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Abstract

To estimate geometrically regular images in the white noiedel and obtain an adap-
tive near asymptotic minimaxity result, we consider a maa#éction based bandlet
estimator. This bandlet estimator combines the best baist®n behaviour of the
model selection and the approximation properties of thedleamictionary. We de-
rive its near asymptotic minimaxity for geometrically régimages as an example of
model selection with general dictionary of orthogonal lsashis paper is thus also a
self contained tutorial on model selection with orthogdreses dictionary.
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1. Introduction

A model selection based bandlet estimator has been inteaduge Peyré et al. [20]
to reduce white noise added to images having a geometrigalaigty. This estima-
tor projects the observations on orthogonal bandlet veaelected in a dictionary of
orthonormal bases. This paper shows that the risk of thisvakir is nearly asymp-
totically minimax for geometrically regular images. It is@a tutorial on estimation
with general dictionary of orthogonal bases, through madtdction. It explains with
details how to build a thresholding estimator in an adaptiehosen “best” basis and
analyzes its performance with the model selection appro&Blarron et al.|[2].

Sectior 2 describes the statistical setting of the whitsanaiodel, and introduces
the model ofC? geometrically regular images. Images in this class, oaifynpro-
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posed by Korostelev and Tsybakaov[14], are, rougfly, (Holder regularitya) out-
side a set o€ curves in[0, 1]2. Korostelev and Tsybakov [14] prove that the minimax
quadratic risk over this class, for a Gaussian white nois@oénceo?, has an asymp-
totic decay of the order a529/(?+1) They show that the risk of any possible estimator
cannot decay faster than this rate uniformly for all funetmf this class and exhibit
an estimator that achieves this rate. Their estimatorgaie the knowledge of the
regularity exponentr and on an explicit detection of the contours, and is not stabl
relatively to any image blurring. Later, Donoho [10] overoes the detection issue by
replacing it with an well-posed optimization problem. Neteless, both use a model
of images with sharp edges which limits their applicatianse most image edges are
not strict discontinuities. They are blurred because obwardiffraction effects which
regularize discontinuities by unknown factors.

The model selection based bandlet estimator, which canbssdescribed as a
thresholding estimator in a best bandlet basis, does netthévrestriction. It does not
rely on the detection of the precise localization of an edgeonly of a looser local
direction of regularity. Furthermore, these directiongerjularity are not estimated
directly but indirectly through a best orthogonal basisrglealgorithm which does
not require to know the regularity parameter Sectior 8 gives a tutorial introduction
of this type of estimators for arbitrary dictionary. Thisngeic class of thresholding
estimators in a best basis selected in a dictionary of otthoal bases has been already
studied by Donoho and Johnstone! [11] and fit into the framkwbBarron et al.|[2],
[3] and [18] This (self contained) section recalls the framek of these estimators and
their theoretical performance. For the sake of completersesimplified proof of the
main model selection result is given in Appendix.

Sectior[ 4 returns to the specific setting of image processndoapplies the results
of the previous section to geometric image estimation. Tuoéoe of the representation
(the choice of the dictionary of orthogonal bases) becomesial and, after a short
description of the bandlet bases, their use is justified. Jdq@er is concluded with
Theoreni B which states the adaptive near asymptotic mintynaithe selection model
based bandlet estimator for geometrically regular images.

2. Image estimation

2.1. White noise model and acquisition
During the digital acquisition process, a camera measurasalog imagd with a

filtering and sampling process, which introduces an adslitiite noise. In this white
noise model, the process that is observed can be written

dXx = f(x)dx+ adW,

whereW is the Wiener process aradis a known noise level parameter. This equation
means that one is able to observe a Gaussian Xgiddexed by functiong € L? of
meanE (Xg) = (f,g) and covarianc& [XyXy| = (9,9).

This model allows to consider asymptotics owepf a discrete camera measure-
ments process. Indeed, the measurement of a camera\witkels can be modelled



as the measure oy, over a familyg, of N impulse responses of the photo-sensors.
Those measurements,

Xgn = (f, ) + oWy, for0<n< N

whereW is a Gaussian field of zero mean and covarida§@,Wy | = (9,9'), define
a “projection” of our observationX! on the spacé&/y, spanned by thes, that we
denoteR, X. The white noise model allows to modify the resolution of taenera
depending on the noise level. To simplify explanationshia following we suppose
that{¢h}o<n<n is an orthogonal basis, with no loss of generality, and thas t

Ry X = ﬁox%%'

2.2. Minimax risk and geometrically regular images

We study the maximum risk of estimators for imades a given class with re-
specttoo. Model classes are often derived from classical regulapacesC? spaces,
Besov spaces,...). This does not take into account theeexistof geometrically regu-
lar structures such as edges. This paper uses a geometge madel appropriate for
edges, but not for textures, where images are considerad@snpse regular functions
with discontinuities along regular curves[ 1]%. This geometrical image model has
been proposed by Korostelev and Tsybakov [14] in their sahviork on image es-
timation. It is used as a benchmark to estimate or approgiima&ges having some
kind of geometric regularity (Donoho [10], Shukla et al.[[21). An extension of this
model that incorporates a blurring kertehas been proposed by Le Pennec and Mal-
lat [16] to model the various diffraction effects. The remg class of images studied
in this paper is the set @“ geometrically regular images specified by the following
definition.

Definition 1. A function fe L?([0,1]?) is CY geometrically regular ovefo, 1)? if
o f="forf="fxhwithfeCIA)forA=[0,1?—{%}1<y<c,
o the blurring kernel hiC%, compactly supported i-s, g2 and||h||ca < s (2+9),

e the edge curve®), are C? and do not intersect tangentiallydf > 1.

2.3. Edge based estimation

Korostelev and Tsybakov [14] have built an estimator thasigmptotically mini-
max for geometrically regular functiorfs as long as there is no blurring and hence that
h= 4. With a detection procedure, they partition the image inaegwhere the image
is either regular or which include a “boundary fragment’regponding to the subpart
of a single discontinuity curve. In each region, they uskegiain estimator tailored to
this “boundary fragments” or a classical kernel estimatoitifie regular regions. This
yields a global estimat€ of the imagef. If the f is C% outside the boundaries and if
the parametrization of the curve is al88 then there exists a constahisuch that

Yo , E[|f—F|3 <Coa



This rate of convergence achieves the asymptotic minimaxoa uniformlyC? func-
tions and thus the one f@ geometrically regular functions that includes this class.
This means that sharp edges do not alter the rate of asymptistimax risk. However,
this estimator is not adaptive relatively to the Holder exgata that must be known
in advance. Furthermore, it uses an edge detection proeditatfails when the image
is blurred or when the discontinuity jumps are not suffidietarge.

Donoho [10] and Shukla et al. [21] reuse the ideas of “bounétagment” under
the name “horizon model” to construct a piecewise polyndayigproximation of im-
ages. They derive efficient estimators optimizeddoe [1,2]. These estimators use
a recursive partition of the image domain in dyadic squagash square being split
in two parts by an edge curve that is a straight segment. Baiiimze the recursive
partition and the choice of the straight edge segment in dgallic square by mini-
mizing a global function. This process leads to an asymgatyi minimax estimator
up to a logarithmic factor which is adaptive relatively t@ tHolder exponent as long
asa € [1,2].

Korostelev and Tsybakov [14] as well as Donohd [10] and [2ly pbn the sharp-
ness of image edges in their estimators. In both cases, tineagsr is chosen amongst
a family of images that are discontinuous across paraneetgdges, and these estima-
tors are therefore not appropriate when the image edgeduared We now consider
estimators that do not have this restriction: they projaetabservation on adaptive
subspaces in which blurred as well as sharp edges are wediseagied. They rely on
two ingredients: the existence of bases in which geométrizages can be efficiently
approximated and the existence of a mechanism to selenttfr® observation, a good
basis and a good subset of coefficients onto which it suffic@sdject the observation
to obtain a good estimator. We focus first on the second issue.

3. Projection Estimator and Model Selection

The projection estimators we study are decomposed in twisst€irst a linear
projection reduces the dimensionality of the problem byguring the signal in a finite
dimensional space. This first projection s typically penfied by the digital acquisition
device. Then a non-linear projection estimator refinesgrogector by reprojecting the
resulting finite dimensional observation in a space thah@sen depending upon this
observation. This non-linear projection is obtained with@@sholding in a best basis
selected from a dictionary of orthonormal bases. Best ksgisrithms for noise re-
moval have been introduced by Coifman and WickerhauseA8fecalled by Candes
[4], their risks have already been studied by Donoho andstone[11] and are a spe-
cial case of the general framework of model selection pregdsy Birgé and Massart
[3]. Note that Kolaczyk and Nowalk [[13] have studied a simpavblem in a slightly
different setting. We recall in this section the framewofknmdel selection and state a
selection model theorem (Theoréin 1) that is the main staidbol to prove the per-
formance on the model selection based bandlet estimatas. SEation is intended as
a self contained tutorial presentation of these best batimators and their resulting
risk upper bounds and contains no new results. Neverthelsasple (novel) proof of
the (simplified) main result is given in Appendix.



3.1. Approximation spaceyand further projection

The first step of our estimators is a projection in a finite disien spacé/y
spanned by an orthonormal fami{ys }o<n<n. The choice of the dimensioN and
of the spac#&/y depends on the noise levelbut should not depend on the functién
to be estimated. Assume for now thé is fixed and thus that we obseri¥g X. This
observation can be decomposed iRQ f + oWy, whereW,, is a finite dimensional
white noise orVy.

Our final estimator is a reprojection of this observafyX onto a subspace? C
VN which may (and will) depend on the observation: the projgctiased estimator
P +RnX =P 4X. The overall quadratic error can be decomposed in threesterm

I =PaX|? = If =Ry FI2+ IRy f =P F12+ 02| PAWI%

The first term is a bias term corresponding to the first linggor@ximation error due

to the projection oV, the second term is also a bias term which corresponds to the
non linear approximation oR, f on .# while the third term is a “variance” term
corresponding to the contribution of the noise.@n

The dimensioMN of iy has to be chosen large enough so that with high probability,
for reasonable, ||f — Ry f|> < ||Ry f — P4 flI2+|P,W|?. From the practical
point of view, this means that the acquisition device retsofuis set so that the first
linear approximation error due to discretization is smatan the second non linear
noise related error. Engineers often Beso that both terms are of the same order of
magnitude, to limit the cost in terms of storage and companat In our white noise
setting, we will explain how to chod¢ depending oro.

For a fixedVy, in order to obtain a small error, we need to balance betws=two
remaining terms. A space? of large dimension may reduce the second bias term but
will increase the variance term, a spa#é of small dimension does the opposite. It is
thus necessary to find a trade-off between these two trendsselect a space” to
minimize the sum of those two terms.

3.2. Model Selection in a Dictionary of orthonormal bases

We consider a (not that) specific situation in which the spatdas spanned by
some vectors from some orthonormal basegpfMore precisely, Iet8 = {gn}o<n<n
be an orthonormal basis ¥f;, that may be different frorig,}, we consider space?
spanned by a sub-familygn, }1<k<m Of M vectors and the projections of our observa-
tion on those spaces

M
P///X = z Xgni< gnk'
k=1

Note that this projection, or more precisely its decompmsiin the basig ¢}, can be
computed easily from the decompositionRf, X in the same basis.

Instead of choosing a specific single orthonormal bagisve define a dictionary
2w which is a collection of orthonormal bases in which we chasptively the basis
used. Note that some bases@§ may have vectors in common. This dictionary can
thus also be viewed as sét,} of Ky > N different vectors, that are regrouped to
form many different orthonormal bases. Any collection\bfvectors from the same



orthogonal basis# € 2\ generates a spac# that defines a possible estimaiy X

of f. Letén = {.#,}r, be the family of all such projection spaces. Ideally we would
like to find the space# < %\ which minimizes||f — P ,X||. We want thus to choose
a “best” model# amongst a collection that is we want to perform a model sielect
task.

3.3. Oracle Model
As a projection estimator yields an estimation error

I =PaX|?= [ = RallP+ IR =P f I+ [P4WI? = | f =Py f 12+ [[PAW]?,
the expected error of such an estimator is given by
E[[If —P4X|?] = f —P4f|?+0?dim(.#).

The best subspace for this criterion is the one that realimebest trade-off between
the approximation erroff — P, f||? and the complexity of the models measured by
o?dim(.#).

This expected error cannot be computed in practise sinceawe dsingle realiza-
tion of dX (or of Ry, X) . To (re)derive the classical model selection proceduiiigée
and Massart |3], we first slightly modify our problem by sddang for a subspace”
such that the estimation error obtained by projectiaggX on this subspace is small
with only an overwhelming probability. As in all model sefien papers, we use an
upper bound of the estimation error obtained from an uppentof the energy of the
noise projected on#. Each of theKy projections of the noise on they different
vectors in the bases of the dictionaby is thusW, gk. Its law is a Gaussian random
variable of variance? along the vectop,. A standard large deviation result proves
that the norms oKy such Gaussian random variables are bounded simultandmously
T = g/2logKy with a probability that tends to 1 wheM increases. Since the noise
energy projected in# is the sum of dinf.#) squared dictionary noise coefficients,
we get||P,W/|? < dim(.#) T2. It results that

[f—PyX|2<|f—Pyf||2+dim(.#) T2 (1)

over all subspaceg? with a probability that tends to 1 & increases. The estimation
error is small if.# is a space of small dimension dip#’) which yields a small ap-
proximation errof| f — P, f||. We denote by#o € 4\ the space that minimizes the
estimation error upper bound (1)

Mo = arg%rgjb%(nf —P,f||2+dim(2) T?).

Note that this optimal space cannot be determined from tiserehtionX sincef is
unknown. It is called the oracle space , henceQhie the notation, to remind this fact.



3.4. Penalized empirical error

To obtain an estimator, it is thus necessary to replace thid®space by a “best”
space obtained only from the observatfQX that yields (hopefully) a small estima-
tion error. A first step toward this goal is to notice that siradl the spaces# are
included intoVyy, minimizing

|f =P, f[2+dim(.7) T?
is equivalent to minimizing
R f =Py fl|2+dim(.z) T2

. A second step is to consider the crude estimatiofiRyf f — P, f||? given by the
empirical norm
2 2 2
IR X =P X(|7 = [[RagX[|= = [P X]|".

This may seem naive because estimatjRg, f — P, f||? with || R, X — P ,X||? yields
a large error

IRpX =P X[|? = [Ray f =P F12 = (IR XI1Z = Ray FII%) + (1P FIIZ — 1P X1%),

whose expected value {8 — dim(.#))a?, with typically dim(.#) < N. However,
most of this error is in the first term on the right hand-sidéjol has no effect on
the choice of space#. This choice depends only upon the second term and is thus
only influenced by noise projected in the spageof lower dimension ding.#). The
bias and the fluctuation of this term, and thus the choicembtsis, are controlled by
increasing the parametér

We define the best empirical projection estimaRos-as the estimator that mini-
mizes the resulting empirical penalized risk:

A =arg min ||Ry X — P4 X|2+dim(.#) T? (2)
MECN

3.5. Thresholding in a best basis

Finding the best estimator which minimizés (2) may seem adatjpnally un-
tractable because the number of possible spages ¥ is typically an exponential
function of the numbeKy of vectors inZy. We show that this best estimator may
however be found with a thresholding in a best basis.

Suppose that we impose that’ are generated by a subset of vectors from a basis
A € In. The following (classical) lemma proves that among all sspghices, the best
projection estimator is obtained with a thresholdind at

Lemma 1. Among all spaces# that are generated by a subset of vectors of an
orthonormal basisZ = {gn}o<n<n Of W, the estimator which minimizgfR, X —
P #X||?+dim(.#) T2 is the thresholding estimator

Prax:X= >  (X.,0)0n (3)
. [(X'gn)|>T



Proof. Let.# = Spa{gn}nel With | C [0,N), as# is an orthonormal basis,

IX =P X |2 +dim(.2) T2 = 3 [(X,gm)[* + ZTZ
nél ne

which is minimal ifl = {n,|(X,gn)|? > T?}. O

The thresholding estimatdr](3) projectsin the space# x 1 generated by the
vectors{gm}x,gm|>T- the vectors of which produce coefficients above threshold.
This lemma implies that best projection estimators are ssardy thresholding esti-
mators in some basis. MinimizingR, X — P 4X||?+dim(.#) T2 over.# € % is
thus equivalent to find the basig of Viy which minimizes the thresholding penalized
empirical risk:

% =arg min [|[RyX — P, . X|2+dim(.2) T2
BEIN T

The best space which minimizes the empirical penalizedinigR) is derived from a
thresholding in the best basig = //402‘?

The following theorem, similar to the one obtained first bya et al. [2], proves
that the thresholding estimation error in the best basi®imbed by the estimation

error by projecting in the oracle spaa#o, up to a multiplicative factor.

Theorem 1. There exists an absolute functidg(K) > v/2 and some absolute con-
stantse > 0 and k > 0 such that if we denot&y = {.#,}r the family of projec-
tion spaces generated by some vectors in an orthogonal basiglictionaryZy and
denote K, be the number of different vectors #y. Then for anyo > 0, if we let
T = A /log(Kn) o with A > Ap(Kn), then for any fe L2, the thresholding estimator
F= R//(@‘X‘TX in the best basis

'@;_ arg I in HI l/NX |<//(@XTX||2+diII (-//.%’,X,T) |2
BEIN T
satisfies

E[If—FIZ <@+e)( min |[f—P,f|2+dim(2)T2) + = g2
16 =F12) < @ 6) (in 1f Pt |+dm(a) T2) 4

For the sake of completion, we propose in Appendix a simpbefof Theorenf L,
inspired by Birgé and Massait![3], which requires only a@antration lemma for
the norm of the noise in all the subspaces spanned b¥thgenerators ofzy but

with worse constantsio(K) = |/32+ %, € = 3 andk = 64. Note this Theorem

can be deduced from Massart|[18] with different (better)stant (and for roughly
Ao(K) > v/2) using a more complex proof based on subtle Talagrandigialéies. It
results that any bound on mjpce, || f — P4 1|2 +dim(.#) T2, gives a bound on the
risk of the best basis estimatbr

To obtain a computational estimator, the minimization

B = arg_ min ||Ry, X — Puyur X +dim (g xr) T?
p N



should be performed with a number of operations typicalgpprtional to the number
Kn of vectors in the dictionary. This requires to constructrappiate dictionaries of
orthogonal bases. Examples of such dictionaries have bhepoged by Coifman and
Wickerhauser| [8] with wavelet packets or by Coifman and Medyg with local co-
sine bases for signals having localized time-frequencicires. Next section reviews
some possible dictionaries for images and recall the coctstn of the dictionary of
bandlet orthogonal bases that is adapted to the estimdtipeomnetrically regular im-
ages.

4. Best basis image estimation and bandlets

4.1. Thresholding in a single basis

When the dictionaryy is reduced to a single basig, and there is thus no basis
choice, Theoreiml1 clearly applies and reduces to the ciddbiesholding Theorem of
Donoho and Johnstone [12]. The corresponding estimatbuisthe classical thresh-
olding estimator which quadratic risk satisfies

€ 11— Py XI7] < 1 6) (i 11~ Pot|?+dim() T2) + 02
o ///E%’N N
It remains “only” to choose which basis to use and how to defigespace/y with
respect ta.

Wavelet bases provide a first family of estimators used contynio image pro-
cessing. Such a two dimensional wavelet basis is constticien two real functions,
a one dimensional wavelét and a corresponding one dimensional scaling funation
which are both dilated and translated:

= L x—2Jk 4o (s — L x— 2k
wJ,k(X)—mq—’ o an qq,k(x)_ﬁq) —

Note that the indexj goes to—o when the wavelet scale 2lecreases. For a suitable
choice ofy and g, the family {j k(X) }j  is an orthogonal basis &f([0,1]) and the
following family constructed by tensorization

Y0 = Y\ (X1, %) = @i (%) Pk, (%),
‘l’jbk(x) = Pl (X1,%2) = P iy (X1) @k, (X2),
QUJ k

'7 (X) = Ll"j’k(xlaXZ) = Ll"j,kl(xl) wj,kz (XZ) (j,kl,kz)
is an orthonormal basis of the squé®el]2. Furthermore, each space

VJ = Spar{qoj;kl (Xl)qoj,kz (XZ)}kl,kzv

called approximation space of scalg 2admits{y’}o>j k .k, @s an orthogonal ba-
sis. The approximation spat& of the previous section coincides with the classical
wavelet approximation spatg whenN = 2-1/2,

A classical approximation result ensures that for any fianct C?, as soon as
the wavelet has more thgm | + 1 vanishing moments, there is a const&nsuch



that, for anyT, min yce, [|Ry, f — Py f[|2+dim(.#) T2 < C(T2)3%1, and, for anyN,
|Rq f = ]2 < CN-9. ForN = 2-i/2 with g2 = [2i,2i+1], Theorenf ]l thus implies

E[||f —F [ <C(|log(0)|a?) a1 .

This is up to the logarithmic term the best possible rat€fbfunctions. Unfortunately,
wavelets bases do not provides such an optimal represemtatitheC” geometrically
regular functions specified by Definitidth 1. Wavelets failcapture the geometrical
regularity of edges: near them, the wavelets coefficiemmne large. As explained in
Mallat [17], by noticing that those edges contribute ates@ilto O(2-) coefficients
of orderO(21/2), one verifies that the rate of convergence in a wavelet basiy like
(|log(o)|0?)¥/?, which is far from the asymptotical minimax rate.

A remarkably efficient representation was introduced bydéarand Donohao [5].
Their curvelets are not isotropic like wavelets but are melomgated along a prefer-
ential direction and have two vanishing moments along tinextion. They are dilated
and translated like wavelets but they are also rotated. @hdting family of curvelets
% = {cn}n is not a basis ok?([0,1]?) but a tight frame of.?(R?). This implies, nev-
ertheless, that for anfy € L?([0,1]?)

S (f.en)P=Allf? withA>1.

che?

Although this is not an orthonormal basis, the results ofti8aéd can be extended
to this setting. Projecting the data on the fist= 0~/2 curvelets with significant
intersection with the unit square and thresholding the ieimg coefficients with a
thresholdA \/logNo yields an estimatdF that satisfies

E[|If—F|? <C(logo|o?)ats

with a constan€C that depends only ofi. This is the optimal decay rate for the risk
up to the logarithmic factor foor € [1,2]. No such fixed representation is known to
achieve a similar result far larger than 2.

4.2. Dictionary of orthogonal bandlet bases

To cope with a geometric regularity of order> 2, one needs basis elements which
are more anisotropic than the curvelets, are more adapthd geometry of edges and
have more vanishing moments in the direction of regulaBgndlet bases[15, 16,/19]
are orthogonal bases whose elements have such propettis cdnstruction is based
on the observation that even if the wavelet coefficientsangel in the neighbourhood
of an edge, these wavelets coefficients are regular alonditaetion of the edge as
illustrated by Fidg1L.

To capture this geometric regularity, the key tool is a lar#thogonal transform, in-
spired by the work of Alpert |1], that combines locally thewséets along the direction
of regularity, represented by arrows in the rightmost imaigeig[), to produce a new
orthogonal basis, a bandlet basis. By construction, thellbtsmare elongated along
the direction of regularity and have the vanishing momelasgthis direction. The

10
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Figure 1: a) a geometrically regular image, b) the assatiatevelet coefficients, c) a close-up of wavelet
coefficients in a detail spas&? that shows their remaining regularity, d) the geometrical/fhdapted to this
square of coefficients, here it is vertically constant andupeetrized by a polynomial curye

Figure 2: a) a geometrically regular image b) the correspondavelet coefficients c) the quadtree associ-
ated to the segmentation of a detail sp#é® In each square where the image is not uniformly regular, the
flow is shown.

11



(possibly large) wavelets coefficients are thus locallypmbined along this direction,
yielding more coefficients of small amplitudes than before.

More precisely, the construction of a bandlet basis of a Vewaultiresolution
spaceVj = Spaf @k, k, 1k k, Starts by decomposing this space into detail wavelet

spaces
V= @ WP with WP° = Spaf{‘l’ﬁkl,kz}kl,kz .

0,l>]

For any level and orientatiom, the detail space° is a space of dimensigi2")2. Its
coefficients are recombined using the Alpert transform gedibby some directions of
regularity. This geometry is specified by a local geometdwfla vector field meant to
follow the geometric direction of regularity. This geomefitow is further constraint
to have a specific structure as illustrated in Eig. 2, It iscured by a partition into
dyadic squares in which the flow, if there exists, is vertical horizontally constant.
In each square of the partition, the flow being thus easilppatrized by its tangent.

For each choice of geometric flow, a specific orthogonaltirgpirocess [19] yields
an orthogonal basis of bandlets that have vanishing monaotg) the direction of
the geometric flow. This geometry should obviously be adhpieeach image: the
partition and the flow direction should match the image s$tmas. This choice of
geometry can be seen as an ill posed problem of estimatioheoédges or of the
direction of regularity. To avoid this issue, the problenrésasted as a best basis
search in a dictionary. The geometry chosen is the one ofdbeliasis.

The first step is to define a dictionafy,-j)> of orthogonal bandlet baseséf or
equivalently a dictionary of possible geometric flows. Qimgly this dictionary should
be finite and this require a discretization of the geometrg. pfoved by Peyré and
Mallat [19], this is not an issue: the flow does not have tooiwlexactly the direction
of regularity but only up to a sufficient known precision. $tindeed sufficient to
parametrize the flow in any dyadic square by the tangent ofympmial of degree
(the number of vanishing moments of the wavelets). The aieffis of this polynomial
can be further quantized. The resulting family of geométow in a square is of size
o(271m).

A basis of the dictionar;@(zfj)z is thus specified by a set of dyadic squares par-
titions for each details spac&§°, | > |, and, for each square of the partition, a
flow parametrized by a direction and one of th€g@!P) polynomials. The number
of bases in the dictionar@(zf,-)z grows exponentially with 2/, but the total num-

ber of different bandlet&,j> grows only polynomially likeO(2-1(P+4)). Indeed
the bandlets in a given dyadic square with a given geome&yeaused in numerous
bases. The total number of bandlets in the dictionary is tmmded by the sum
over allO(22)) dyadic squares and al(2-1P)) choices for the flow of the number
of bandlets in the square. Noticing th@ /)2 is a rough bound of the number of
bandlets in any subspaces\gf we obtain the existence of a const&it such that
2-i(p+4) < Kiz-iy2 < Cy2 i(pt4),

4.3. Approximation in bandlet dictionaries

The key property of the bandlet basis dictionary is thatawjes an asymptotically
optimal representation @” geometrically regular functions. Indeed Peyré and Mallat
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[1€] prove

Theorem 2. Leta < p where p in the number of wavelet vanishing moments, for any
f C% geometrically regular function, there exists a real numBesuch that for any
T>0and2 <T

min ||f =P, ; fII>+dim(.#z 1) T2 <CT2/(@FD) (4)
5’36.@&,]‘)2 R

where the subspace? 1 7 is the space spanned by the vectorszfwhose inner
product with f is larger than T.

This Theorem gives the kind of control we require in Theorém 1

Being able to perform efficiently the minimization of the pieis Theorem is very
important to exploit numerically this property. It turnstdhat a fast algorithm can
be used to find the best basis that minimiés- Pj;,@”f||2+dim(<///_@7f7T)T2 or
equivalently| R, f —P 4, . f||?+dim (. 1) T?. We use first the additive structure
with respect to the subbaii® of this “cost” |R;, f — P4, fI|>+dim (.Z571) T?
to split the minimization into several independent miniatians on each subbands. A
bottom-top fast optimization of the geometry (partitiorddiow) similar to the one
proposed by Coifman and Wickerhauser [8], and Donoho [9] maperformed on
each subband thanks to two observations. Firstly, for angiyadic square, the limited
number of possible flows is such that the best flow can be ddaivith a simple
brute force exploration. Secondly, the hierarchical trteecture of the partition and
the additivity of the cost function with respect to the p#oti implies that the best
partition of a given dyadic square is either itself or theaumof the best partitions of
its four dyadic subsquares. This leads to a bottom up opditioiz algorithm once the
best flow has been found for every dyadic squares. Note tlsaaldporithm is adaptive
with respect tax: it does not require the knowledge of the regularity paramigt be
performed.

More precisely, the optimization algorithm goes as followke brute force search
of the best flow is conducted independently over all dyadiases and all detail spaces
with a total complexity of orde©(2-1(P+4). This yields a value of the penalized
criterion for each dyadic squares. It remains now to find #mt partition. We proceed
in a bottom up fashion. The best partition with squares oftwisaller than 21
is obtained from the best partition with squares of width kenaghan 2: inside each
dyadic square of width 2 the best partition is either the partition obtained so far
or the considered square. This choice is made accordingetodst computed so far.
Remark that the initialization is straightforward as thethgartition with square of size
1 is obviously the full partition. The complexity of this ligertition search is of order
0(2-2l) and thus the complexity of the best basis is driven by the tastsearch
whose complexity is of orde®(2-i(P+4), which nevertheless remains polynomial in
27,

4.4, Bandlet estimators

Estimating the edges is a complex task on blurred functiarb@eomes even much
harder in presence of noise. Fortunately, the bandlet estinproposed by Peyré et al.
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[20] do not rely on such a detection process. The chosen gepim@btained with the
best basis selection of the previous section. This allovestorselect an efficient basis
even in the noisy setting.

Indeed, combining the bandlet approximation result of Teed2 with the model
selection results of Theordm 1 proves that the selectiorefimated bandlet estimator
is near asymptotically minimax f&% geometrically regular images.

For a given noise levet, one has to select a dimensin= (2-1)? and a threshold
T. The best basis algorithm selects then the bandlet tﬁsﬂmongst@N = Dp-i)2
that minimizes

IR X =Py XI12+ T2dim (g x 1)
and the model selection based estimaté is P 4, , . X. We should now specify the
choice ofN = (271)2 andT in order to be able to use Theoréin 1 and Thedrém 2 to
obtain the near asymptotic minimaxity of the estimator. @&mdne hand, the dimen-
sionN should be chosen large enough so that the unknown lineaoxippation error
| f — R/ is small. One the other hand, the dimensidshould not be too Iarge SO
that the total number of bandleks;, which satisfies\/N<p+ < Ky < Ckv/N (p+4)
imposing a lower bound on the value of the threshold remairealls For the sake of
simplicity, as we consider an asymptotic behaviour, we msstihato is smaller than
1/4. This implies that it exist§ < 0 such thawo € (211 21] The following theorem
proves that choosinty =22 andT = A v/|logo|o with A large enough yields a
nearly asymptotically minimax estimator.

Theorem 3. Let a < p where p in the number of wavelet vanishing moments and

let Ko € N* and A > V2(p+4)SUf=k, Ao(K). For anyC% geometrically regular
function f, there exists € 0 such that for any

o< m|n(1 maxCx, Ko/2) Y/ (P+4)),

if we let N= 22 with j such thato € (21-1,2/] and T= A /[logo]o, the estimator
F= P%@nx obtained by thresholding£X with a threshold T in the basi® of

that minimizes
IRaX — Py s X2+ T2dim Mz x 1)

satisfies
a
E [|If —F|’] <C(|logoo?)a
Theoreni B is a direct consequence of Thedrem 1 and Thédrem 2,
Proof. For anyo € (211, 2], observe that 2i(P+4) < Ky = Kiz-ij2 < Cx21(P+4) and
thus (20)~(P*) < Ky < Cca(P*). The restriction ono further implies then that

Kn > Ko andKy < 0 2(P+. AsA > /2(p+ 4) SUR=, Ao(K), T = A/Tlogalo >
A+/log(Kn)o with A > Ag(Ky) so that Theoreinl 1 applies. Thls yields

E[If FI1?) < (&) min (|f ~P |7+ T2dm(a) + -0 . (5)
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Now asT > 2/, Theorenf.2 applies and there is a cons@imdependent o such that

min (|\f—p///f||2+T2dim(///)) < c(T?)o/ @+
///E%N

Plugging this bound intd (5) gives the result. O

The estimatd- = R//@TX is computed efficiently by the same fast algorithm used
in the approximation sett'ing without requiring the knovdedf the regularity parame-
tera. The model selection based bandlet estimator is thus abigcadaptive estima-
tor that attains, up to the logarithmic term, the best pdssibymptotic minimax risk
decay forC” geometrically regular function.

Although Theorerfi]3 applies only @€ geometrically regular function, one can use
the bandlet estimator for any type of images. Fidure 3 ilatss the good behaviour
of the bandlet estimator for natural images already showGh Each line presents
the original image, the degraded noisy image and two estimgatone using classi-
cal translation invariant estimator [6]. and the other gdime bandlet estimator. The
bandlet improvement with respect to the classical wavedgimator can be seen nu-
merically as well as visually. The quadratic error is snralléh the bandlet estimator
and the bandlets preserve much more geometric structuties images.

A. Proof of Theorem[1

Concentration inequalities are at the core of all the sieleechodel estimators. Es-
sentially, the penalty should dominate the random fluobmatif the minimized quan-
tity. The key lemma, Lemnid 2, uses a concentration inequalitGaussian variable
to ensure, with high probability, that the noise energy ialssimultaneously in all the
subspaces#, spanned by a subskbf theKy different vectors, denoted lmy, of Y.

Lemma 2. For all u > 0, with a probability greater than or equal tb— 2/Kne™,

VI C{1,...,Kn} and.# = Spadgktker, [[P4W| < vMi++/4log(Kn)dim () +2u
wheredim (.#)) is the dimension of#.

Proof. The key ingredient of this proof is a concentration inedyalisirelson’s Lemma[22]
implies that for any 1-Lipschitz functio@ : C" — C (|@(x) — @(y)| < [Ix—y|)) if W is
a Gaussian standard white noisedhthen

P{Q(W) > E [p(W)] +1} < e /2

For any space#, f — ||P,f| is 1-Lipschitz. Note that one can first projeict
into the finite dimensional spa&& without modifying the norm. We can thus apply
Tsirelson’s Lemma with = /4log(Kn) dim(.#) + 2u and obtain

P{[IP.4W| > E[[IP /W] + /ATog(Kn) dim (.7) - 2u} < Ky, > ™ e
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Geometric Image

Original Noisy (22.0dB) Tl Wavelets (36.0dB)  Bandlets (38B)
Barbgra

—

Original Noisy (22.0dB) Tl Wavelets (26.5dB)  Bandlets (&8B)
Barbara Closeup

Original Noisy (22.0dB) Tl Wavelets (28.1dB)  Bandlets @)
Lena Closeup

Original Noisy (22.0dB Tl Wavelets (28.dB)  Bandlets (283§

Figure 3: Comparison between the translation invariantelea\vestimator and the bandlet estimator. The

number within parenthesis is the PSNR defined—Eglog( HT‘;‘TZHZ) (the larger the better).




Now asE [||P ,W|] < (E [|P,W|?])¥/2 = \/dim(.#), one derives

IP{HR///WH > /dim(.Z) + ¢4|09(KN)dim(%)+2u} < K 29 o
Now

P{3I C {1,....Kn} [P4WI > v/dim () + \/4log(Kn) dim (.2) +2u}

< 5 P{IP4WI = VAm(A4)+/AlogKy) dim(-) + 2u}

{1 Ky}

K,\—IZdim((//A Jg-u

A

{1 Kn?

Kn K Kn
< g ( dN)KNZdeU < CZ KNfdeflJ
=1 =1
-1
< KN e*U
— -1

1Ky

and thus

P{3I C {L,....Kn} [P4WI > v/dim(.2) + \/4log(Kn) dim (.2) +2u}

< ie*“
= Ka

O

The proof of Theorerfil1 follows from the definition of the beasis, the oracle
subspace and the previous Lemma.

Proof of Theoreril1Recall, thatR, X = Ry, f + Ry W € Wy with Ry\W a Gaussian
white noise. By construction, the thresholding estima@%x where

% = arg min |Rp X — R///%‘XTX|\2+dim(///<%,X,T) T?
PBeEDN ’

To simplify the notation, we denote by?and dim(////\) the corresponding space and
its dimension.

Denote now dinf.#p) the dimension of the oracle subspae&, that has been
defined as the minimizer of

|Ra f =P fl|2+dim(.2) T?

By construction,
IRaX — P X |2+ A%log(Ky) o2 dim (//7) < IRy X — Py |2+ A2log(Kn) o2 dim (. 5) .
Using

IRpX =P X% = Ry X =Ry |7+ Ry f =P X|[>+2(Ry X = Ry f, Ry =P _X)
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and a similar equality foffR, X — P 4, f||?, one obtains

IRa f =P X]|?+ A%log(Kn) o® dim (//7) <|IRa f =P fI12+ A2log(Kn) o2 dim ()
One should now focus on the bound on the scalar product :

[2(Ry X — Ry F,P X =Py f)]

= |2<O-P////\+///OW5 P/Z/\X - P///of>|

<20|P 7, 4 WP Z2X =Ry fll + IRy f =P fl)

and, using Lemmia 2, with a probability greater than or equakt K—zNe*”

<20 <\/dim () +dim(.0) + \/4log(KN)(dim () +dim(.0)) + 2u>
X (|[P X — Ray fI| + [[Ra F = P F])
applying Xy < B~2x2 + 32%y? successively witlB = 1 andp = 1 leads to
[2(Rpy X — Ry f,P 72X =P, )

< (%) 72202(dim (//7) +dim(.#) + 4log(Ky)(dim (//7) +dim(.)) + 2u)

1 2
+(3) 2P 2R fI2+ 1Ryt~ R 1P

Inserting this bound into
IR4, f =P X|2+ A%log(Kn) o dim (//7) < [IRay f = P 112+ A2log(Kn ) a2 dim (. )
+[2(RpX =Ry f,P X =Py )
yields
1 3 .
SIRN T =P X2 < JIR f — P I+ 0%(A%log(Ky) + 8(1+ AlogKn) dim (. o)
+0%(8(L-+ 4log(Kn)) — A?log(Ky)) dim (.7 ) + 1602

SothatifA2 > 32+ %

IR f =P X2 < 3||Ryy f — Py |2+ 40°A%l0g(K) dim (.#20) + 320%u
which implies

IR, f =P X2 < 4(||Rpy T — P FII* + 0%A%log(Kn) dim (.20)) + 320°u
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where this result holds with probability greater than orada 1— %e*”.
Recalling that this is valid for ali > 0, one has

. 2
P{IIRa =P 72X = 4(IIRq T — Pso | + 0*A%log(Kn) dim (.420)) > 320%u} < —e™
‘ N
which implies by integration over

_ 2
E[lIRn f =P ZXII* — 4([[Ra T = Pso F1* + 0*A%log(Kn) dim (.40))] < 320%; —
. N

that is the bound of Theoreh 1

. 2
E[|IRyf — Pj[xnz] < ARy f — P T2+ 02A%log(Kn) dim (.5)) +3202K—N

up to|| f — Ry, f||2 which can be added on both size of the inequality. O
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