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ABSTRACT
With the rise of XML as a standard for representing busi-
ness data, XML data warehouses appear as suitable solu-
tions for Web-based decision-support applications. In this
context, it is necessary to allow OLAP analyses over XML
data cubes (XOLAP). Thus, XQuery extensions are needed.
To help define a formal framework and allow much-needed
performance optimizations on analytical queries expressed
in XQuery, having an algebra at one’s disposal is desirable.
However, XOLAP approaches and algebras from the liter-
ature still largely rely on the relational model and/or only
feature a small number of OLAP operators. In opposition,
we propose in this paper to express a broad set of OLAP
operators with the TAX XML algebra.

Categories and Subject Descriptors
H.2 [Database Management]: Languages

General Terms
XML-OLAP algebras

1. INTRODUCTION
Data warehouses and OLAP (On-Line Analytical Process-

ing) are nowadays technologically mature. However, their
complexity makes them unattractive to many potential users,
thus DSS (Decision Support System) vendors start devel-
oping simple, user-friendly Web-based interfaces. Further-
more, many decision-support applications (e.g., competitive
monitoring) require data that are external to the institution
exploiting them. In this context, the Web is a tremendous
data source and a new trend toward on-line data warehous-
ing is currently emerging, including approaches such as XML
warehousing [3, 15, 18].

The XML language is indeed becoming a standard for rep-
resenting business data [2]. It is also particularly adapted for
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modeling complex data from heterogeneous sources, and par-
ticularly the Web. Data we term complex are not only nu-
merical or symbolic, but may be represented in various for-
mats (databases, texts, images, sounds, videos...); diversely
structured (relational databases, XML documents...); origi-
nating from several different sources; described through sev-
eral channels or points of view (a video and a text that de-
scribe the same meteorological phenomenon, data expressed
in different scales or languages...); changing in terms of def-
inition or value (temporal databases, periodical surveys...)
[5]. Such data are much easier to logically model and store
with XML than with relational models.

Many studies aim at performing OLAP analyses over XML
data (XOLAP [16]). A first family mainly rely on the power
of relational implementations of OLAP [4, 9, 10, 14]. How-
ever, in these approaches, no or very few XML-specific OLAP
operators are defined. Most recent studies directly relate to
XOLAP [13, 16, 17]. However, each approach focuses on
defining one cube operator only. In this paper, we propose
to express a broad set of OLAP operators with an existing
XML algebra (namely, TAX [8]), so that OLAP analyses
can be applied onto native-XML data. On the long run,
we are actually aiming at three objectives: (1) contribute
to define a formal framework that does not currently exist
in the XOLAP context; (2) support the effort for extend-
ing the XQuery language to allow OLAP queries, especially
with XML-specific operators; (3) allow query optimization
for OLAP XQueries. Native-XML DBMSs (Database Man-
agement Systems), though in constant progress, are indeed
limited in term of performance and would greatly benefit
from automatic query optimization, especially for costly an-
alytical queries.

In this paper, we particularly focus on the first objective,
i.e., defining XOLAP models. Computational issues shall be
addressed later, but they are out of the scope of this paper,
which is organized as follows. First, we present the context
of this work and our motivation (Section 2). Second, we
present the data model supporting our proposal (Section 3).
Then, we express OLAP operators in TAX and present three
detailed examples of XOLAP operators (Section 4). Finally,
we compare our approach to X∧3’s [17], which is in spirit
the most closely related work to ours in the literature (Sec-
tion 5). We conclude this paper and provide future research
directions (Section 6).



Figure 1: Sample TAX data tree

2. CONTEXT AND MOTIVATION
Rather than designing an XOLAP algebra from scratch,

we chose to express a selection of “basic” OLAP operators
with an existing XML algebra. Many such algebras exist
in the literature [6, 7, 11]. Among them, we selected TAX
(Tree Algebra for XML [8]) for its richness. TAX indeed
includes, under its logical and physical forms, more than
twenty operators, which allows us many combinations for
expressing XOLAP operators. Furthermore, TAX’s expres-
sivity is widely acknowledged. This algebra can be expressed
with most XML query languages, and especially XQuery,
which we particularly target because of its standard sta-
tus. Finally, TAX and its derived algebra TLC [12] pro-
vide a query optimization framework that we can exploit in
the future, since performance is one of our main concerns
when desining decision-support applications that are inte-
grally based on XML and XQuery. Unfortunately, due the
space constraints, we cannot present the TAX elements that
are necessary to understand our XOLAP operators in this
paper. The interested reader may refer to the original paper
describing TAX [8] for full specifications.

In order to propose a broad range of XOLAP operators, we
selected the most common OLAP operators to express them
in TAX. When some of them had conflicting definitions, we
selected the one that had the broadest acceptation. Before
presenting them, we define in Section 3 the data model they
are based on, which incorporates multidimensional concepts
within the TAX data model. The OLAP operators we se-
lected to express in TAX are structural operators: rotate,
switch, push and pull (Section 4.1); set operators: slice and
dice (Section 4.2); and granularity-related operators: cube,
roll-up and drill-down (Section 4.3). To express these op-
erators, we adapted their formal definition in the classical
OLAP context to the XML context by using the possibilities
offered by TAX. Each XOLAP operator is actually repre-
sented as a combination of TAX operators. In this process,
we took care of conserving the formal definitions and proper-
ties of OLAP operators, and used the TAX operators exactly
as specified by TAX authors.

We define each XOLAP operator formally and, for one of
each type (namely, the rotate structural operator, the slice
set operator, and the roll-up granularity-related operator),
illustrate how it operates on the three levels of the data
model: XOLAP cube (conceptual), XOLAP TAX tree (logi-
cal) and XML multidimensional document (physical). These
multiple representations are aimed at empirically checking
whether a given operator proceeds as expected. In Section 4,
we use the TAX notations introduced in [8].

3. DATA MODEL

A fact modeled in XML (or XML fact) is, classically, com-
posed of dimension and measure elements. We term a set
of XML facts an XML multidimensional document. Since
TAX trees can model any XML document, XML multidi-
mensional documents can be represented in TAX, in what
we call multidimensional TAX trees, or XOLAP TAX trees.
XOLAP TAX trees are thus a subset of TAX trees. An XO-
LAP TAX tree embeds a collection of fact elements, each
described by dimension members and measure values. For
instance, Figure 1 features an XOLAP TAX tree that con-
tains sale XML facts described by three dimensions: city
where the sale took place, sold product, and sale year. Selling
amount is the measure. Although logically modeled in XML,
such facts are still conceptually multidimensional. Thus, we
can represent an XML fact by a cube cell. We name such
a cube an XOLAP cube, and its cells XOLAP cells. Fig-
ure 2(a) shows an example of XOLAP cube. The (physical)
XML document corresponding to one of its XOLAP cells is
also presented in Figure 2(b).

(a) XOLAP
cube

(b) XML fact

Figure 2: Sample XOLAP cube and XML fact

In classical OLAP, the concept of order of dimensions is
very important. The switch operator’s purpose is indeed to
manipulate it. Dimensional order is easy to achieve in XML
documents and tree representations. In our data model,
we thus define a dimension reading direction for XOLAP
TAX trees and XML facts: from left to right (in breadth
first) and from top to bottom (in depth first), respectively.
In addition, in both cases, fact measures must always be
placed last in a subtree, with respect to these reading orders
(e.g., amount in Figures 1 and 2). This ordering has a very
important role in the definition of some XOLAP operators,
such as pull and push (Section 4.1).

Finally, our data model takes dimension hierarchies into
account, to allow snowflake and constellation-like schemas.
Each dimension’s hierarchy is represented in a separate TAX
tree. An example of such metadata TAX tree is provided



in Figure 3. It refines the sample XOLAP TAX tree from
Figure 1’s geographical dimension by specifying that cities
belong to departments (which are characterized in France
by a department number). Note that, though the XOLAP
TAX tree from Figure 1 represents only the finest granularity
level (city), each city name is a reference to the geographical
hierarchy TAX tree. We denote the set constituted of all
dimension hierarchy trees H.

Figure 3: Sample hierarchical dimension specifica-

tion

4. XOLAP OPERATORS IN TAX

4.1 Structural operators

4.1.1 Rotate
Rotate permutes the dimensions of a cube and simulates

its rotation around one of its axes, so as to present differ-
ent faces of the cube. In other words, rotating helps se-
lect cube faces rather than measures. In an XOLAP TAX
tree, we must exchange the positions of rotated dimensions
for every subtree. Hence, the rotate operator may be ex-
pressed in TAX by a selection. Formally, its expression
is: Rotate(C) = σP,SL(C), where the rotated dimension is
specified in pattern tree P and dimension members and fact
measures are specified in selection list SL.

Let us now take the example of rotating the XOLAP cube
from Figure 2(a) around the product dimension. Figure 4
represents the rotated XOLAP cube (upper left), XOLAP
TAX tree (bottom) and XML multidimensional document
(upper right). In the selection, dimension order in the input
pattern tree indicates the order of the edges in the output
tree. Selection list SL must contain the sale node to retain
all its children in output.

4.1.2 Switch
Switch exchanges the positions of two or several mem-

bers of a given dimension. Like a rotation, this operation is
mainly characterized by a visual effect and preserves mea-
sure values when changing the corresponding facts’ posi-
tions. In an XOLAP TAX tree, we must reorder all subtrees.
Hence, the switch operator may simply be expressed in TAX
by using the reordering operator: Switch(C) = ̺P,o,RL(C),
where order TVF o and reorder list RL specify the new sub-
tree order.

4.1.3 Push
Push associates the members of a dimension to measures

of the cube, i.e., it transforms these members into cell con-
tents. In TAX, push restructures the witness tree. For ex-
ample, to transform the city dimension into a measure, we

associate the corresponding edge to the measure. Hence,
the edge expressing this measure becomes composed of two
subedges: city and amount. The push operator may thus be
expressed in TAX with the copy-and-paste operator:
Push(C) = κP,CL,US(C), where copy list CL and update
specification US specify how a dimension element is copied
into the target fact element.

4.1.4 Pull
Although pull is defined as push’s reciprocal operator (trans-

forming a measure into a dimension), it would be a mistake
to express it in TAX push’s reverse way. Moreover, in an
XOLAP TAX tree, a measure is always represented by the
last edge of the fact subtree (from left to right). Then, the
pull operator just needs to move the measure before other
dimensions. In TAX, this may be achieved with the pro-
jection operator, the new position being given by projection
list PL and pattern tree P : Pull(C) = πP,PL(C).

4.2 Set operators

4.2.1 Slice
A data cube may be seen as a set of slices arranged hor-

izontally or vertically. The slice operator dissociates one or
several of such slices with respect to one or several attributes
from a given dimension. In TAX, we need to select the trees
corresponding to these slices. As rotate, the slice operator
may be expressed in TAX by the selection operator, but it
is also combined to product to attach fact subtrees output
by selection under the same root. Moreover, in the rotate
operator, the selection operator’s pattern tree P indicates
dimension order in the output, whereas in the slice opera-
tor, it determines the slicing dimension values. Formally, the
expression of the slice operator is: Slice(C) = ×(σP,SL(C)).

As an example, let us extract, from an initial XOLAP
tree, the subtrees corresponding to slices of the correspond-
ing XOLAP cube. Figure 5 shows how the XOLAP cube
from Figure 2(a) is sliced on the Keyboard instance of the
product dimension. It represents the sliced XOLAP cube
(upper left), XOLAP TAX tree (bottom) and XML multidi-
mensional document (upper right). Selection pattern tree P

determines the slicing dimension member value (Keyboard,
here). Selection list SL must contain the sale node to retain
all its children in output. Finally, the resulting sale sub-
trees must be attached under a common root (sales) with
the product operator.

4.2.2 Dice
The dice operator extracts a subcube from a data cube

with respect to predicates defined on its dimensions. In
other words, dicing extracts measures from a cube for a
given number of members, which must be identical in all
dimensions. In TAX, we may express the dice operator by
selecting the corresponding subtrees from the XOLAP TAX
tree with a simple pattern tree P and attaching them to the
same root with a product: Dice(C) = ×(σP,SL(C)). Note
that this is again different from the slice operator, in which
P specifies the slicing member element(s).



Figure 4: Rotate result example

Figure 5: Slice result example

4.3 Granularity-related operators

4.3.1 Roll-up
Roll-up represents a given data cube at a higher (more

general) level of granularity, with respect to a dimension hi-
erarchy (e.g., moving from the city granularity to the depart-
ment granularity along the geographical dimension from Fig-
ure 3). During this transition, measures must be aggregated
with respect to a grouping operation. In a TAX OLAP tree,
this translates as replacing all subtrees with the subtrees
resulting from the roll-up operation. The roll-up operator
may be expressed in TAX by a combination of the selection,
grouping, join, aggregation, node deletion and node inser-
tion operators. Formally, its expression is: Roll up(C,H) =
ιPι,IS(δPδ,DS(APA,g,US(1P1,SL1

(γPγ ,g,o(σPσ ,SLσ (C)),H)))),
where P1 specifies the rolled-up dimension and the selected
granularity level, and H ∈ H this dimension’s hierarchy.

Its execution is illustrated by the following example: per-
form a roll-up on the department dimension (department

number 69, here) of the XOLAP TAX tree from Figure 1.
Thus, grouping occurs on (product, year). We use the sum
aggregation function on amount. Figure 6 represents the
rolled-up XOLAP cube (upper left), XOLAP TAX tree (bot-
tom) and XML multidimensional document (upper right).
The corresponding sequence of TAX operator combination
is detailed thereafter.

(1) Selection: We must first separate subtrees from the in-
put to prepare them for the next step. (2) Grouping: Then,
we group the different subtrees by product and year. Group-
ing is achieved with respect to all possible combinations of
modalities in both dimensions. (3) Join: For each tree re-
sulting from grouping, we join subtrees corresponding to the
rolled-up dimension (i.e., city, here) and to the correspond-
ing dimension hierachical tree H (to retrieve department 69,
here). (4) Aggregation: Now, for each tree resulting from
the previous step, we aggregate all measures (i.e., amount
here) in one node by using the specified aggregation func-
tion (sum, here). (5) Tree updates: Finally, we must prune



from the output tree the measures at the previous granular-
ity level, which are retained (node deletion) and add a new
node describing the resulting granularity level (department
in our case) with node insertion.

4.3.2 Drill-down
Drill-down is roll-up’s reciprocal operator. It helps refine

a cube dimension at a lower aggregation level, e.g., mov-
ing from the department granularity to the city granularity
along the geographical dimension from Figure 3. First, the
drilled-down dimension must be selected, then it must be
joined to its hierarchy specification H ∈ H and the finest-
granularity cube C0 (to retrieve non-aggregate measure val-
ues). Then, we must use the projection operator to mask the
remaining coarser level member. Finally, measures must be
reaggregated to the correct hierarchy level and all subtrees
are attached to a single root (product). Formally, the drill-
down operator is expressed as follows: Drill down(C, H) =
×(APA,g,US(πPπ,PL(1P1,SL1

(σPσ ,SLσ (C), H,C0)))).

4.3.3 Cube
Cube is an aggregation operator that generalizes group-

ing, roll-up and join on a data cube to produce a more
general (aggregate) cube. In TAX, we first must complete
a roll-up for each cube dimension (Section 4.3.1). Then,
resulting subtrees must be grouped with respect to every
possible combination of dimensions. Finally, these subtrees
are joined into one tree, with all measures being aggre-
gated. The grouping, join and aggregation TAX operatiors
are combined as follows: Cube(C) = APA,ag,US(1P1,SL1

(APA,ag,US(γPγ ,g,o(Roll up(C,H))))).

5. COMPARISON TO X∧3
Let us eventually discuss the differences between X∧3 [17]

and our own XOLAP approach, which have been developed
in parallel without knowledge of the other effort. First, we
use TAX to support our proposal by expressing each XO-
LAP operator with one TAX operator or more. On the other
hand, Wiwatwattana et al. exploit the principle of TAX’s
grouping operator, but X∧3 stands as is and is not based
on TAX operators. Thus, it addresses the issues of summa-
rizability and heterogeneity in XML tree structures in an
ad-hoc fashion, while our approach is more general.

Another difference between X∧3 and our approach lies at
data model level. While we exploit TAX’s pattern and wit-
ness trees, Wiwatwattana et al. have based X∧3 on relaxed
tree patterns, which were initially introduced for approxi-
mate XML query matching [1]. Hence, X∧3 outputs a lattice
whose nodes represent a cuboid, while our result trees are
simpler. We indeed do not explicitely take the specificities
of the XML model into account and rather trust TAX to do
so instead.

Finally, to take on an algorithmic metaphor, X∧3’s au-
thors have adopted a depth-first approach by fully develop-
ping one operator only (which is of little use alone), while
we have adopted a breadth-first approach by proposing a
wider range of operators (which only apply onto quite “reg-
ular” XML data without ragged hierarchies nor missing val-
ues, though). Both approaches should aim at completion,
in breadth and depth, respectively, to achieve a full XOLAP
environment. We actually think they are quite complemen-
tary and should be combined, since our XOLAP approach
provides modeling/logical functionalities, while X∧3 bestows

computational support on native XML data.

6. CONCLUSION AND PERSPECTIVES
In this paper, we have completed a first step toward an

XOLAP framework, by initiating a previously inexistant for-
mal background (Section 1, objective 1). To achieve this
goal, we have demonstrated how the TAX XML algebra
could support OLAP operators, by expressing in TAX the
main usual OLAP operators (cube, rotate, switch, roll-up,
drill-down, slice, dice, pull and push). By doing so, we signif-
icantly expanded the number of available XOLAP operators,
since up to now, related papers only proposed at most three
operators each (always including the cube operator).

The perspectives opened by this work are numerous. The
main issue we are currently working on is to adapt the classi-
cal OLAP operators we expressed in TAX to actual specifici-
ties of XML. More precisely, we are addressing the four fol-
lowing issues, essentially when performing roll-up and drill-
down operations: (1) ragged hierarchies [2] in dimensions,
i.e., multivalued and multi-granularity dimension members;
(2) facts that are defined at heterogeneous levels of granu-
larity (e.g., sales might be detailed at the city level in some
countries, while only available at the region level in others);
(3) missing (unavailable) dimension information in facts; (4)
facts with changing dimensional order (e.g., time and loca-
tion in one fact, location and time in the next). Our final
objective here is to support the XQuery extension effort for
decision-support applications (Section 1, objective 2).

Though a non-trivial task that we have postponed for
now, we also plan complexity analyses to provide a sounder
comparison between the XOLAP operators from the liter-
ature and our own proposal. Furthermore, to allow exper-
imentally validating our set of XOLAP operators, we have
also started implementing it into a software prototype that
helps generate the corresponding XQuery code. This sim-
ple Web-based querying interface is currently coupled to the
TIMBER XML-native DBMS, but it is actually indepen-
dent and could operate onto any other DBMS supporting
XQuery. Our prototype currently features the rotate, slice
and roll-up operators.

This software plaform shall also allow us to initiate a cy-
cle of experimental cost evaluations and optimizations for
each XOLAP operator, to find the most efficient expression
of each XOLAP operator in TAX (there are, of course, of-
ten several solutions for expressing a given XOLAP operator
in TAX). In our first experiments, the efficiency of XQuery
indeed proved limited when processing complex analytical
queries. Hence, we also plan on the long run to exploit our
OLAP TAX expression as a basis for automatically opti-
mizing XOLAP queries expressed with XQuery (Section 1,
objective 3).
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