma 3.7 that it satisfies

∣∣∣∣∣
∇Zψ = ∇N

Z ψ = βZ ·
N
ψ = βξ · Z · ψ

∇ξψ = 0

for every Z ∈ Γ(π∗(TN)) ∼= Q, hence ψ is a (0, β)-transversal Killing spinor on
M . Note that in the case n odd we identify ψ as a section of the first component
ΣQ of ΣM . This shows i). Assume now that M := R × N and β = 0. For any
α ∈ C we set

φ :=

∣∣∣∣
e−iαtψ+ + eiαtψ− if n is even
e−iαt(ψ ⊕ ψ) if n is odd

where, if n is even, ψ = ψ+ + ψ− is the decomposition of ψ w.r.t. the Clifford
action of iξ, see above. We check that, under the hypotheses of Proposition 3.6,
the spinor φ is an (α, 0)-transversal Killing spinor on M . We just describe the
case n even, the case n odd being completely analogous. Since ψ+ and ψ− are
parallel, as a consequence of ψ being parallel, then for all Z ∈ Γ(Q) we deduce
∇Zφ = 0 which is βξ · Z · φ. Moreover

∇ξφ = iα(−e−iαtψ+ + eiαtψ−)

= iα(−iξ·)(e−iαtψ+ + eiαtψ−)

= αξ · φ,

hence φ is an (α, 0)-transversal Killing spinor. Finally, let M := S1 ×N , where
S1 carries the (left-, right- or bi-)invariant metric for which Length(S1) = L > 0
and the δ-spin structure (where δ ∈ {0, 1}). If α is real, then the spinor φ
constructed above on R ×N satisfies the equivariance condition (see just after
Notes 3.8 below) φ(t,x) = eiπδφ(t−L,x) for every (t, x) ∈ R × N if and only if

eiπδe−iαL = 1. In other words, φ descends to an (α, 0)-transversal Killing spinor
on S1 ×N for the metric and spin structure above if and only if α ∈ πδ

L
+ 2πZ

L
.

This shows ii) and achieves the proof of Proposition 3.6. �
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Notes 3.8

1. It follows from Note 3.5 that, on a (local) Riemannian product, the exis-
tence of a non-zero (α, β)-transversal Killing spinor with real α and β
implies αβ = 0. Hence the hypothesis αβ = 0 in Proposition 3.6 cannot
be removed. Moreover the restriction on M being the Riemannian pro-
duct S1 × N in Proposition 3.6 ii) turns out to be necessary as well: in
general there do not exist non-zero (α, 0)-transversal Killing spinors with
non-zero real α on a given S1-bundle with totally geodesic fibres over a
spin manifold with parallel spinors. For example, Heisenberg manifolds
only admit transversally parallel spinors, see Examples 3.9 and Note 5.2
below.

2. Let M := S1×N as in Proposition 3.6. Because of Lemma 3.7 Proposition
3.6 can be applied to the existence of (0, β)-transversal Killing spinors
on M only if S1 carries the trivial spin structure. Actually if one fixes
the non-trivial spin structure on S1 (corresponding to δ = 1) then M
does not carry any non-trivial (0, β)-transversal Killing spinor. In the case
β = 0 this can be already read off Proposition 3.6 ii) since 0 /∈ π

L + 2πZ

L .
However we give a more general argument which works for any β. Assume
the existence of such a spinor field ψ on M . Fixing a sufficiently small
nonempty open subset U of N one could write on S1 × U the spinor ψ as
ψ =

∑
j fjψj , where the ψj ’s are local trivializations of ΣN and fj are

sections of π∗
1(ΣS1) (here π1 : M → S1 denotes the projection onto the

first factor). Now a section of π∗
1(ΣS1) w.r.t. the δ-spin structure on S1

should be a smooth map f : R×N → C such that f(t+1, ·) = (−1)δf(t, ·)
for every t ∈ R. Since the ψj ’s do not depend on the first factor S1 one
should therefore have 0 = ∇ξψ =

∑
j ξ(fj)ψj , hence together with δ = 1

we obtain fj = 0 for every j, which is a contradiction.

3. The only real line bundles M
π

−→ N which are minimal Riemannian flows
over some Riemannian manifold N are Riemannian products R ×N . In-
deed the vector bundle M → N should be trivial since it should possess
a global nowhere-vanishing smooth section ξ. Moreover, the only metric
making such a product into a minimal Riemannian flow is the Rieman-
nian product. Therefore we don’t restrict the generality when considering
Riemannian products R ×N instead of arbitrary line bundles over N .

Examples 3.9

1. The most simple examples that come in mind as application of Proposition
3.6 are the Euclidean space and any flat torus. Since they admit w.r.t.
their trivial spin structure parallel spinors, applying Proposition 3.6 one
deduces that they carry an (α, 0)-transversal Killing spinor for a suitable
choice of α.

2. In the same way any Riemannian product R × Sn or S1 × Sn (for n > 1),
where Sn carries its canonical metric and S1 with its trivial spin structure,
admits (0,± 1

2 )-transversal Killing spinors.

3. Any S1-bundle which is also a Riemannian submersion with totally geodesic
fibres over Sn carrying its canonical metric of sectional curvature 1 admits
(0,± 1

2 )-transversal Killing spinors.
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4. As a particular case of the preceding example consider the Hopf-fibration
S3 π

−→ CP1, where S3 is the 3-dimensional Euclidean sphere and CP1

is the complex projective space with its Fubini-Study metric of constant
holomorphic sectional curvature 4. It is well-known that π is a S1-bundle
and a Riemannian submersion with totally geodesic fibres. Furthermore
the spin structure on S3 induced by those of CP1 and the trivial spin
structure on S1 is its standard spin structure since there is only one spin
structure on S3. Identifying CP1 with the 2-dimensional sphere S2 together
with 1

4can we have a 2-dimensional space of ±1-Killing spinors on CP1.
We deduce from Proposition 3.6 that S3 carries a 2-dimensional space of
(0,±1)-transversal Killing spinors.
More generally, every lens space Zk \ S3 with its canonical metric and its
trivial spin structure is also a S1-bundle with totally geodesic fibres over
CP1, therefore it admits a non-zero (0,±1)-transversal Killing spinor.

5. Let

G :=








1 x z
0 1 y
0 0 1


 , x, y, z ∈ R





be the Heisenberg group, which is a 3-dimensional non-compact connected
non-abelian Lie group. For a fixed r ∈ (Z \ {0}) consider the discrete
subgroup Γr of G defined by

Γr :=








1 rx z
0 1 y
0 0 1


 , x, y, z ∈ Z



 .

The (homogeneous) quotient Mr := Γr\G is a compact 3-dimensional
manifold called a Heisenberg manifold. It carries a two-parameter family
of left-invariant Riemannian metrics which make it into a Riemannian S1-
principal bundle with totally geodesic fibres over a flat two-dimensional
torus T2 := rZ ⊕ Z \ R2 [3]. Fixing a flat metric and the trivial spin
structure on T2 we have a 2-dimensional space of parallel spinors on T2.
Hence it follows from Proposition 3.6 that, for the induced metric g and
the induced spin structure on Mr, there exists a 2-dimensional space of
(0, 0)-transversal Killing spinors on (Mr, g). This has been already proved
by G. Habib in [15] where the author performs a direct computation.

6. Let M := ˜PSL2(R) be the universal covering of the projective special
linear group of R2. It can be identified with the unitary tangent bundle
(or, equivalently, the bundle of positively-oriented orthonormal frames)
UH2 of the hyperbolic plane H2. Fixing the canonical metric and spin
structure on H2 we have a 2-dimensional space of ±i-Killing spinors on
H2. From Proposition 3.6 we deduce that, for the induced metric and
spin structure on M we have a 2-dimensional space of (0,±i)-transversal
Killing spinors on M .
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4 Transversal Killing spinors on reducible Rie-

mannian flows

4.1 Equivariance conditions on local Riemannian prod-

ucts

In this section, we aim to study the existence of transversal Killing spinors on
flat or reducible Riemannian flows (local products).

Let Γ be a discrete group acting freely, properly and discontinuously on a spin
Riemannian manifold M . Assume furthermore that its action preserves both
the metric and the spin structure of M . Then the quotient manifold Γ \M in-
herits from M a metric and a spin structure such that the canonical projection
M −→ Γ \M is a Riemannian covering map preserving the spin structures.
Furthermore spinor fields on Γ \M are in one-to-one correspondence with Γ-
equivariant spinor fields on M .

In particular ifM = Γ\Rn+1 then denoting by t : Γ → Rn+1 and r : Γ → SOn+1

the first and second projections of Isom+(Rn+1) = Rn+1 ⋊ SOn+1 (group of
orientation-preserving isometries of Rn+1) respectively, the equivariance condi-
tions above can be rewritten under the form [23, Prop. 3.2]

• The manifold M is spin if and only if there exists a group-homomorphism
ε : Γ → Spinn+1 such that the following diagram commutes

Spinn+1

Ad

��
Γ

ε

<<
x

x
x

x
x

x
x

x
x r // SOn+1

• A spinor field on M is a smooth map ψ : Rn+1 → C2[ n+1
2

]

satisfying

ψx = ε(γ)ψγ−1(x)

for all x ∈ Rn+1 and γ ∈ Γ.

Next we use this equivariance principle to study the flat or reducible Rieman-
nian flows carrying transversal Killing spinors. We begin with local Riemannian
products:

Proposition 4.1 Let (Mn+1, g,F) be a spin Riemannian flow given by a unit
vector field with κ = 0 and h = 0, i.e., a local Riemannian product of a 1-
dimensional manifold with an n-dimensional one. Assume that M carries a
non-zero (α, β)-transversal Killing spinor for complex numbers α and β. Then
αβ = 0 and M is the quotient of some Riemannian product R × N where N
admits a non-trivial β-Killing spinor. Moreover β = 0 if and only if (M, g) is
Ricci flat.

Proof. Let ψ be a non-zero (α, β)-transversal Killing spinor on M . From the
assumption the flow being a local Riemannian product, i.e. h = 0 and κ = 0,
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we obtain applying Theorem 3.4 that
∣∣∣∣∣∣

ScalMψ = 4n(n− 1)β2ψ − 8nαβξ · ψ
RicM (ξ) · ψ = 4nαβψ
RicM (Z) · ψ = 4(n− 1)β2Z · ψ − 4αβZ · ξ · ψ

(6)

for every Z ∈ Γ(Q). Splitting ψ into ψ = ψ+ + ψ− we deduce from the first
identity of (6) that ScalMψ± = 4n(n− 1)β2ψ± ± 8inαβψ± (the identity holds
for both + and −). If β 6= 0 we know from Notes 3.2 that {x ∈M / (ψ±)x 6= 0}
is dense in M , so that ScalM = 4n(n − 1)β2 ± 8inαβ on M , which of course
implies α = 0. This proves αβ = 0.
Let now M −→ M be the universal covering of M and M carry the induced
metric and spin structure. From the hypotheses h = 0 and κ = 0 we have
M = R × N with product metric and spin structure, where N is a simply-
connected Riemannian spin manifold. Note also that the lift ξ of ξ to M is then
given by ξ = ∂

∂t
. The spinor ψ lifts to an (α, β)-transversal Killing spinor ψ on

M which is π1(M)-equivariant.
In the case where α = 0 we know from Lemma 3.7 that ψ is projectable, i.e., it
comes from a spinor field ϕ on N . Applying further Lemma 3.7 as in the proof
of Proposition 3.6 one actually shows that ϕ is a β-Killing spinor on N .
In the case where α 6= 0 necessarily β = 0, which is from (6) equivalent to M
being Ricci flat. We show the existence of a parallel spinor on M , or equivalently
on N . For this we simply use the argument for constructing (α, 0)-transversal
Killing spinors out of transversally parallel ones (see proof of Proposition 3.6)
in the reverse way and set, for every (t, x) ∈M :

ϕ(t,x) := eiαt(ψ+)(t,x) + e−iαt(ψ−)(t,x),

where iξ · ψ± = ±ψ±. It is a straightforward computation to show that ϕ is

transversally parallel on M . In particular since its covariant derivative along ξ
vanishes it induces a spinor on N which is then parallel from Lemma 3.7. This
achieves the proof. �

Notes 4.2

1. In the case where β 6= 0 one can deduce from (6) that the eigenspaces
of the Ricci tensor of the universal cover M of M are pointwise R (cor-
responding to the eigenvalue 0) and TN (corresponding to the eigenvalue
4(n − 1)β2). Since any isometry of M should preserve the eigenspaces
of its Ricci tensor it should preserve the orthogonal splitting T(t,x)M =

R ⊕ TxN . From [20, Lemma 7.1] any such isometry should thereby be of
the form (γ1, γ2) where γ1 and γ2 are orientation-preserving isometries of
R and N respectively. However the fundamental group π1(M) need not
be a product, that is, M need not be isometric to a global product of
the form R × N or S1 × N . Consider for example the locally reducible
Riemannian flow M := Z \ (R × S3) where Z acts from the left on R × S3

by n 7→ (n+ IdR, (−1)nIdS3). The manifold M is spin and carries exactly
two spin structures, which correspond to the two possible lifts of Z → SO4,
n 7→ (−1)nIdS3 to Spin4 = Spin3×Spin3. For each choice of spin structure
the space of Z-equivariant (0, β)-transversal Killing spinors on R × S3 is
exactly 2-dimensional. Nevertheless M is clearly not diffeomorphic to a
product.
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2. However B. Alexandrov, G. Grantcharov and S. Ivanov showed in [1] that,
under the assumptions of Proposition 4.1, if furthermore n is even, α = 0,
β 6= 0 and M is compact, then in fact M is diffeomorphic - but not
necessarily isometric - to S1 × Sn.

In the case of flat Riemannian flows we can make more precise statements:

Corollary 4.3 Let Γ be a discrete subgroup of orientation-preserving isome-
tries acting freely on Rn+1 and (M := Γ \ Rn+1, g,F) be a flat spin manifold
with a minimal Riemannian flow F . Assume that M carries a non-zero (α, β)-
transversal Killing spinor for complex numbers α and β. Then h = 0, β = 0
and ψ comes from a smooth spinor field ψ on Rn+1 satisfying the following
equivariance condition:

a) Case α = 0: the section ψ is constant on Rn+1 and ψ = ε(γ)ψ for every
γ ∈ Γ.

b) Case α 6= 0: there exist two constant sections ψ+ and ψ− on Rn+1 with

ψ = e−iα〈x,ξ〉ψ++eiα〈x,ξ〉ψ− and ψ± = e±iα〈t(γ),ξ〉ε(γ)ψ± for every γ ∈ Γ,

where ε : Γ −→ Spinn+1 is the lift of Γ giving the spin structure on M and ξ is
the lift of ξ to Rn+1.

Proof. The universal cover ofM is by hypothesis isometric to Rn+1, and because
the flow is assumed to be minimal the lift ξ of ξ to Rn+1 is a Killing vector field
on Rn+1. Since every such field on Rn+1 should be constant hence parallel we
first deduce that h = 0, i.e., M should be a local Riemannian product. Applying
Proposition 4.1 to the Ricci flat flow M we immediatly obtain β = 0.
Moreover ξ as well as the lift ψ of ψ to Rn+1 should be Γ-equivariant. For ξ this
means γ∗ξ = ξ for every γ ∈ Γ, that is,

r(γ)(ξ) = ξ. (7)

For ψ we first notice that the equation of (α, 0)-transversal Killing spinors can
be explicitly solved on Rn+1. Indeed if one decomposes such a spinor field ψ in
a basis of constant sections of ΣRn+1 one straightforward obtains

ψx = e−iα〈x,ξ〉ψ+ + eiα〈x,ξ〉ψ−

for every x ∈ Rn+1, where ψ± is a constant section with iξ · ψ± = ±ψ±. The

formula holds in particular if α = 0, in which case ψ is simply a constant section,
i.e., parallel. The equivariance condition on ψ now reads ψx = ε(γ)ψγ−1(x). If

α = 0 this is equivalent to ψ = ε(γ)ψ for every γ ∈ Γ, which proves a).
Assume for the rest of the proof α 6= 0. Using γ(x) = r(γ)(x) + t(γ), the
equivariance condition becomes

ψx = ε(γ)
(
e−iα〈γ−1(x),ξ〉ψ+ + eiα〈γ−1(x),ξ〉ψ−

)

(7)
= e−iα〈x−t(γ),ξ〉ε(γ)ψ+ + eiα〈x−t(γ),ξ〉ε(γ)ψ−. (8)

For a given γ ∈ Γ we claim that ξ · ε(γ) = ǫ(γ)ε(γ) · ξ for some ǫ(γ) ∈ {±1}.

Consider indeed Ad(ξ · ε(γ) · ξ
−1

) ∈ SOn+1. The conjugation by ξ acts on

16



Rn+1 through Id
Rξ ⊕ −IdQ, so that because of (7) it leaves the eigenspaces of

Ad(ε(γ)) = r(γ) invariant and therefore it commutes with r(γ), hence

Ad(ξ · ε(γ) · ξ
−1

) = r(γ) = Ad(ε(γ))

which is the claim. If ξ · ε(γ) = −ε(γ) · ξ for some fixed γ ∈ Γ then the
identification of the + and − components in (8) gives ψ± = 0 and hence ψ = 0,

contradiction. Therefore we necessarily have ξ · ε(γ) = ε(γ) · ξ for every γ ∈ Γ.
It follows for the identification of the + and − components in (8)

e−iα〈x,ξ〉ψ+ = e−iα〈x−t(γ),ξ〉ε(γ)ψ+ and eiα〈x,ξ〉ψ− = eiα〈x−t(γ),ξ〉ε(γ)ψ−,

which shows b) and achieves the proof of Corollary 4.3. �

4.2 Existence of (α, 0)-transversal Killing spinors in low

dimensions

In this section, we determine all compact flat minimal 3-dimensional Rieman-
nian flows carrying at least one non-zero (α, 0)-transversal Killing spinor ψ for a
suitable complex number α (remember from Corollary 4.3 that β should vanish).
All such manifolds are of the form Γ \ R3 where Γ is one of the six Bieberbach
groups. In the case α = 0 the manifold M should carry a non-zero transversally
parallel and hence a parallel spinor field by Equations (2). Therefore M should
be a flat torus with trivial spin structure [23, Thm 5.1], see also the case Γ = G1

below. So we assume α 6= 0. We mainly keep the notations of [23, Thm 2.8 and
3.3] and for each Bieberbach group Gi we determine the possible fields ξ on R3

and express the equivariance condition of Corollary 4.3 b).

• Case of Γ = G1 : The group G1 is generated by three translations associated
to three linearly independent vectors aj in R3. In that case M is a flat torus
and the lift ε of G1 to Spin3 is given on the generators by ε(aj) := eiπδj where
δj ∈ {0, 1}. Since r(G1) = {Id} the equivariance condition (7) for ξ is empty, i.e.,
ξ can be any constant vector of unit length in R3. On the other hand, we should

have from Corollary 4.3 b) that ψ± = e±iα〈aj ,ξ〉eiπδjψ± for every j = 1, 2, 3,

hence the existence of a non-trivial solution is equivalent to e±i(α〈aj ,ξ〉+πδj) = 1,
i.e., to

α〈ξ, aj〉 ∈ πδj + 2πZ ∀j ∈ {1, 2, 3}. (9)

Note that this implies α ∈ R. We conclude that, for any fixed basis {a1, a2, a3}
of R3 and any spin structure (δ1, δ2, δ3) ∈ {0, 1}3 there exists a non-zero (α, 0)-
transversal Killing spinor on G1 \ R3 if and only if the relation (9) is satisfied.
In particular the space of (α, 0)-transversal Killing spinors is of 2-dimensional.

• Case of Γ = G2 : The group G2 is generated by three translations associated
to the three vectors a1 := (0, 0, H), a2 := (L, 0, 0), a3 := (T, S, 0) in R3 and
by the orthogonal transformation that we denote by (A, a1

2 ) which is defined
by x 7→ Ax + a1

2 . Here A is the rotation of angle π around the x3-axis and
H,L, T, S are real parameters with H,L, S > 0. In that case the lift ε of G2 to
Spin3 is given on the generators by ε(a1) := −1, ε(a2) := eiπδ2 , ε(a3) := eiπδ3

and ε((A, a1

2 )) := eiπδ1e1 · e2·, where {e1, e2, e3} denotes the canonical basis of
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R3 and (δ1, δ2, δ3) ∈ {0, 1}3. Since r(G2) = {Id, A} the equivariance condition
(7) for ξ reduces to Aξ = ξ, that is ξ = e3 or −e3, so that w.l.o.g. we can fix
ξ = e3. Writing the equivariance condition from Corollary 4.3 b) one can show
the following: given H,L, S, T ∈ R with H,L, S > 0 and (δ1, δ2, δ3) ∈ {0, 1}3,
there exists a non-zero (α, 0)-transversal Killing spinor on G2 \R3 if and only if
δ2 = δ3 = 0 and αH ∈ π+2πδ1+4πZ. In that case the space of (α, 0)-transversal
Killing spinors is of 2-dimensional.

• Case of Γ = G3 : The group G3 is generated by three translations associ-

ated to the three vectors a1 := (0, 0, H), a2 := (L, 0, 0), a3 := (−L
2 ,

L
√

3
2 , 0)

in R3 and by the orthogonal transformation that we denote by (A, a1

3 ) which
is defined by x 7→ Ax + a1

3 . Here A is the rotation of angle 2π
3 around the

x3-axis and H,L are positive real parameters. In that case the lift ε of G3 to
Spin3 is given on the generators by ε(a1) := −eiπδ1 , ε(a2) := 1, ε(a3) := 1 and

ε((A, a1

3 )) := eiπδ1(1
2 +

√
3

2 e1 · e2·), where δ1 ∈ {0, 1}. Since r(G3) = {Id, A,A2}

the equivariance condition (7) for ξ reduces to Aξ = ξ, that is ξ = e3 or −e3, and
w.l.o.g. we can fix ξ = e3. Writing the equivariance condition one can show the
following: given H,L ∈ R with H,L > 0 and δ1 ∈ {0, 1}, there exists a non-zero
(α, 0)-transversal Killing spinor on G3 \R3 if and only if αH ∈ π+ 3πδ1 + 6πZ.
In that case the space of (α, 0)-transversal Killing spinors is of 2-dimensional.

• Case of Γ = G4 : The group G4 is generated by three translations asso-
ciated to the three vectors a1 := (0, 0, H), a2 := (L, 0, 0), a3 := (0, L, 0) in
R3 and by the orthogonal transformation that we denote by (A, a1

4 ) which is
defined by x 7→ Ax + a1

4 . Here A is the rotation of angle π
2 around the x3-axis

and H,L are positive real parameters. In that case the lift ε of G4 to Spin3

is given on the generators by ε(a1) := −1, ε(a2) := eiπδ2 , ε(a3) := eiπδ2 and
ε((A, a1

4 )) := eiπδ1( 1√
2

+ 1√
2
e1 · e2·), where (δ1, δ2) ∈ {0, 1}2. Since r(G4) =

{Id, A,A2, A3} the equivariance condition (7) for ξ reduces to Aξ = ξ, that is
ξ = e3 or −e3, and w.l.o.g. we can fix ξ = e3. Writing the equivariance condition
one can show the following: given H,L ∈ R with H,L > 0 and (δ1, δ2) ∈ {0, 1}2,
there exists a non-zero (α, 0)-transversal Killing spinor on G4 \R3 if and only if
αH ∈ π+4πδ1+8πZ. In that case the space of (α, 0)-transversal Killing spinors
is 2-dimensional.

• Case of Γ = G5 : The group G5 is generated by three translations associ-

ated to the three vectors a1 := (0, 0, H), a2 := (L, 0, 0), a3 := (L
2 ,

L
√

3
2 , 0) in

R3 and by the orthogonal transformation that we denote by (A, a1

6 ) which is
defined by x 7→ Ax + a1

6 . Here A is the rotation of angle π
3 around the x3-axis

and H,L are positive real parameters. In that case the lift ε of G5 to Spin3 is
given on the generators by ε(a1) := −1, ε(a2) := 1, ε(a3) := 1 and ε((A, a1

6 )) :=

eiπδ1(
√

3
2 + 1

2e1 ·e2·), where δ1 ∈ {0, 1}. Since r(G5) = {Id, A,A2, A3, A4, A5} the

equivariance condition (7) for ξ reduces to Aξ = ξ, that is ξ = e3 or −e3, and
w.l.o.g. we can fix ξ = e3. Writing the equivariance condition one can show the
following: given H,L ∈ R with H,L > 0 and δ1 ∈ {0, 1}, there exists a non-zero
(α, 0)-transversal Killing spinor on G5 \R3 if and only if αH ∈ π+6πδ1 +12πZ.
In that case the space of (α, 0)-transversal Killing spinors is 2-dimensional.
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• Case of Γ = G6 : The group G6 is generated by three translations associ-
ated to the three vectors a1 := (0, 0, H), a2 := (L, 0, 0), a3 := (0, S, 0) in R3

and by the orthogonal transformations that we denote - in the obvious way,
see above - by (A, a1

2 ), (B, a2+a3

2 ) and (C, a1+a2+a3

2 ). Here A (resp. B, C) is
the rotation of angle π around the x3-axis (resp. x1-, x2-axis) and H,L, S are
positive real parameters. Since r(G6) ⊃ {A,B,C} the vector field ξ should sat-
isfy Aξ = ξ, Bξ = ξ and Cξ = ξ, therefore it should vanish. This means that
G6\R3 cannot carry any Riemannian flow, hence this case should be eliminated.

To sum up, each of the Bieberbach manifolds Gj \ R3 for j = 1, . . . , 5 carries
non-trivial (α, 0)-transversal Killing spinors for a suitable α ∈ R and suitable
spin structure.

5 Transversal Killing spinors on Sasakian mani-

folds

5.1 Integrability conditions for transversal Killing spinors

on Sasakian manifolds

Let (M2m+1, g, ξ) be a Sasakian manifold, see Definition 2.1. First note that, if
ψ is an (α, 0)-transversal Killing spinor on a spin Sasakian manifold (M2m+1, g),
then so is every component ψr of ψ under the Clifford action of Ω (indeed the
Clifford action of ξ preserves ψr and ∇Ω = 0), compare with Notes 3.2.2.

Recall for the following corollary that a Riemannian flow is called η-Einstein [21]
if and only if there exist real constants λ, µ on M such that RicM = λIdTM +
µξ♭ ⊗ ξ.

Proposition 5.1 Under the hypotheses of Theorem 3.4, assume furthermore
that (M2m+1, g, ξ) is Sasakian, that ψ 6= 0 and that α and β are real. Then the
following holds:

i) Either α = 0 or β = 0. If α 6= 0 then either ψ is an eigenspinor for
the Clifford action by Ω or m is odd and ψ = ψr + ψm−r for some r ∈
{0, . . . ,m}.

ii) If α = 0 then (M2m+1, g, ξ) is η-Einstein.

iii) If α 6= 0 then g(RicM (Z), h(Z)) = 0 for every Z ∈ Γ(Q). If furthermore
ψ0 6= 0 or ψm 6= 0 then (M2m+1, g, ξ) is η-Einstein. This happens in
particular if dim(M) = 3.

Proof. Since on a Sasakian manifold κ = 0 and ∇h = 0, we first deduce from
Note 3.5 that αβ = 0. The identities proved in Theorem 3.4 then simplify to

∣∣∣∣∣∣

RicM (Z) · ψ = −4α(h(Z) + βZ) · ξ · ψ + (4(2m− 1)β2 − 2)Z · ψ
RicM (ξ) · ψ = 2mξ · ψ
ScalMψ = 2m(4(2m− 1)β2 − 1)ψ + 8αξ · Ω · ψ,

(10)

for every Z ∈ Γ(Q). On every Sasakian manifold one has RicM (ξ) = 2mξ
[11] hence the second equation above is trivial. Consider now the last equation
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involving the scalar curvature of M . Decompose ψ =
∑m

r=0 ψr according to (3)
one obtains with the use of ξ · ψr = (−1)r+1iψr for every r ∈ {0, . . . ,m} that

ScalMψr = 2m(4(2m− 1)β2 − 1)ψr + (−1)r8α(2r −m)ψr. (11)

We consider two cases:

• If α = 0 then coming back to the first equation in (10) we obtain

RicM (Z) = (4(2m− 1)β2 − 2)Z,

for every Z ∈ Γ(Q), hence (M2m+1, g, ξ) is η-Einstein and ii) is proved.

• If α 6= 0 then β = 0 and one obtains from (11)

ScalM = −2m+ (−1)r8α(2r −m)

for every r ∈ {0, . . . ,m} for which ψr does not vanish. If there is more than
one such r, say r′, then one has in particular (−1)r(2r−m) = (−1)r′

(2r′−
m). If r + r′ ≡ 0 (2) then r = r′, contradiction, hence r + r′ ≡ 1 (2), from
which one deduces that r + r′ = m. Therefore such an r′ must then be
unique (equal to m− r) and m should be odd. We have proved i).
As for the Ricci tensor on Q in that case, we have the equation

RicM (Z) · ψr = 4(−1)riαh(Z) · ψr − 2Z · ψr (12)

for every Z ∈ Γ(Q) and every r ∈ {0, . . . ,m} for which ψr does not
vanish. Taking the Hermitian product of that equation with h(Z) · ψr

and identifying the real parts one obtains g(RicM (Z), h(Z)) = 0, and this
holds for every Z ∈ Γ(Q). Now if one furthermore assumes that r = 0
or r = m, then with the use of (4) one deduces from (12) that, in the
case ψ0 6= 0, that RicM (Z) = (−2 − 4α)Z, and in the case ψm 6= 0, that
RicM (Z) = (−2+4(−1)mα)Z. Hence the flow is η-Einstein in that case as
well. Note that, if m is odd, then both last expressions of the Ricci tensor
are the same, which one could expect since in that case both ψ0 and ψm

could be non-vanishing sections.
For m = 1 the only possible values of r are 0 and 1, hence the flow must
always be η-Einstein. This shows iii) and achieves the proof. �

Note 5.2 Consider a Heisenberg manifold (Mr, g, ξ) with metric and spin struc-
ture as in Examples 3.9. It is a Sasakian manifold. We have proved in Examples
3.9.5 that (Mr, g, ξ) admits transversally parallel spinors. Actually there is no
(non-zero) (α, β)-transversal Killing spinors on (Mr, g, ξ) for real (α, β) 6= (0, 0).
Assume indeed that ψ were such a spinor field. If β 6= 0 then α = 0 and
from Lemma 3.7 the spinor field ψ would descend to a β-Killing spinor on a
flat two-torus with trivial spin structure, contradiction. If α 6= 0 then using
RicM = −2IdTM + 4ξ♭ ⊗ ξ on (Mr, g, ξ) one would straightforward deduce from
(10) that αh(Z) · ξ · ψ = 0 for every Z ∈ Γ(Q), contradiction. Therefore α and
β necessarily vanish.
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5.2 Killing vs. transversal Killing spinors

We now establish a relation between transversal and “classical” Killing spinors
on Sasakian manifolds. Recall that a D-homothetic deformation of a given metric
g on a Riemannian flow (M, g,F) is a metric of the form gt := t2g|Rξ

+ tg|Q for
some real number t > 0.

Proposition 5.3 Let (M2m+1, g, ξ) be a spin Sasakian manifold.

a) The space of − 1
2 -Killing spinors in Σ0M coincides with that of (−m+1

2 , 0)-
transversal Killing spinors in Σ0M. In particular, a section ψ0 of Σ0M
is an (α, 0)-transversal Killing spinor on (M2m+1, g, ξ) for some α < 0 if
and only if there exists a D-homothetic deformation gt of g for which the

corresponding spinor field ψ0
t
is a − 1

2 -Killing spinor.

b) The space of (−1)m

2 -Killing spinors in ΣmM coincides with that of
((−1)m m+1

2 , 0)-transversal Killing spinors in ΣmM . In particular, a sec-
tion ψm of ΣmM is an (α, 0)-transversal Killing spinor on (M2m+1, g, ξ)
for some α such that (−1)mα > 0 if and only if there exists a D-homothetic

deformation gt of g for which the corresponding spinor field ψm
t

is a
(−1)m

2 -Killing spinor.

Proof. First remember that, if β = 0, then every component ψr of ψ is again
an (α, 0)-transversal Killing spinor on M , therefore we may talk about transver-
sal Killing spinors lying in one of the components ΣrM of ΣM . Using (2) we
compare ∇Mϕr with ∇ϕr for any section ϕr of ΣrM : on the one hand

∇M
ξ ϕr = ∇ξϕr +

1

2
Ω · ϕr +

1

2
ξ · κ · ϕr

= ∇ξϕr − (−1)r(r −
m

2
)ξ · ϕr, (13)

and on the other hand, for every Z ∈ Γ(Q),

∇M
Z ϕr = ∇Zϕr +

1

2
ξ · h(Z) · ϕr. (14)

For r = 0 the identity (13) becomes

∇M
ξ ϕ0 = ∇ξϕ0 +

m

2
ξ · ϕ0

and for the identity (14) we write

∇M
Z ϕ0 = ∇Zϕ0 −

1

2
h(Z) · ξ · ϕ0

= ∇Zϕ0 −
1

2
Z · ϕ0

for every Z ∈ Γ(Q). So that bringing together (13) and (14) we deduce that
the spinor field ϕ0 is a − 1

2 -Killing spinor on M if and only if it is a (−m+1
2 , 0)-

transversal Killing spinor. Now if α < 0 there exists a t > 0 such that α
t = −m+1

2
so that from Lemma 3.3 there exists a D-homothetic deformation gt of the

metric g for which the corresponding spinor field ψ0
t
is a (−m+1

2 , 0)-transversal
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Killing spinor and hence a − 1
2 -Killing spinor on (M, gt). Furthermore from the

argument above the space of − 1
2 -Killing spinors in Σ0M exactly coincides with

that of (−m+1
2 , 0)-transversal Killing spinors in Σ0M . This proves i). For r = m

the proof is completely analogous. �

Notes 5.4 The identities (10) in the proof of Proposition 5.1 actually provide
a link between the sign of α and the geometry of M . For example if m is odd
then the condition ψ0 6= 0 (or alternatively ψm 6= 0, which gives the same result)
implies from (10) ScalM = −2m− 8αm. If ScalM > 0 then necessarily α < 0, in
particular there is no non-trivial such (α, 0)-transversal Killing spinor for some
positive α if ScalM > 0 and m is odd. This will be illustrated with the Berger
spheres in the next section.

Corollary 5.5 Let (M2m+1, g, ξ) be a simply-connected complete spin Sasakian
manifold carrying a non-zero (α, β)-transversal Killing spinor ψ for real α and
β. Then we have:

i) In the case α = 0 the following holds:

– If m = 1 then the manifold M is isometric to (S3, can), up to D-
homothetic deformation of g, in the case β 6= 0 and is diffeomorphic
to R3 in the case β = 0.

– If m > 1 then β = 0, i.e., ψ is a transversally parallel spinor on M .

ii) In the case α 6= 0 the following holds:

– If m = 1 then up to D-homothetic deformation of g the manifold
M is isometric to (S3, can) if α < 0 and should satisfy RicM =
−3IdTM + 5ξ♭ ⊗ ξ if α > 0.

– If m is even, ψ0 6= 0 and α < 0 (or ψm 6= 0 and α > 0 respectively)
then M is compact and up to D-homothetic deformation of g it is
Einstein-Sasakian.

– If m ≥ 3 is odd, ψ0+ψm 6= 0 and α < 0 then M is compact and up to
D-homothetic deformation of g it is Einstein-Sasakian or 3-Sasakian.

Proof. From Proposition 5.1 we know that αβ = 0. In the case where α = 0
and β 6= 0, it follows from the identities (10) that M is Einstein if and only

if β2 = m+1
2(2m−1) . Obviously there exists a t > 0 such that β2

t
= m+1

2(2m−1) so

that we deduce the existence of a D-homothetic deformation gt of g for which
(M, gt) is Einstein with positive Ricci curvature. Since (M, gt) is moreover com-
plete (for (M, g) is complete if and only if (M, gt) is) it is compact. One can
now adapt an argument à la Hijazi to show the non-existence of non-zero basic
Killing spinors on (2m+ 1 ≥ 5)-dimensional compact Riemannian flows with a
transversal Kähler structure, see e.g. [16, Thm 5.22]. Therefore, for m > 1 then
necessarily β = 0. Now if m = 1 and β 6= 0, we deduce with the fact (M, gt) is
of constant curvature, since it is Einstein, that (M3, gt) is isometric to (S3, can)
[8]. If m = 1 and β = 0 then using (10) the transversal Ricci curvature vanishes
and the manifold M is diffeomorphic to R3 [9]. This shows i).
Assume now α 6= 0. Then from Proposition 5.1 β = 0 and if we assume moreover
that ψ0 6= 0 and α < 0 (resp. ψm 6= 0 and (−1)mα > 0) then from Proposi-

tion 5.3 a) there exists a D-homothetic deformation gt of g for which ψ0
t

is a
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− 1
2 -Killing spinor on the Sasakian manifold (M2m+1, gt, ξ

t
). In particular it is

Einstein with scalar curvature 2m(2m + 1) and since gt is complete M must
actually be compact. In the case where m is odd both conditions are equiva-
lent (α < 0). Furthermore if m ≥ 3 then it follows from C. Bär’s classification
[4] that (M, gt) should be either Einstein-Sasakian or 3-Sasakian. If m = 1
the condition ψ0 + ψ1 6= 0 is fulfilled by hypothesis; if α < 0 then applying
again Proposition 5.3 we obtain a D-homothetic deformation gt of g for which
(M, gt) carries a non-zero − 1

2 -Killing spinor. Hence similarly one concludes that
(M3, gt) = (S3, can). If m = 1 and α > 0 then from the identities (10) the Ricci
curvature is given by RicM = −(4α+2)IdTM +4(α+1)ξ♭⊗ξ, therefore (M3, gt)
satisfies RicM = −3IdTM + 5ξ♭ ⊗ ξ for some t > 0. This shows ii) and achieves
the proof. �

Note 5.6 It also follows from C. Bär’s classification [4] that, conversely, if
(M4l+1, g, ξ) is a complete simply-connected Einstein-Sasakian manifold, then
M is spin and carries non-trivial Killing spinors associated to positive and neg-
ative real constants. In the case where m is even we therefore obtain examples
of such Riemannian flows with non-trivial transversal Killing spinors as soon
as e.g. one of those constants can be chosen to be − 1

2 and the corresponding
Killing spinor lies pointwise in Σ0M . One can obtain such examples when m ≥ 5
is odd in an analogous way.

5.3 Example: transversal Killing spinors on the Berger

spheres

For a positive integer m let M := S2m+1 be the (2m + 1)-dimesional sphere
equipped with the round metric g with sectional curvature 1 and its canonical
spin structure. It is a Sasakian manifold w.r.t. the vector field ξx := ix for every
x ∈ S2m+1, where S2m+1 ⊂ Cm+1 and i2 = −1. We shall call the D-homothetic
deformations of that Sasakian manifold the Berger spheres. Note that the usual
convention is to define a Berger metric on S2m+1 as tg|Rξ

+ g|Q for some t > 0.
Let the orientation of S2m+1 be such that for every positively oriented basis
{e1, . . . , e2m+1} of TxS2m+1, the basis {x, e1, . . . , e2m+1} is positively oriented
in Cm+1. Choose νx := x as unit normal on S2m+1. Then one can identify h
with J (the standard complex structure on Cm+1 restricted to Q).

Proposition 5.7 There exists a 1-dimensional space of (−m+1
2 , 0)-(resp. of

((−1)m m+1
2 , 0)−) transversal Killing spinors on S2m+1 lying pointwise in Σ0M

(resp. ΣmM).

Proof. It is elementary to show that the space of − 1
2 -Killing spinors on S2m+1

lying pointwise in Σ0M is one-dimensional, as well as the space of (−1)m

2 -ones
in ΣmM . The result is then a straightforward consequence of Proposition 5.3. �

There are no other transversal Killing spinors on the Berger spheres as those that
have already been constructed: this is the statement of the following proposition,
of which proof is left to the reader.

Proposition 5.8 Let m ≥ 1 and assume the existence of a non-zero (α, β)-
transversal Killing spinor ψ on (S2m+1, g) for complex α, β. Then αβ = 0 and
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i) if α = 0 then m = 1, β2 = 1 and ψ is one of the spinors constructed in
Examples 3.9 4.

ii) if α 6= 0 then β = 0, α = ǫm+1
2 for some ǫ ∈ {±1} and ψ is one of the

spinors constructed in Proposition 5.7.

Notes 5.9

1. There exists in particular no non-zero (m+1
2 , 0)-transversal Killing spinor

on (S2m+1, g) with m odd, although the space of (−m+1
2 , 0)-transversal

Killing spinors is 2-dimensional (compare with the case m even). In par-
ticular the complex number α cannot be arbitrarily changed into −α.

2. Let M := Γ\S3 where Γ is a non-trivial finite subgroup of SU2. Remember

that, denoting by SU(2)
Θ

−→ SO3 be the universal covering map of SO3,
the group Γ is conjugated to a subgroup of one of the following subgroups
of SU2 (see e.g. [2, Rem. p.57] or [28, Thm 2.6.7], where certain subgroups
of SU2 are obviously missing): the cyclic group of order k (k ∈ N \ {0})

generated by the element

(
e

2iπ
k 0

0 e−
2iπ
k

)
∈ SU2, D

∗
k := Θ−1(D+

k ) (resp.

T ∗ := Θ−1(T+), O∗ := Θ−1(O+) and I∗ := Θ−1(I+)) where D+
k (resp.

T+, O+ and I+) is the group of orientation-preserving isometries of a reg-
ular k-gon (resp. tetrahedron, octahedron, and icosahedron). Every such
quotient endowed with the metric g induced by the standard metric on
S3 is of course again a Sasakian manifold. Moreover it is spin and car-
ries a spin structure for which the space of 1

2 -Killing spinors on (M, g)
is 2-dimensional resp. a spin structure for which the space of − 1

2 -Killing
spinors on (M, g) is 2-dimensional see [2, Cor. 5.2.5]. Hence there exists
for the latter spin structure a 2-dimensional space of (−1, 0)-transversal
Killing spinors.

6 Transversal Killing spinors on 3-dimensional

flows

6.1 Integrability conditions for transversal Killing spinors

on 3-dimensional flows

In this section we assume that (M, g,F) is a 3-dimensional Riemannian flow.
We fix the orientation on Q induced by those of M and ξ (i.e., a basis {Z,W} of
Q is oriented w.r.t. that orientation if and only if {ξ, Z,W} is oriented as local
basis of TM).

A first consequence of the dimension of M being 3 is the existence of an almost-
Hermitian structure J on Q defined in a local positively-oriented orthonormal
basis {e1, e2} of Q by the matrix

J :=

(
0 −1
1 0

)
.

It is easy to see that J is well-defined, i.e., doesn’t depend on the choice of local
basis of Q (this follows from the fact that SO2 is abelian). Furthermore, J is
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“Kähler” on Q, that is ∇J = 0 on M . Since h is a skew-symmetric tensor, one
may write h as

h = bJ

for some smooth globally defined function b : M −→ R. We recall that the
complex volume form

ω3 = −ξ · e1 · e2

acts as the identity on the spinor bundle ΣM . Hence one may identify the
Clifford action of any 2-form with that of forms of lower degrees. On the one
hand we have

ξ · Z· = J(Z)·

for every Z ∈ Γ(Q) and on the other hand we also have

Z ·W · = g(J(Z),W )ξ · −g(Z,W )IdΣM

for all Z,W ∈ Γ(Q). For example, one can identify the Clifford action of Ω
through that of ξ by Ω · ϕ = bξ · ϕ for all ψ ∈ Γ(ΣM).

In the following proposition and henceforth we denote by db|Q :=
∑2

k=1 ek(b)ek

(orthogonal projection of grad(b) onto Q).

Proposition 6.1 Let (M3, g,F) be a spin Riemannian flow carrying a non-zero
(α, β)-transversal Killing spinor for real α and β. Then the following holds:

i) α = 0 or κ = 0.

ii) dκ♭(e1, e2) = 2(ξ(b) − 4αβ).

iii) For every Z ∈ Γ(Q),

∣∣∣∣∣∣∣∣∣∣∣∣∣

ScalM = 2
(
4β2 − b2 − 4αb− divM (κ)

)

RicM (ξ) = (2b2 − divM (κ))ξ + J
(
2bκ− db|Q

)

RicM (Z) = 2(2β2 − b2 − 2αb)Z + (4αβ − ξ(b))J(Z)
+ g

(
J(2bκ− db|Q), Z

)
ξ + ∇Zκ− g(Z, κ)κ.

Proof. We keep the notation {ej}1≤j≤2 for a local orthonormal basis of Q and
simplify the terms given in Theorem 3.4. On the one hand

2∑

j=1

ej · ∇
M
ej
κ · ψ = dκ♭ · ψ + (divM (κ) − |κ|2)ψ − J(∇ξκ) · ψ + bκ · ψ.

On the other hand using ξydκ♭ = ∇ξκ, one can straighforward prove that

dκ♭ · ψ = J(∇ξκ) · ψ + dκ♭(e1, e2)ξ · ψ.

We deduce that

2∑

j=1

ej · ∇
M
ej
κ · ψ = (divM (κ) − |κ|2)ψ + dκ♭(e1, e2)ξ · ψ + bκ · ψ.
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Furthermore, since h = bJ and J is ∇-parallel, one has ∇Xh = X(b)J for every
X ∈ Γ(TM). In particular, if Z ∈ Γ(Q),

∣∣∣∣∣∣

∑2
k=1 ξ · ek · ∇Zh(ek) · ψ = −2Z(b)ψ

∑2
k=1 ξ · ek · ∇ek

h(Z) · ψ = g(J(db|Q), Z)ξ · ψ − Z(b)ψ.

Moreover
∑2

j,k=1 ej · ek · ∇ej
h(ek) · ψ = −2J(db|Q) · ψ and

∑2
j=1 ∇ej

h(ej) =
J(db|Q). In particular

2∑

j,k=1

ej · ek · ∇ek
h(ej) · ψ = 0.

Last we compute
∑2

j=1 ej ·∇ξh(ej) ·ψ = 2ξ(b)ξ ·ψ. Now we begin with the proof
of the proposition. From Theorem 3.4 we have

ScalMψ = 2(4β2 − b2 − 4αb− divM (κ))ψ

+{4(ξ(b)− 4αβ) − 2dκ♭(e1, e2)}ξ · ψ + 4ακ · ψ.

Taking the Hermitian scalar product of this last identity with ψ and identifying
the real parts we obtain ScalM = 2{4β2 − b2 − 4αb − divM (κ)} and for what
remains we deduce that 2(ξ(b)−4αβ)−dκ♭(e1, e2) = 0 and ακ = 0. In particular
either α = 0 or κ = 0. Coming back to the equations involving RicM , we have
on the one hand

RicM (ξ) · ψ = (2b2 − divM (κ))ξ · ψ + 2bJ(κ) · ψ − J(db|Q) · ψ,

from which we deduce RicM (ξ) = (2b2 − divM (κ))ξ + J
(
2bκ− db|Q

)
. On the

other hand, it also follows from Theorem 3.4 that, for every Z ∈ Γ(Q),

RicM (Z) · ψ = 2(2β2 − b2 − 2αb)Z · ψ + (4αβ − ξ(b))J(Z) · ψ

+{2bg(J(κ), Z)− g(J(db|Q), Z)}ξ · ψ + ∇Zκ · ψ

−g(Z, κ)κ · ψ,

from which we deduce that

RicM (Z) = 2(2β2 − b2 − 2αb)Z + (4αβ − ξ(b))J(Z)

+g
(
J(2bκ− db|Q), Z

)
ξ + ∇Zκ− g(Z, κ)κ.

Hence the proof of the proposition is achieved. �

It follows from Proposition 6.1 that either α = 0 or κ = 0. Let us examine the
last condition.

Proposition 6.2 Let (M3, g,F) be a spin Riemannian flow carrying a non-zero
(α, β)-transversal Killing spinor for real α and β. Assume that κ = 0.

i) For every Z ∈ Γ(Q) one has
∣∣∣∣∣∣

ScalM = 2
(
4β2 − b2 − 4αb

)

RicM (ξ) = 2b2ξ − J
(
db|Q

)

RicM (Z) = 2(2β2 − b2 − 2αb)Z − g
(
J(db|Q), Z

)
ξ.
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ii) One has ∣∣∣∣
∇ξdb|Q = 0

divM (J(db|Q)) = −8αβ(3b+ 2α).

iii) If furthermore M is compact, then αβ = 0 and ξ(b) = 0.

Proof. If κ = 0 then the equations of Proposition 6.1 obviously simplify to the
equations in i). It follows from those equations that M is η-Einstein if and only
if b is constant. Moreover, one may write the Ricci tensor of M in the following
way:

RicM = 2(2β2 − b2 − 2αb)IdTM + 4(b2 + αb− β2)ξ♭ ⊗ ξ

−J(db|Q)♭ ⊗ ξ − ξ♭ ⊗ J(db|Q).

Since the divergence of ξ vanishes by the fact that h is skew-symmetric. Using
the identity divM (X♭⊗Y ) = divM (X)Y −∇M

X Y for X,Y ∈ Γ(TM) one obtains,

on the one hand, divM (ξ♭ ⊗ ξ) = −κ = 0. Similarly, one has

∣∣∣∣∣∣

divM (ξ♭ ⊗ J(db|Q)) = −∇ξJ(db|Q) + bdb|Q

divM (J(db|Q)♭ ⊗ ξ) = divM (J(db|Q))ξ + bdb|Q .

Therefore we can compute the divergence of RicM and obtain

divM (RicM ) = 2(b+ 2α)db|Q + ∇ξJ(db|Q) − (4bξ(b) + divM (J(db|Q)))ξ.

On the other hand we have dScalM = −4(b + 2α)db|Q − 4(b + 2α)ξ(b)ξ. The

identity divM (RicM ) = − 1
2dScalM implies together with the fact that J is

parallel w.r.t. the connection ∇,

2(b+2α)db|Q +J(∇ξdb|Q)−(4bξ(b)+divM (J(db|Q)))ξ = 2(b+2α)(db|Q +ξ(b))ξ,

that is, ∣∣∣∣
∇ξdb|Q = 0

2(3b+ 2α)ξ(b) + divM (J(db|Q)) = 0.
(15)

Now remember that from Proposition 6.1 one has ξ(b) = 4αβ, since the mean
curvature vanishes. Hence the second equation in (15) may be rewritten under
the form divM (J(db|Q)) = −8αβ(3b+ 2α). For the rest of the proof assume M
to be compact. If αβ did not vanish, then one would get from Stokes Theorem
that

3

∫

M

bvg + 2αVol(M) = 0. (16)

On the other hand, still following from Stokes Theorem, one would have

−8αβ

∫

M

b(3b+ 2α)vg =

∫

M

bdivM (J(db|Q))vg =

∫

M

g
(
db, J(db|Q)

)
vg = 0,

which would imply

3

∫

M

b2vg + 2α

∫

M

bvg = 0. (17)
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Combining (17) with (16) one would have in particular

∫

M

b2vg = −
2α

3

∫

M

bvg =
4α2

9
Vol(M) =

(
∫

M
bvg)

2

Vol(M)
,

i.e., 1
Vol(M)

∫
M
b2vg =

(
1

Vol(M)

∫
M
bvg

)2

. But this is the equality-case in Cauchy-

Schwarz inequality, so that b should be constant, which in turn would imply
4αβ = ξ(b) = 0 contradiction. Therefore, if M is compact, then αβ = 0 in
particular ξ(b) = 0. �

6.2 Compact η-Einstein 3-dimensional minimal flows with

transversal Killing spinors

In this section we describe all compact η-Einstein 3-dimensional minimal flows
with transversal Killing spinors for real constants α and β.

Corollary 6.3 Let (M3, g,F) be a Riemannian flow carrying a non-zero (α, β)-
transversal Killing spinor for real α and β. Assume that κ = 0. Then the fol-
lowing propositions are equivalent:

i) The Riemannian flow (M3, g, ξ) is η-Einstein.

ii) The function b (which is defined by h = bJ) is constant.

iii) The manifold M is either a local Riemannian product or a Sasakian man-
ifold up to homothety on the metric.

Proof. The equivalence of i) with ii) is a direct consequence of Proposition 6.2
i). As for the equivalence of ii) with iii), one should consider the two cases.
The first case is where b = 0 which gives the vanishing of the O’Neill tensor and
with the assumption κ = 0 we deduce that M is locally a Riemannian product.
The second case is where b 6= 0 which implies that the manifold (M, b2g, 1

b ξ) is
Sasakian. �

Proposition 6.4 Let (M3, g,F) be a spin compact Riemannian flow carrying
a non-zero (α, β)-transversal Killing spinor. Assume that the flow is minimal,
η-Einstein and that α, β ∈ R. Then αβ = 0 and up to homotheties and D-
homothetic deformations of the metric g the manifold M is isometric to one of
the following:

i) If β 6= 0: S1 × S2, S3, Zk \ S3 for some k.

ii) If β = 0: Γ\S3 for some finite subgroup Γ ⊂ SU2 (if α < 0), Γ\ ˜PSL2(R) for

some finite cocompact subgroup of Isom+( ˜PSL2(R)) (if α > 0), a Heisen-
berg manifold Mr (if α = 0) or a Bieberbach manifold Γ \ R3.

Proof. We already know from Proposition 6.2 and Corollary 6.3 that αβ = 0
and that b should be constant. Hence for b = 0, the manifold M is locally a
product of two Riemannian manifolds, whereas for b 6= 0 it is a Sasakian mani-
fold up to homothety on the metric. We consider the two cases separately:
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• Case where b = 0 : It follows from Proposition 4.1 that the universal cover
of M is isometric to R×N where N is a simply-connected complete Riemannian
surface carrying a β-Killing spinor. In dimension 2 the only such surfaces are -
up to homothety on the metric - R2 (for β = 0) and S2 (for β 6= 0), so that M̃
is isometric to R3 or to R × S2 (remember that β is assumed to be real).

• In the subcase N = S2 we have seen in Notes 4.2 that the fundamen-
tal group of M should be embedded in the product Isom+(R, can) ×
Isom+(N, gN) where Isom+ denotes the group of orientation-preserving
isometries of the corresponding Riemannian manifold. Since the only orien-
tation-preserving isometry subgroup of SO3 = Isom+(S2) acting freely on
S2 is the trivial one, we deduce that π1(M) is a (discrete) subgroup of
R = Isom+(R, can), so that M is either isometric to R × S2 (if π1(M) =
{Id}) - which is excluded because of M being assumed to be compact - or
to S1 × S2 (if π1(M) ∼= Z), and in the last situation S1 carries the trivial
spin structure.

• In the subcase N = R2, i.e. β = 0, the manifold M is Ricci flat hence flat,
therefore it is isometric to the quotient Γ\R3 where Γ ⊂ Isom+(R3, can) =
R3 ⋊ SO3 is a discrete subgroup of orientation-preserving isometries ac-
ting freely on R3. In other words, M is one of the Bieberbach manifolds
discussed in Example 4.2.

• Case where b 6= 0: Up to changing g into b2g we may assume that b =
1 so that M is Sasakian. In that case the assertion follows straightforward
from Belgun’s uniformization theorem [8] stating that M should be a compact

quotient of S3, Nil3 or ˜PSL2(R). This achieves the proof. �
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