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1 Introduction

A new estimator is introduced to reduce white noise added to images having a geomet-

rical regularity. This estimator projects the observations on orthogonal bandlet vectors

selected in a dictionary of orthonormal bases. It is proved that the resulting risk is quasi

asymptotically minimax for geometrically regular images. This paper is also a tutorial

on estimation with general dictionary of orthogonal bases, through model selection. It

explains how to build a thresholding estimator in a adaptively chosen “best” basis and

gives a simple proof of its performance with the model selection approach of Barron

Birgé and Massart [1].

Section 2 gives the statistical setting of the white noise model, and describes a model

of Cα geometrically regular images. Images in this class are Cα (Hölder regularity

α) outside a set of Cα curves in [0, 1]2. Korostelev and Tsybakov [12] showed that the

minimax quadratic risk over this class has an asymptotic decay of the order of σ2α/(α+1),
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for a Gaussian white noise of variance σ2. Their estimator relies on an explicit detection

of the contours and is not stable relatively to any image blurring. Later, Donoho [9]

overcomes the detection issue by replacing it with an well-posed optimization problem.

Nevertheless, both use a model of images with sharp edges which limits their applications

since most image edges are not strict discontinuities. They are blurred because of various

diffraction effects which regularize discontinuities by unknown factors.

To overcome this issue, a thresholding estimator in a best band let basis is intro-

duced. The concept of edge is replaced by the concept of local direction which does not

require a precise position. Furthermore, these directions of regularity are not estimated

directly but indirectly through a bast basis search algorithm. Section 3 gives a tutorial

introduction of the generic class of thresholding estimators in a best basis selected in

a dictionary of orthonormal bases. Such estimators have been studied by Donoho and

Johnstone [10] and fit into the framework of Birgé and Massart [2, 15] This section

provides a simplified presentation and proofs of their performance. Section 4 applies

these results to a dictionary of bandlet bases for geometric image estimation. The quasi

minimax performance of this bandlet estimator is proved in Theorem 3

2 Image estimation

White noise model and acquisition During the digital acquisition process, a cam-

era measures an analog image f with a filtering and sampling process, which introduces

an additive white noise. In this white noise model, the process that is being observed

can be written

dXx = f(x)dx+ σdWx,

where Wx is the Wiener process and σ is a known noise level parameter.

The camera measurements project this process over a family of N functions B0 =

{φn}0≤n<N that define a Riesz basis of an approximation space VN . These functions
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are the impulse responses of the photo-sensors of the camera. The resulting noisy ob-

servations are thus

XN [n] = Xφn
= 〈f, φn〉 + σWφn

for 0 ≤ n < N.

Observe that Wφn
is a gaussian field of zero mean and covariance E [Wφn

Wφm
] =

〈φn, φm〉. We shall write Xφn
by 〈X,φn〉.

These noisy observations specify the orthogonal projection of the observed process

on VN that we denote with a slight abuse of notation PVN
X. To simplify explanations,

in the following we suppose that {φn}0≤n<N is an orthogonal basis, with no loss of

generality.

Minimax risk and geometrically regular images We study the maximum risk of

estimators for images f in a given class, depending upon σ and N . Model classes are

often derived from classical regularity spaces (Cα spaces, Besov spaces,...). This does not

take into account the existence of geometrically regular structures such as edges. This

paper uses a geometric image model appropriate for edges, but not for textures, where

images are considered as piecewise regular functions with discontinuities along regular

curves in [0, 1]2. This geometrical image model has been proposed by Korostelev and

Tsybakov[12] in their seminal work on image estimation. It is used as a benchmark to

estimate or approximate images having some form of geometric regularity (Donoho[9],

Shukla et al [18],...). An extension of this model that incorporates a blurring kernel h

has been proposed [14] to model the various diffraction effects. The resulting class of

images studied in this paper is the set of Cα geometrically regular images specified by

the following definition.

Definition 1. A function f ∈ L2([0, 1]2) is Cα geometrically regular over [0, 1]2 if

• f = f̃ or f = f̃ ⋆ h with f̃ ∈ Cα(Λ) for Λ = [0, 1]2 − {Cγ}1≤γ≤G,

3



• the blurring kernel h is Cα, compactly supported in [−s, s]2 and ‖h‖Cα ≤ s−(2+α),

• the edge curves Cγ are Cα and do not intersect tangentially if α > 1.

Edge based estimation Korostelev and Tsybakov[12] have built an estimator that

is asymptotically minimax for geometrically regular functions f , as long as their is no

blurring and hence that h = δ. With a detection procedure, they partition the image

in regions where the image is either regular or which include a “boundary fragment”

corresponding to the subpart of a single discontinuity curve. In each region, they use

either an estimator tailored to this “boundary fragments” or a classical kernel estimator

for the regular regions. This yields a global estimate F of the image f . If the f is Cα

outside the boundaries and if the parametrization of the curve is also Cα then there

exists a constant C such that

∀σ , E
[
‖f − F‖2

]
≤ Cσ

2α
α+1 .

This rate of convergence achieves the minimax rate for uniformly Cα functions and thus

the one for Cα geometrically regular functions that includes this class. This means

that sharp edges do not alter the rate of minimax estimation. However, this estimator

is not adaptive relatively to the Holder exponent α that must be known in advance.

Furthermore, it uses an edge detection procedure that fails when the image is blurred

or when the discontinuity jumps are not sufficiently large.

Donoho[9] and Shukla and al [18] reuse the ideas of “boundary fragment” under the

name “horizon model” to construct a piecewise polynomial approximation of images.

They derive efficient estimators optimized for α ∈ [1, 2]. These estimators use a recursive

partition of the image domain in dyadic squares, each square being split in two parts

by an edge curve that is a straight segment. Both optimize the recursive partition and

the choice of this straight edge segment in each dyadic square by minimizing a global
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function. This leads to an minimax estimator up to a logarithmic factor which is adaptive

relatively to the Holder exponent as long as α ∈ [1, 2].

Korostelev and Tsybakov[12] as well as Donoho rely on the sharpness of image edges

in their estimators. In both cases, the estimator is chosen amongst a family of images

that are discontinuous across parametrized edges, and these estimators are therefore not

appropriate when the image edges are blurred. To avoid avoid this restriction, we now

consider projector estimators on adaptive subspaces.

3 Projection Estimator and Model Selection

We study projection estimators that are decomposed in two steps. First a linear pro-

jection reduces the dimensionality of the problem by projecting the signal in a finite

dimensional space. This first projection is typically performed by the digital acquisition

device. Then a non-linear projection estimator refines this projector by reprojecting the

resulting finite dimensional observation in a space that is chosen depending upon this

observation. This non-linear projection is obtained with a thresholding in a best basis

selected from a dictionary of orthonormal bases. Best basis algorithms for noise removal

have been introduced by Coifman and Wickerhauser [7]. As recalled by Candès[3], their

risk have been studied by Donoho and Johnstone [10] and are a special case of the general

framework of model selection proposed by Birgé and Massart [2]. Note that Kolaczyk

and Nowak[11] have studied a similar problem in a slightly different setting. We follow

here the framework of model selection. This section gives a tutorial presentation of these

best basis estimators with simplified proofs on the resulting risk upper bounds.

Approximation space VN and further projection The observations are given by

XN [n] = Xφn
= 〈f, φn〉 + σWφn

for 0 ≤ n < N
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where {φn}0≤n<n is an orthogonal basis of VN . The observation thus provides finite

dimensional observation PVN
X = PVN

f + σWVN
where WVN

is a finite dimensional

white noise on VN .

The observations PVN
X are reprojected in a subspace M ⊂ VN which results in

an estimator PMPVN
X = PMX. The overall risk includes the errors of the linear and

non-linear projections:

‖f − PMX‖2 = ‖f − PVN
f‖2 + ‖PVN

f − PMX‖2.

The dimension N of VN is often chosen large enough so that ‖f − PVN
f‖2 ≤ ‖PVN

f −

PMX‖2. This means that the acquisition device resolution is set so that the approxima-

tion error due to discretization is smaller than the estimation error. Engineers may also

set N so that both terms are of the same order of magnitude, to limit the cost in terms

of storage and computations.

Non-linear Projector in finite dimension Since all calculations are performed in

the space VN over observed samples XN [n] = 〈X,φn〉, we concentrate on these samples

which amounts to identify VN to C
N . These noisy observations can be rewritten

XN [n] = fN [n] + σWN [n]

where fN [n] = 〈f, φn〉 ∈ C
N is the digital image and WN [n] = Wφn

is a Gaussian white

noise random vector of variance σ2. To simplify the notation, we drop the index N of

the discrete observation fN in the following although the resulting f still depends on the

space VN and its basis {φn}0≤n<N .

The orthogonal projection PMX of X in a subspace M of C
N defines an orthogonal
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projection of X in a corresponding subspace M of VN :

PMX = PMPVN
X =

N−1∑

n=0

(PMX)[n]φn,

and

‖PVN
f − PMX‖2 = ‖f − PMX‖2 = ‖f − PMf‖2 + σ2‖PMW‖2.

The first bias term is the non-linear approximation error due to the projection in a sub-

space M of CN , decreases with the dimensionality of this space. The second “variance”

term, which gives the energy of the noise projected in M, increases with the space di-

mensionality. It is thus necessary to find a trade-off between this two trends, and select

a space M to minimize the sum of both terms.

Model Selection in a Dictionary of orthonormal bases Let B = {gm}0≤m<N

be an orthonormal basis of C
N . From any M ≤ N and any sub-family {gmk

}1≤k≤M of

M vectors, one can define a projection estimator on the space M generated by these

vectors:

PMX =
M∑

k=1

〈X,gmk
〉gmk

.

Instead of choosing a priori the orthogonal basis B of C
N we define a dictionary DN

which is a family of orthonormal bases. Some bases of DN may have vectors in common.

This dictionary can thus also be viewed as set of KN ≥ N vectors, that are regrouped to

form many possible orthonormal bases. Any collection of M vectors from any orthogonal

basis B ∈ DN generates a space M that defines a possible estimator PMX of f . Let

C = {Mγ}Γ be the family of all such projection spaces. Ideally we would like to find

the space M ∈ C which minimizes ‖f − PMX‖. The space M can be considered as

an estimation model selected from a predefined family. It is therefore a model selection

problem.
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Oracle Model A projection estimator yields an estimation error

‖f − PMX‖2 = ‖f − PMf‖2 + ‖PMW‖2.

The expected error of such an estimator is given by

E
[
‖f − PMX‖2

]
= ‖f − PMf‖2 + σ2M

and the best subspace for this criterion is the one that realizes the best trade-off between

the approximation error ‖f−PMf‖2 and the complexity of the models measured by σ2M .

This expected error can not be computed in practice since we have a single realiza-

tion of X. We thus search for a subspace M such that the estimation error obtained

by projecting X on this subspace is small with an overwhelming probability. An upper

bound of the estimation error is obtained from an upper bound of the energy of the noise

projected on M. Each of the KN dictionary noise coefficient 〈W,gγ〉 is a Gaussian ran-

dom variable of variance σ2. A standard large deviation result proves that the absolute

values taken by KN such Gaussian random variables are bounded simultaneously by

T = σ
√

2 logKN with a probability that tends to 1 when N increases. Since the noise

energy projected in M is the sum of M squared dictionary noise coefficients, we get

‖PMW‖2 ≤M T 2. It results that

‖f − PMX‖2 ≤ ‖f − PMf‖2 +M T 2. (1)

over all subspaces M with a probability that tends to 1 as N increases. The estimation

error is small if M is a space of small dimension M which yields a small approximation

error ‖f −PMf‖. We denote by MO ∈ C the oracle space that minimizes the estimation
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error upper bound (1)

MO = arg min
M∈C

(‖f − PMf‖2 +M T 2).

Penalized empirical error The oracle space can not be calculated since f is unknown.

It is thus necessary to replace it by a “best” space that will hopefully yield a close

estimation error. A crude estimation of ‖f − PMf‖2 is given by the empirical norm

‖X − PMX‖2 = ‖X‖2 − ‖PMX‖2.

This may seem naive because estimating ‖f − PMf‖2 with ‖X − PMX‖2 yields a large

error

‖X − PMX‖2 − ‖f − PMf‖2 = (‖X‖2 − ‖f‖2) + (‖PMf‖2 − ‖PMX‖2),

whose expected value is (N−M)σ2, with typically M ≪ N . However, most of this error

is in the first term on the right hand-side, which has no effect on the choice of space

M. This choice depends only upon the second term and is thus only influenced by noise

projected in the space M of lower dimension M . The bias and the fluctuation of this

term, and thus the choice of the basis, are controlled by increasing the parameter T .

We define the best empirical projection estimator P
M̂

as the estimator that minimizes

the resulting empirical penalized risk:

M̂ = arg min
M∈C

‖X− PMX‖2 +M T 2 (2)

Thresholding in a best basis Finding the best estimator which minimizes (2) may

seem computationally untractable because the number of possible spaces M ∈ C is

typically an exponential function of the number KN of vectors in DN . We show that
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this best estimator may however be found with a thresholding in a best basis.

Suppose that we impose that M are generated by M vectors from a particular basis

B ∈ DN . The following lemma proves that among all such spaces, the best projection

estimator is obtained with a thresholding at T .

Lemma 1. Among all spaces M that are families of any number M ≤ N of vectors

in an orthonormal basis B = {gm}0≤m<N , the best estimator which minimizes ‖X −

PMX‖2 +M T 2 is the thresholding estimator

PMB,T
X =

∑

|〈X,gm〉|>T

〈X,gm〉gm. (3)

Proof. Let M = Span{gm}m∈I with I ⊂ [0, N), as B is an orthonormal basis,

‖X − PMX‖2 +M T 2 =
∑

m/∈I

|〈X,gm〉|2 +
∑

m∈I

T 2

which is minimal if I = {m, |〈X,gm〉|2 > T 2}.

The thresholding estimator (3) projects X in the space MB,T generated by the M

vectors {gm}|〈X,gm〉|>T of B which produce coefficients above threshold. This lemma

implies that best projection estimators are necessarily thresholding estimators in some

basis. Minimizing ‖X− PMX‖2 +M T 2 over M ∈ C is thus equivalent to find the best

basis B̂ which minimizes the thresholding penalized empirical risk:

B̂ = arg min
B∈DN

‖X − PMB,T
X‖2 +M T 2.

The best space which minimizes the empirical penalized risk in (2) is derived from a

thresholding in the best basis M̂ = M
B̂,T

.

The following theorem, first proved by Barron, Birgé and Massart[1], proves that the

thresholding estimation error in the best basis is bounded by the estimation error by
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projecting in the oracle space MO, up to a factor 4.

Theorem 1. Let C = {Mγ}Γ be the family of projection spaces generated by vectors in

the orthogonal bases of a dictionary DN . Let KN be the number of different vectors in

DN . Let σ > 0 and T = λ
√

log(KN ) σ with Let λ ≥
√

32 + 8
log(KN ) . For any f ∈ C

N ,

the thresholding estimator PM
B̂,T

X in the best basis

B̂ = arg min
B∈DN

‖X − PMB,T
X‖2 +M T 2

satisfies

E

[
‖f − PM

B̂,T
X‖2

]
≤ 4

(
min
M∈C

‖f − PMf‖2 +M T 2
)

+
64

KN
σ2.

The appendix gives a simple proof of Theorem 1, inspired by Birgé and Massart[2],

which requires only a concentration lemma for the norm of the noise in all the subspaces

spanned by the KN generators of DN . Birgé and Massart [2] obtain a better lower bound

condition for λ (roughly λ >
√

2) and a multiplicative factor smaller than 4, with a more

complex proof using Talagrand’s inequalities.

It results that any bound on minM∈C ‖f −PMf‖2 +M T 2, gives a bound on the risk

of the best basis estimator in C
N . This translates into an estimator F = PM

B̂,T
X of f

which satisfies

E
[
‖f − F‖2

]
≤ 4

(
min
M∈C

‖f − PMf‖2 +M T 2
)

+
64

KN
σ2.

where M and C corresponds to M and C through the mapping between VN and C
N .

To obtain a computational estimator, the minimization

B̂ = arg min
B∈DN

‖X − PMB,T
X‖2 +M T 2 ,

should be performed with a number of operations typically proportional to the number
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KN of vectors in the dictionary. This requires to construct appropriate dictionaries of

orthogonal bases. Examples of such dictionaries have been proposed by Coifman and

Wickerhauser [7] with wavelet packets or by Coifman and Meyer [6] with local cosine

bases for signals having localized time-frequency structures. Next section reviews the

dictionary of bandlet orthogonal bases that is adapted to the estimation of geometrically

regular images.

4 Best basis image estimation and bandlets

Thresholding in a single basis Theorem 1 clearly applies when the dictionary DN

is reduced to a single basis B. The corresponding estimator is the classical thresholding

estimator which quadratic risk satisfies thus

E
[
‖f − PMB,T

X‖2
]
≤ 4

(
min
M∈C

‖f − PMf‖2 +M T 2
)

+
64

N
σ2

It remains only to choose the basis and the space VN with respect to σ.

Wavelet bases provide a first family of estimators used commonly in image processing.

Such a two dimensional wavelet basis is constructed from two real functions, a one

dimensional wavelet ψ and a corresponding one dimensional scaling function φ, which

are both dilated and translated:

ψj,k(x) =
1

2j/2
ψ

(
x− 2jk

2j

)
and φj,k(x) =

1

2j/2
φ

(
x− 2jk

2j

)
.

Note that the index j goes to −∞ when the wavelet scale 2j decreases. For a suitable

choice of ψ and φ, the family {ψj,k(x)}j,k is an orthogonal basis of L2([0, 1]) and the
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following family constructed by tensorization






ψV
j,k(x) = ψV

j,k(x1, x2) = φj,k1(x1)ψj,k2(x2),

ψH
j,k(x) = ψH

j,k(x1, x2) = ψj,k1(x1)φj,k2(x2),

ψD
j,k(x) = ψD

j,k(x1, x2) = ψj,k1(x1)ψj,k2(x2)





(j,k1,k2)

is an orthonormal basis of the square [0, 1]2. Furthermore, the spaces Vj = Span{φo
j,k}o,k1,k2,

called approximation spaces of scale 2j , admits {ψo
l,k}o,l≥j,k1,k2 as an orthogonal basis.

The approximation space VN of the previous section coincides with the classical

wavelet approximation space Vj when N = 2−j/2. Note that, through the identification

between VN and C
N , the orthogonal wavelet basis of Vn = Vj, {ψo

l,k}o,l>j,k1,k2, becomes

an orthogonal discrete wavelet basis of C
N , B = {Ψo

j′,k}o,l>j,k1,k2.

A classical approximation result ensures that for any function f Cα, as soon as the

wavelet has more than ⌊α⌋ vanishing moments, there is a constant C such that, for any

T , minM∈C ‖f − PMf‖2 +M T 2 ≤ C(T 2)
α

α+1 , and, for any N , ‖PVN
f − f‖2 ≤ CN−α.

For N = 2−j/2 with σ2 = [2j , 2j+1], Theorem 1 thus implies

E[‖f − F‖2] ≤ C(| log(σ)|σ2)
α

α+1 .

This is up to the logarithmic term the best possible rate for Cα functions. Unfortunately,

wavelets bases do not provides such an optimal representation for the Cα geometrically

regular functions specified by Definition 1. Wavelets fail to capture the geometrical

regularity of edges: near them, the wavelets coefficients remains large. One can verify

that the rate of convergence in a wavelet basis decays like (| log(σ)|σ2)1/2, which is far

from the minimax rate.

A remarkably efficient representation was introduced by Candès and Donoho[4].

Their curvelets are not isotropic like wavelets but are more elongated along a prefer-

ential direction and have two vanishing moments along this direction. They are dilated
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and translated like wavelets but they are also rotated. The resulting family of curvelets

C = {cn}n is not a basis but a tight frame, which means that for any f ∈ L2([0, 1]2)

∑

cn∈C

|〈f, cn〉|2 = A‖f‖2 with A > 1.

Although this is not an orthonormal basis, the results of Section 3 can be extended to

this setting. Projecting the data on the firstN = σ−1/2 first coefficients and thresholding

the remaining coefficients with a threshold λ
√

logNσ yields an estimator F that satisfies

E
[
‖f − F‖2

]
≤ C(| log σ|σ2)

α
α+1

with a constant C that depends only on f . This is the optimal decay rate for the risk up

to the logarithmic factor for α ∈ [1, 2]. No such fixed representation is known to achieve

a similar result for α larger than 2.

Dictionary of orthogonal bandlet bases To cope with a geometric regularity of

order α > 2, one needs basis elements which are more anisotropic than the curvelets,

are more adapted to the geometry of edges and have more vanishing moments in the

direction of regularity. Bandlet bases[13, 14, 17] are orthogonal bases whose elements

have such properties. Their construction is based on the observation that even, if the

wavelet coefficients are large in the neighborhood of an edge, these wavelets coefficients

are regular along the direction of the edge as illustrated by Fig 1.

To capture this geometric regularity, wavelets coefficients are locally recombined

along the direction of regularity to produce more small coefficients. A local orthogonal

transform, inspired by the work of Alpert, combines locally the wavelets along the direc-

tion of regularity, represented by arrows in the right most image of Fig 1), to produce a

new orthogonal basis, a basis of bandlets that are elongated along the direction of reg-

ularity and have the corresponding vanishing moments. The construction of a bandlet
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Figure 1: a) a geometrically regular image, b) the associated wavelet coefficients, c) a
close-up of wavelet coefficients in a detail space W o

j that shows their remaining regularity,
d) the geometrical flow adapted to this square of coefficients, here it is vertically constant
and parametrized by a polynomial curve γ

Figure 2: a) a geometrically regular image b) the corresponding wavelet coefficients c)
the quadtree associated to the segmentation of a detail space W o

j . In each square where
the image is not uniformly regular, the flow is shown.

basis of a wavelet multiresolution space Vj = Span{φj,k1,k2}k1,k2 starts by decomposing

this space into detail wavelet spaces

Vj =
⊕

o,l>j

W o
l with W o

l = Span{ψo
l,k1,k2

}k1,k2 .

For any level l and orientation o, the detail space W o
l is a space of dimension (2−l)2

in which the coefficients will be recombined along a geometric flow, a vector fields meant

to follow the geometric direction of regularity. As illustrated by Fig. 2, this flow is
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structured by a partition into dyadic squares in which the flow, if it exists, is vertically

or horizontally constant, so that it can be easily parametrized by its tangent. For

each geometry choice, a specific orthogonalization process[17] yields an orthogonal basis

of bandlets that have vanishing moments in the direction of the geometric flow. This

geometry should obviously be adapted to each image: the partition and the flow direction

should match the image structures. This choice of geometry can be seen as an ill posed

problem of estimation of the edges or of the direction of regularity. To avoid this issue,

the problem is recasted as a best basis search in a dictionary. The geometry chosen will

be the one of the best basis.

The dictionary D(2−j)2 of orthogonal bandlets bases of Vj should be finite for both

approximation and estimation: this requires a discretization of the geometry. As proved

in [17], this is not an issue: the flow does not have to follow exactly the direction of reg-

ularity but only up to a known precision. More precisely, it is sufficient to parametrized

the flow in any dyadic square by the tangent of a polynomial of degree p (the number

of vanishing moments of the wavelets) chosen amongst a family of size O(2−j(p+1)).

Any basis of the dictionary D(2−j)2 is specified by a set of dyadic squares partitions for

each details spaces W o
l , l > j, and, for each square of the partition, a flow parametrized

by a direction and one of these O(2−j(p+1)) polynomials. The number of bases in the

dictionary D(2−j)2 grows exponentially with 2−j , but the total number of different ban-

dlets K(2−j )2 grows only polynomially like O(2−j(2p+5)). Indeed the bandlets in a given

dyadic square with a given geometry are reused in numerous bases. The total number of

bandlets in the dictionary is thus bounded by the sum over all O(2−2j) dyadic squares

and all O(2−j(p+1)) choices for the flow of the number of bandlets in the square. Noticing

that (2−j)2 is a rough bound of the number of bandlets in any subspaces of Vj yields the

existence of CK such that 2−j(p+5) ≤ K(2−j)2 ≤ CK2−j(p+5).
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Approximation in bandlet dictionaries Bandlet basis dictionary provides an asymp-

totically optimal representation of Cα geometrically regular functions through the fol-

lowing theorem[17].

Theorem 2. For any f Cα geometrically regular function, it exists a real number C

such that for any T > 0 and 2j ≤ T

min
B∈D

(2−j)2

‖f − PMB,T
f‖2 +MT 2

6 CT 2α/(α+1) (4)

where M is the dimension of the subspace MB,T which corresponds to the space MB,T

spanned by the vectors of B whose inner products with f is larger than T .

To find the best basis that minimizes ‖f − PMB,T
f‖2 + MT 2, the fast algorithm

proposed by Coifman and Wickerhauser [7], and Donoho [8] is used. This algorithm

uses the additive structure of ‖f − PMB,T
f‖2 +MT 2 to conduct the optimization of the

basis of a given detail space with a simple bottom-up procedure. It is based on two

observations. Firstly, the best partition of a given dyadic square is either itself or the

union of the best partitions of its four dyadic subsquares. This hierarchical tree structure

of the partitioning process leads to a bottom up optimization algorithm once the best

flow has been found for every dyadic squares. Secondly, the limited number of possible

flows in a square is such that the best flow in a given dyadic square can be obtained

with a simple brute force exploration.

More precisely, the brute force search of the best flow can be conducted independently

over all dyadic squares and all detail spaces with a total complexity of order O(2−j(p+5))

and yields a value of the penalized criterion for each dyadic squares. It remains now to

find the best partition. We proceed in a bottom up fashion. The best partition with

squares of width smaller than 2j+1 is obtained from the best partition with squares of

width smaller than 2j : inside each dyadic square of width 2j+1 the best partition is either

the partition obtained so far or the considered square. This choice is made according to
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the penalized criterion. The initialization of this process is straightforward as the best

partition with square of size 1 is obviously the full partition. The complexity of this best

partition search is of order O(2−2j) and thus the complexity of the best basis is driven

by the best flow search whose complexity is of order O(2−j(p+5)), which nevertheless

remains polynomial in 2−j .

Bandlet estimators Estimating the edges is a complex task on blurred function and

becomes even much harder in presence of noise. Fortunately, the bandlet estimator do

not rely on such a detection process. The chosen geometry is obtain with the best basis

selection of the previous section. This allows to select an efficient basis even in the noisy

setting.

Indeed, combining the bandlet approximation result of Theorem 2 with the model

selection results of Theorem 1 proves that the thresholding estimator in a best bandlet

basis is quasi asymptotically minimax for Cα geometrically regular images.

For any N = (2−j)2 the observed process X is projected on the space VN = Vj

which yields the observations X. These noisy data are decomposed in a dictionary of

bandlet orthogonal bases. The best basis algorithm selects the bandlet basis B̂ amongst

DN = D(2−j)2 that minimizes

‖X− PMB,T
X‖2 + T 2M

with T = λ
√

log(K(2−j )2)σ. The resulting bandlet estimator is F = PM
B̂,T
X. For the

sake of simplicity, as we consider an asymptotic behavior, we assume that σ ≤ 1
2 . This

implies that it exists j < 0 such that σ ∈ (2j−1, 2j ] The following theorem proves that

choosing N = 2−2j and λ large enough yields a quasi minimax estimator.

More precisely,

Theorem 3. Suppose that α ≤ p where p in the number of wavelet vanishing moments.
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Suppose that λ̃ ≥
√

32 (p+ 5 + logCK) + 8. For any Cα geometrically regular function

f , there exists C > 0 such that for any σ ≤ 1
2 , if we let N = 2−2j with j such that

σ ∈ (2j−1, 2j ] and T = λ̃
√
| log σ|σ, if F = PM

B̂,T
X is the estimator in the best bandlet

basis B̂ ∈ DN which minimizes

‖X− PMB,T
X‖2 + T 2M

then

E
[
‖f − F‖2

]
≤ C(| log σ|σ2)

α
α+1 .

Theorm 3 is a direct consequence of Theorem 1 and Theorem 2,

Proof. For any σ, observe that 2−j(p+5) ≤ KN = K(2−j)2 ≤ CK2−j(p+5) so that Theo-

rem 1 applies as T = λ̃
√
| log σ|σ ≥ λ

√
log(KN )σ with a large enough λ. This yields

E
[
‖f − F‖2

]
≤ 4 min

M∈C

(
‖f − PMf‖2 + T 2M

)
+

64

KN
σ2 . (5)

Now as T ≥ 2j , Theorem 2 applies and there is a constant C independant of T such that

min
M∈C

(
‖f − PMf‖2 + T 2M

)
≤ C(T 2)α/(α+1) .

Pluging this bound into (5) gives the result.

The estimate F = PM
B̂,T
X is computed efficiently by the same fast algorithm used in

the approximation setting without requiring the knowledge of the regularity parameter

α. The bandlet estimator is thus a tractable adaptive estimator that provides, up to the

logarithmic term, the best possible minimax rate of convergence for Cα geometrically

regular function.

Theorem 3 applies only to Cα geometrically regular function but the bandlet esti-

mator can be applied to any images[16]. Figure 3 illustrates the good behavior of the
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Missing Figure. See http://www.math.jussieu.fr/~lepennec/ for the complete
version.

Figure 3: Comparison between the translation invariant wavelet estimator and the ban-

dlet estimator. The number within parenthesis is the PSNR defined by −10 log
(
‖f−F‖2

‖f‖2
∞

)

(the larger the better).

bandlet estimator for natural images. Each line presents the original image, the degraded

noisy image and two estimations, one using classical translation invariant estimator[5].

and the other using the bandlet estimator. The bandlet improvement can be seen nu-

merically as well as visually. The quadratic error is smaller with the bandlet estimator

and the bandlets preserve much more geometric structures in the images.

A Proof of Theorem 1

Concentration inequalities are at the core of all the selection model estimators. Essen-

tially, the penalty should dominate the random fluctuation of the minimized quantity.

The key lemma, Lemma 2, uses a concentration inequality for gaussian variable to ensure,

with high probability, that the noise energy is small simultaneously in all the subspaces

MI spanned by a subset I of the KN different vectors, denoted by hk, of DN .

Lemma 2. For all u ≥ 0, with a probability greater than 1 − 2/KN e
−u,

∀I ⊂ [1,KN ] and MI = Span{hk}k∈I , ‖PMI
W‖ ≤

√
MI +

√
4 log(KN )MI + 2u

where MI is the dimension of MI .

Proof of Lemma 2. The key ingredient of this proof is a concentration inequality. Tsirelson’s

Lemma[19] implies that for any 1-Lipschitz function φ : C
n → C (|φ(x)−φ(y)| ≤ ‖x−y‖)

if W is a gaussian standard white noise in C
n then

P {φ(W) ≥ E [φ(W)] + t} ≤ e−t2/2 .

For any space M, f 7→ ‖PMf‖ is 1-Lipschitz. Applying Tsirelson’s Lemma with
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t =
√

4 log(KN )M + 2u yields

P

{
‖PMW‖ ≥ E [‖PMW‖] +

√
4 log(KN )M + 2u

}
≤ K−2M

N e−u .

Now as E [‖PMW‖] ≤ (E
[
‖PMW‖2

]
)1/2 =

√
M , one derives

P

{
‖PMW‖ ≥

√
M +

√
4 log(KN )M + 2u

}
≤ K−2M

N e−u .

Now

P

{
∃I ⊂ [1,Kn], ‖PMI

W‖ ≥
√
MI +

√
4 log(KN )MI + 2u

}

≤
∑

I⊂[1,Kn]

P

{
‖PMI

W‖ ≥
√
MI +

√
4 log(KN )MI + 2u

}

≤
∑

I⊂[1,Kn]

K−2MI

N e−u

≤
KN∑

n=1

(
n

KN

)
K−2n

N e−u ≤
KN∑

n=1

K−n
N e−u

≤ K−1
N

1 −K−1
N

e−u

and thus

P

{
∃I ⊂ [1,Kn], ‖PMI

W‖ ≥
√
MI +

√
4 log(KN )MI + 2u

}

≤ 2

KN
e−u

The proof of Theorem 1 follows from the definition of the best basis, the oracle

subspace and the previous Lemma.

Proof of Theorem 1. Recall, that X = f + σW ∈ C
N with W a gaussian white noise.
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By construction, the thresholding estimate is PM
B̂,T

X where

B̂ = arg min
B∈DN

‖X − PMB,T
X‖2 +M T 2 .

To simplify the notation, we denote by M̂ and M̂ the corresponding space and its

dimension.

Denote now MO the dimension of the oracle subspace MO that has been defined as

the minimizer of

‖f − PMf‖2 +M T 2 .

By construction,

‖X− P
M̂

X‖2 + λ2 log(KN )σ2M̂ ≤ ‖X − PMO
f‖2 + λ2 log(KN )σ2MO

using ‖X−P
M̂

X‖2 = ‖X−f‖2+‖f−P
M̂

X‖2+2〈X−f , f−P
M̂

X〉 and a similar equality

for ‖X − PMO
f‖2, one obtains

‖f − P
M̂

X‖2 + λ2 log(KN )σ2M̂ ≤ ‖f − PMO
f‖2 + λ2 log(KN )σ2MO

+ 2〈X − f , P
M̂

X− PMO
f〉

One should now concentrate on the bound on the scalar product :

|2〈X − f , P
M̂

X− PMO
f〉| = |2〈σP

M̂+MO
W, P

M̂
X− PMO

f〉|

≤ 2σ‖P
M̂+MO

W‖(‖P
M̂

X − f‖ + ‖f − PMO
f‖)

and, using Lemma 2, with a probability greater than 1 − 2
KN

e−u

≤ 2σ

(√
M̂ +MO +

√
4 log(KN )(M̂ +MO) + 2u

)
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× (‖P
M̂

X− f‖ + ‖f − PMO
f‖)

applying 2xy ≤ β−2x2 + β2y2 successively with β = 1
2 and β = 1 leads to

|2〈X − f , P
M̂

X− PMO
f〉| ≤

(
1

2

)−2

2σ2(M̂ +MO + 4 log(KN )(M̂ +MO) + 2u)

+

(
1

2

)2

2(‖P
M̂

X− f‖2 + ‖f − PMO
f‖2) .

Inserting this bound into

‖f − P
M̂

X‖2 + λ2 log(KN )σ2M̂ ≤ ‖f − PMO
f‖2 + λ2 log(KN )σ2MO + |2〈X − f , P

M̂
X− PMO

f〉|

yields

1

2
‖f − P

M̂
X‖2 ≤ 3

2
‖f − PMO

f‖2 + σ2(λ2 log(KN ) + 8(1 + 4 log(KN )))MO

+ σ2(8(1 + 4 log(KN )) − λ2 log(KN ))M̂ + 16σ2u

So that if λ2 ≥ 32 + 8
log(KN )

‖f − P
M̂

X‖2 ≤ 3‖f − PMO
f‖2 + 4σ2λ2 log(KN )MO + 32σ2u

which implies

‖f − P
M̂

X‖2 ≤ 4(‖f − PMO
f‖2 + σ2λ2 log(KN )MO) + 32σ2u

where this result holds with probability greater than 1 − 2
KN

e−u.

Recalling that this is valid for all u ≥ 0, one has

P

{
‖f − P

M̂
X‖2 − 4(‖f − PMO

f‖2 + σ2λ2 log(KN )MO) ≥ 32σ2u
}
≤ 2

KN
e−u
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which implies by integration over u

E
[
‖f − P

M̂
X‖2 − 4(‖f − PMO

f‖2 + σ2λ2 log(KN )MO)
]
≤ 32σ2 2

KN

that is the bound of Theorem 1

E
[
‖f − P

M̂
X‖2

]
≤ 4(‖f − PMO

f‖2 + σ2λ2 log(KN )MO) + 32σ2 2

KN

References
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