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Inversion of noisy Radon transform by SVD based

needlets

Kerkyacharian Gérard, Kyriazis George, Le Pennec Erwan,

Petrushev Pencho and Picard Dominique

March 11, 2009

Abstract

A linear method for inverting noisy observations of the Radon transform
is developed based on decomposition systems (needlets) with rapidly decay-
ing elements induced by the Radon transform SVD basis. Upper bounds
of the risk of the estimator are established in Lp (1 ≤ p ≤ ∞) norms for
functions with Besov space smoothness. A practical implementation of the
method is given and several examples are discussed.

1 Introduction

Reconstructing images (functions) from their Radon transforms is a fundamental
problem in medical imaging and more generally in tomography. The problem is
to find an accurate and efficient algorithm for approximation of the function to
be recovered from its Radon projections. In this paper, we consider the problem
of inverting noisy observations of the Radon transform. As in many other inverse
problems, there exists a basis which is fully adapted to the problem, in particular,
the inversion in this basis is very stable; this is the Singular Value Decomposition
(SVD) basis. The Radon transform SVD basis, however, is not quite suitable for
decomposition of functions with regularities in other than L2-related spaces. In
particular, the SVD basis is not quite capable of representing local features of
images, which are especially important to recover.

The problem requires a special construction adapted to the sphere and the
Radon SVD, since usual tensorized wavelets will never reflect the manifold struc-
ture of the sphere and will necessarily create unwanted artifacts, or will concentrate
on special features (such as ridgelets...).

Our idea is to design an estimation method for inverting the Radon trans-
form which has the advantages of maximum localization of wavelet based methods
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combined with the stability and computability of the SVD methods. To this end
we utilize the construction from [22] (see also [15]) of localized frames based on
orthogonal polynomials on the ball, which are closely related to the Radon trans-
form SVD basis. As shown in the simulation section the results obtained are quite
promising.

To investigate the properties of this method, we perform two different stud-
ies. The first study is of theoretical kind and investigates the possible losses (in
expectation) of the method in the ’minimax framework’. This principle, fairly
standard in statistics, consists in analyzing the mathematical properties of esti-
mation algorithms via optimization of their worst case performances over large
ensembles of parameters. We carry out this study in a random model which is
also well known in statistics, the white noise model. This random model is a toy
model well admitted in statistics since the 80’s as an approximation of the ’real’
model on scattered data. It is proved, for instance in [2] that the regression model
with uniform design and the white noise model are close in the sense of Le Cam’s
deficiency -which roughly means that any procedure can be transferred from one
model to the other, with the same order of risk-. This model has the main ad-
vantage of avoiding unnecessary technicalities. In this context we prove that over
large classes of functions (described later), our method has optimal rates of con-
vergence, for all the Lp losses. To our knowledge, most of the parallel results are
generally stated for L2 losses, as in [18] for example, very few (if any) consider Lp

losses while it is a warrant for instance that the procedure will be able to detect
small features. Again, the problem of choosing appropriated spaces of regularity
in this context is a serious question, and it is important to consider the spaces
which may be the closest to our natural intuition: those which generalize to the
present case the approximation properties shared by standard Besov and Sobolev
spaces. We can also prove that our results apply for ordinary Besov spaces.

In the case p ≥ 4 we exhibit here new minimax rates of convergence, related
to the ill posedness coefficient of the inverse problem d−1

2
along with edge effects

induced by the geometry of the ball. These rates are interesting from a statistical
point of view and have to be compared with similar phenomena occurring in other
inverse problems involving Jacobi polynomials (e.g. Wicksell problem), see [14].

Our second study of the performances of our procedure is performed on sim-
ulations. Since in practical situations scattered data are generally observed, we
carried out our simulation study in the scattered data model. We basically com-
pared our method to the SVD procedure -since it is the most commonly studied
method in statistics- and the simulation study consistently predicts quite good
performances of our procedure and a comparison extensively in favor of our al-
gorithm. One could object that it is a rather common opinion that ’one should
smooth the SVD’. However, there are many ways to do so (for instance, we men-
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tion a parallel method, employing a similar idea for smoothing out the projection
operator but without using the needlet construction and in a no-noise framework,
which has been developed by Yuan Xu and his co-authors in [28, 29, 30]). Ours
has the advantage of being optimal for at least one point of view since we are able
to obtain the right rates of convergence in Lp norms.

The paper is structured as follows. In Section 2 we introduce the model and the
Radon transform Singular Value Decomposition. In Section 3 we give the class
of linear estimators built upon the SVD. We also give the needlet construction
and introduce the needlet estimation algorithm. In Section 4 we establish bounds
for the risk of this estimate over large classes of regularity spaces. Section 5 is
devoted to the practical implementation and results of our method. Section 6 is
an appendix where the proofs of some claims from Section 3 are given.

2 Radon transform and white noise model

2.1 Radon transform

Here we recall the definition and some basic facts about the Radon transform (cf.
[12], [20], [16]). Denote by Bd the unit ball in R

d, i.e. Bd = {x = (x1, . . . , xd) ∈
R
d : |x| ≤ 1} with |x| = (

∑d
i=1 x

2
i )

1/2 and by S
d−1 the unit sphere in R

d. The
Lebesgue measure on Bd will be denoted by dx and the usual surface measure on
S
d−1 by dσ(x) (sometimes we will also deal with the surface measure on S

d which
will be denoted by dσd). We let |A| denote the measure |A| =

∫
A
dx if A ⊂ Bd as

well as |A| =
∫
A
dσ(x) if A ⊂ S

d−1.
The Radon transform of a function f is defined by

Rf(θ, s) =

∫

y∈θ⊥
sθ+y∈Bd

f(sθ + y)dy, θ ∈ S
d−1, s ∈ [−1, 1],

where dy is the Lebesgue measure of dimension d− 1 and θ⊥ = {x ∈ R
d : 〈x, θ〉 =

0}. With a slight abuse of notation, we will rewrite this integral as

Rf(θ, s) =

∫

〈y,θ〉=s
f(y)dy.

It is easy to see (cf. e.g. [20]) that the Radon transform is a bounded linear
operator mapping L

2(Bd, dx) into L
2
(
S
d−1 × [−1, 1], dµ(θ, s)

)
, where

dµ(θ, s) = dσ(θ)
ds

(1 − s2)(d−1)/2
.
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2.2 Noisy observation of the Radon transform

We consider observations of the form

dY (θ, s) = Rf(θ, s)dµ(θ, s) + εdW (θ, s), (2.1)

where the unknown function f belongs to L
2(Bd, dx). The meaning of this equation

is that for any φ(θ, s) in L
2(S

d−1 × [−1, 1], dµ(θ, s)) one can observe

Yφ =

∫
φ(θ, s)dY (θ, s) =

∫

Sd−1×[−1,1]

Rf(θ, s)φ(θ, s)dµ(θ, s) + ε

∫
φ(θ, s)dW (θ, s)

= 〈Rf, φ〉µ + εWφ.

Here Wφ =
∫
φ(θ, s)dW (θ, s) is a Gaussian field of zero mean and covariance

E(Wφ, Wψ) =

∫

Sd−1×[−1,1]

φ(θ, s)ψ(θ, s)dσ(θ)
ds

(1 − s2)(d−1)/2
= 〈φ, ψ〉µ.

The goal is to recover the unknown function f from the observation of Y . As
explained in the introduction, this model is a toy model, fairly accepted in statistics
as an approximation of the ’real model’ of scattered data. The study is carried
out in this setting to avoid unnecessary technicalities.

Our idea is to devise an estimation scheme which combines the stability and
computability of SVD decompositions with the superb localization and multiscale
structure of wavelets. To this end we utilize a frame (essentially following the
construction from [15]) with elements of nearly exponential localization which is
compatible with the SVD basis of the Radon transform. This procedure is also to
be considered as a first step towards a nonlinear procedure especially suitable to
handle spatial adaptivity since real objects frequently exhibit a variety of shapes
and spatial inhomogeneity.

2.3 Polynomials and Singular Value Decomposition of the
Radon transform

The SVD of the Radon transform was first established in [5, 6, 17]. In this regard
we also refer the reader to [20, 28]. In this section we record some basic facts
related to the Radon SVD and recall some standard definitions which will be used
in the sequel.

2.3.1 Jacobi and Gegenbauer polynomials

The Radon SVD bases are defined in terms of Jacobi and Gegenbauer polynomials.
The Jacobi polynomials P

(α,β)
n , n ≥ 0, constitute an orthogonal basis for the space
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L
2([−1, 1], wα,β(t)dt) with weight wα,β(t) = (1 − t)α(1 + t)β, α, β > −1. They are

standardly normalized by P
(α,β)
n (1) =

(
n+α
n

)
and then [1, 10, 25]

∫ 1

−1

P (α,β)
n (t)P (α,β)

m (t)wα,β(t)dt = δn,mh
(α,β)
n ,

where

h(α,β)
n =

2α+β+1

(2n+ α+ β + 1)

Γ(n+ α + 1)Γ(n+ β + 1)

Γ(n+ 1)Γ(n+ α + β + 1)
. (2.2)

The Gegenbauer polynomials Cλ
n are a particular case of Jacobi polynomials, tra-

ditionally defined by

Cλ
n(t) =

(2λ)n
(λ+ 1/2)n

P (λ−1/2, λ−1/2)
n (t), λ > −1/2,

where by definition (a)n = a(a+ 1) . . . (a+ n− 1) = Γ(a+n)
Γ(a)

. It is readily seen that

Cλ
n(1) =

(
n+2λ−1

n

)
= Γ(n+2λ)

n!Γ(2λ)
and

∫ 1

−1

Cλ
n(t)Cλ

m(t)(1 − t2)λ−
1
2dt = δn,mh

(λ)
n with h(λ)

n =
21−2λπ

Γ(λ)2

Γ(n+ 2λ)

(n+ λ)Γ(n+ 1)
.

(2.3)

2.3.2 Polynomials on B
d and S

d−1

We detail the following well known notations which will be used in the sequel.
Let Πn(R

d) be the space of all polynomials in d variables of degree ≤ n. We
denote by Pn(R

d) the space of all homogeneous polynomials of degree n and by
Vn(R

d) the space of all polynomials of degree n which are orthogonal to lower
degree polynomials with respect to the Lebesgue measure on Bd. V0 is the set of
constants. We have the following orthogonal decomposition:

Πn(R
d) =

n⊕

k=0

Vk(R
d).

Also, denote by Hn(R
d) the subspace of all harmonic homogeneous polynomials

of degree n and by Hn(S
d−1) the restriction of the polynomials from Hn(R

d) to S
d−1.

Let Πn(S
d−1) be the space of restrictions to S

d−1 of polynomials of degree ≤ n on
R
d. As is well known

Πn(S
d−1) =

n⊕

m=0

Hm(S
d−1)

(the orthogonality is with respect of the surface measure dσ on S
d−1).
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Let Yl,i, 1 ≤ i ≤ Nd−1(l), be an orthonormal basis of Hl(S
d−1), i.e.

∫

Sd−1

Yl,i(ξ)Yl,i′(ξ)dσ(ξ) = δi,i′ .

Then the natural extensions of Yl,i on Bd are defined by Yl,i(x) = |x|lYl,i
(
x
|x|

)
and

satisfy
∫

Bd

Yl,i(x)Yl,i′(x)dx =

∫ 1

0

rd−1

∫

Sd−1

Yl,i(rξ)Yl,i′(rξ)dσ(ξ)dr

=

∫ 1

0

rd+2l−1

∫

Sd−1

Yl,i(ξ)Yl,i′(ξ)dσ(ξ)dr = δi,i′
1

2l + d
.

For more details we refer the reader to [8].
The spherical harmonics on S

d−1 and orthogonal polynomials on Bd are natu-
rally related to Gegenbauer polynomials. The kernel of the orthogonal projector
onto Hn(S

d−1) can be written as (see e.g. [24]) if Nd−1(n) is the dimension of
Hn(S

d−1):
Nd−1(n)∑

i=1

Yl,i(ξ)Yl,i(θ) =
2n + d− 2

(d− 2)|Sd−1|C
d−2
2

n (〈ξ, θ〉). (2.4)

The “ridge” Gegenbauer polynomials C
d/2
n (〈x, ξ〉) are orthogonal to Πn−1(B

d) in
L

2(Bd) and the kernel Ln(x, y) of the orthogonal projector onto Vn(Bd) can be
written in the form (see e.g. [21, 28])

Ln(x, y) =
2n+ d

|Sd−1|2
∫

Sd−1

Cd/2
n (〈x, ξ〉)Cd/2

n (〈y, ξ〉)dσ(ξ) (2.5)

=
(n + 1)d−1

2dπd−1

∫

Sd−1

C
d/2
n (〈x, ξ〉)Cd/2

n (〈y, ξ〉)
‖Cd/2

n ‖2
dσ(ξ).

The following important identities are valid for “ridge” Gegenbauer polynomi-
als:

∫

Bd

Cd/2
n (〈ξ, x〉)Cd/2

n (〈η, x〉)dx =
h

(d/2)
n

C
d/2
n (1)

Cd/2
n (〈ξ, η〉), ξ, η ∈ S

d−1, (2.6)

and, for x ∈ Bd, η ∈ S
d−1,

∫

Sd−1

Cd/2
n (〈ξ, x〉)Cd/2

n (〈ξ, η〉)dσ(ξ) = |Sd−1|Cd/2
n (〈η, x〉), (2.7)

see e.g. [21]. By (2.5) and (2.7)

Ln(x, ξ) =
(2n+ d)

|Sd−1| Cd/2
n (〈x, ξ〉), ξ ∈ S

d−1,
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f3,1,0 f4,4,1

f14,4,1 f14,12,0

Figure 1: A few radon SVD basis elements (Low quality figure due to arXiv
constraint)

and again by (2.5)
∫

Sd−1

Ln(x, ξ)Ln(y, ξ)dσ(ξ) = (2n+ d)Ln(x, y).

2.3.3 The SVD of the Radon transform

Assume that {Yl,i : 1 ≤ i ≤ Nd−1(l)} is an orthonormal basis for Hl(S
d−1). Then

it is standard and easy to see that the family of polynomials

fk,l,i(x) = (2k+d)1/2P
(0, l+d/2−1)
j (2|x|2−1)Yl,i(x), 0 ≤ l ≤ k, k−l = 2j, 1 ≤ i ≤ Nd−1(l),

form an orthonormal basis of Vk(Bd), see e.g. [8]. On the other hand the collection

gk,l,i(θ, s) = [h
(d/2)
k ]−1/2(1−s2)(d−1)/2C

d/2
k (s)Yl,i(θ), k ≥ 0, l ≥ 0, 1 ≤ i ≤ Nd−1(l),

is obviously an orthonormal basis of L
2(S

d−1 × [−1, 1], dµ(θ, s)).
Figure 1 displays a few fk,l,i and illustrates their lack of localization.

The following theorem gives the SVD decomposition of the Radon transform.

Theorem 2.1. For any f ∈ L
2(Bd)

Rf =
∑

k≥0

λk
∑

0≤l≤k, k−l≡0 (mod 2)

∑

1≤i≤Nd−1(l)

〈f, fk,l,i〉gk,l,i (2.8)
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and for any g ∈ L
2(S

d−1 × [−1, 1], dµ(θ, s))

R∗g =
∑

k≥0

λk
∑

0≤l≤k, k−l≡0 (mod 2)

∑

1≤i≤Nd−1(l)

〈g, gk,l,i〉µfk,l,i. (2.9)

Furthermore, for f ∈ L
2(Bd)

f =
∑

k≥0

λ−1
k

∑

0≤l≤k, k−l≡0 (mod 2)

∑

1≤i≤Nd−1(l)

〈Rf, gk,l,i〉µfk,l,i. (2.10)

In the above identities the convergence is in L
2 and

λ2
k =

2dπd−1

(k + 1)(k + 2) . . . (k + d− 1)
=

2dπd−1

(k + 1)d−1
∼ k−d+1. (2.11)

Remark : Observe that if k ≥ 0, 0 ≤ l ≤ k, k − l 6≡ 0 (mod 2) , and
1 ≤ i ≤ Nd−1(l), then R∗fk,l,i = 0. ⋆

For the proof of this result, we refer the reader to [20] and [28]. We will only
show in the appendix that λ2

k has the value given in (2.11).

3 Linear estimators built upon the SVD

3.1 The general idea

In a general noisy inverse model

dYt = Kfdt+ εdWt,

where K is a linear operator mapping f ∈ H 7→ Kf ∈ K, and H and K are
two Hilbert spaces, the SVD yields a family of linear estimators via the following
classical scheme.

Suppose K has an SVD

Kf =
∑

m

σm〈f, em〉e∗m, f ∈ H,

where {em} and {e∗m} are orthonormal bases for H and K, respectively, and Kem =
σme

∗
m and K∗e∗m = σmem with K∗ being the adjoint operator of K. We also assume

that σm → 0. Then, if σm 6= 0,
∫
e∗mdYt =

∫
Kf · e∗mdt+ ε

∫
e∗mdWt =

∫
f ·K∗e∗mdt+ ε

∫
e∗mdWt

= σm

∫
femdt+ ε

∫
e∗mdWt
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and hence
1

σm

∫
e∗mdYt = 〈f, em〉 +

ε

σm

∫
e∗mdWt. (3.1)

In going further, suppose that {φl} is a tight frame for H. Therefore, for any f ∈ H

f =
∑

l

αlφl, αl = 〈f, φl〉.

We can represent φl in the basis {em}:

φl =
∑

m

〈φl, em〉em =
∑

m

γml em

and hence
αl =

∑

m

γml 〈f, em〉.

On account of (3.1) this leads to the estimator

f̂N =
∑

l≤N
α̂lφl with α̂l =

∑

m

γml
1

σm

∫
e∗mdYt, (3.2)

where N is a parameter. By (3.1) we have

α̂l =
∑

m

γml 〈f, em〉 +
∑

m

γml
ε

σm

∫
e∗mdWt = αl + Zl,

where Zl has a normal distribution N(0,
∑

m(γml )2 ε2

σ2
m

). In this scheme the factors
1
σ2

m
, which are inherent to the inverse model, bring instability by inflating the

variance.
The selection of the frame {φl} is critical for the method described above. The

standard SVD method corresponds to the choice φl = el. This SVD method is
very attractive theoretically and can be shown to be asymptotically optimal in
many situations (see Dicken and Maass [7], Mathé and Pereverzev [19] together
with their nonlinear counterparts Cavalier and Tsybakov [4], Cavalier et al [3],
Tsybakov [26], Goldenschluger and Pereverzev [11], Efromovich and Kolchinskii
[9]). It also has the big advantage of performing a quick and stable inversion of
the operator K. However, while the SVD bases are fully adapted to describe the
operator K, they are usually not quite appropriate for accurate description of the
solution of the problem with a small number of parameters. Although the SVD
method is suitable for estimating the unknown function f with an L2-loss, it is
also rather inappropriate for other losses. It is also restricted to functions which
are well represented in terms of the Sobolev space associated to the SVD basis.
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Switching to an arbitrary frame {φm}, however, may yield additional instability
through the factors (γml )2’s.

Our idea is to utilize a frame {φl} which is compatible with the SVD basis {em},
allowing to keep the variance within reasonable bounds, and has elements with
superb space localization and smoothness, guaranteeing excellent approximation
of the unknown function f . In the following we implement the above described
method to the inversion of the Radon transform. We shall build upon the frames
constructed in [22] and called “needlets”.

3.2 Construction of needlets on the ball

In this part we construct the building blocks of our estimator. We will essentially
follow the construction from [22].

3.2.1 The orthogonal projector Lk on Vk(B
d) .

Let {fk,l,i} be the orthonormal basis of Vk(Bd) defined in §2.3.3. Denote by Tk the
index set of this basis, i.e. Tk = {(l, i) : 0 ≤ l ≤ k, l ≡ k(mod 2), 0 ≤ i ≤ Nd−1(l)}.
Also, set ν = d/2 − 1. Then the orthogonal projector of L

2(Bd) onto Vk(Bd) can
be written in the form

Lkf =

∫

Bd

f(y)Lk(x, y)dy with Lk(x, y) =
∑

l,i∈Tk

fk,l,i(x)fk,l,i(y).

Using (2.4) Lk(x, y) can be written in the form

Lk(x, y) (3.3)

= (2k + d)
∑

l≤k, k−l≡0(2)

P
(0,l+ν)
j (2|x|2 − 1)|x|lP (0,l+ν)

j (2|y|2 − 1)|y|l
∑

i

Yl,i

( x

|x|
)
Yl,i

( y

|y|
)

=
(2k + d)

|Sd−1|
∑

l≤k, k−l≡0(2)

P
(0,l+ν)
j (2|x|2 − 1)|x|lP (0,l+ν)

j (2|y|2 − 1)|y|l
(

1 +
l

ν

)
Cν
l

(〈 x

|x| ,
y

|y|
〉)
.

Another representation of Lk(x, y) has already be given in (2.5). Clearly

∫

Bd

Lm(x, z)Lk(z, y)dz = δm,kLm(x, y) (3.4)

and for f ∈ L
2(Bd)

f =
∑

k≥0

Lkf and ‖f‖2
2 =

∑

k

‖Lkf‖2
2 =

∑

k

〈Lkf, f〉. (3.5)
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3.2.2 Smoothing

Let a ∈ C∞[0,∞) be a cut-off function such that 0 ≤ a ≤ 1, a(t) = 1 for t ∈ [0, 1/2]
and supp a ⊂ [0, 1]. We next use this function to introduce a sequence of operators
on L

2(Bd). For j ≥ 0 write

Ajf(x) =
∑

k≥0

a
( k

2j

)
Lkf(x) =

∫

Bd

Aj(x, y)f(y)dy with Aj(x, y) =
∑

k

a
( k

2j

)
Lk(x, y).

Also, we define Bjf = Aj+1f −Ajf . Then setting b(t) = a(t/2) − a(t) we have

Bjf(x) =
∑

k

b
( k

2j

)
Lkf(x) =

∫

Bd

Bj(x, y)f(y)dy with Bj(x, y) =
∑

k

b
( k

2j

)
Lk(x, y).

Evidently, for f ∈ L
2(Bd)

〈Ajf, f〉 =
∑

k

a
( k

2j

)
〈Lkf, f〉 ≤ ‖f‖2

2 (3.6)

and

lim
j→∞

‖Ajf − f‖2 = lim
j→∞

‖(A0 +

j−1∑

m=0

Bm)f − f‖2 = 0. (3.7)

An important result from [22] (see also [15]) asserts that the kernels Aj(x, y),
Bj(x, y) have nearly exponential localization, namely, for any M > 0 there exists
a constant cM > 0 such that

|Aj(x, y)|, |Bj(x, y)| ≤ CM
2jd

(1 + 2jd(x, y))M
√
Wj(x)

√
Wj(y)

, x, y ∈ Bd, (3.8)

where Wj(x) = 2−j +
√

1 − |x|2, |x|2 = |x|2d =
∑d

i=1 x
2
i , and

d(x, y) = Arccos (〈x, y〉 +
√

1 − |x|2
√

1 − |y|2), 〈x, y〉 =

d∑

i=1

xiyi. (3.9)

The left part (1) of Figure 2 illustrates this concentration: it displays the
influence of a point x to the value of Bjf at a second point y0, namely the values
of Bj(x, y0) for a fixed y0 and j = 4. This influence peaks at y0 and vanishes
exponentially fast to 0 as soon as one goes away from y0. The central part (2) of
Figure 2 shows the modification of the concentration when j is set to a large value
(j = 6). The right part (3) of Figure 2 shows the lack of concentration of Bj when
the cut-off function a used is far from being C∞. The resulting kernel still peaks
at y0 but the value of Bjf at y0 is strongly influenced by values far away from y0.

11



Bj(x, y0)

j 4 6 4
a C∞ C∞ non smooth

(1) (2) (3)

Figure 2: Smoothing kernel Bj(x, y0) for a fixed y0 for (1) a C∞ cut-off function
a with j = 4 , (2) for the same a with j = 6 and (3) for a non smooth cut-off
function a with j = 4 (Low quality figure due to arXiv constraint)

Remark : At this point it is important to notice the following correspondence
which will be used in the sequel. For S

d
+ = {(x, z) ∈ R

d × R
+, |x|2d + z2 = 1}, we

have the natural bijection

x ∈ Bd 7→ x̃ = (x,
√

1 − |x|2) and d(x, y) = d
S
d
+

(x̃, ỹ),

where d
S
d
+

is the geodesic distance on S
d
+. ⋆

3.2.3 Approximation

Here we discuss the approximation properties of the operators {Aj}. We will show
that in a sense they are operators of “near best” polynomial Lp-approximation.
Denote by En(f, p) the best Lp-approximation of f ∈ L

p(Bd) from Πn, i.e.

En(f, p) = inf
P∈Πn

‖f − P‖p. (3.10)

Estimate (3.8) yields (cf. ([22, Proposition 4.5])
∫

Bd

|Aj(x, y)|dy ≤ c∗, x ∈ Bd, j ≥ 0,

where c∗ is a constant depending only on d. Therefore, the operators Aj are (uni-
formly) bounded on L

1(Bd) and L
∞(Bd), and hence, by interpolation, on L

p(Bd),
1 ≤ p ≤ ∞, i.e.

‖Ajf‖p ≤ c∗‖f‖p, f ∈ L
p(Bd). (3.11)

On the other hand, since a(t) = 1 on [0, 1/2] we have AjP = P for P ∈ Π2j−1 .
We use this and (3.11) to obtain, for f ∈ L

p(Bd) and an arbitrary polynomial

12



P ∈ Π2j−1 ,

‖f−Ajf‖p = ‖f−P+P−Ajf‖p ≤ ‖f−P‖p+‖Aj(P−f)‖p ≤ (1+c∗)‖f−P‖p = K‖f−P‖p.

Consequently, ‖f − Ajf‖p ≤ KE2j−1(f, p). In the opposite direction, evidently,
Ajf ∈ Π2j and hence E2j (f, p) ≤ ‖f − Ajf‖p. Therefore, for f ∈ L

p(Bd), 1 ≤ p ≤
∞,

E2j (f, p) ≤ ‖f − Ajf‖p ≤ KE2j−1(f, p). (3.12)

These estimates do not tell the whole truth about the approximation power of Aj.
It is rather obvious that because of the superb localization of the kernel Aj(x, y)
the operator Aj provides far better rates of approximation than E2j−1(f,∞) away
from the singularities of f .

In contrast, the kernel Sj(x, y) =
∑

0≤k≤2j Lk(x, y) of the orthogonal projector
Sj onto Π2j is poorly localized and hence Sj is useless for approximation in Lp,
p 6= 2. This partially explains the fact that the traditional SVD estimators perform
poorly in Lp-norms when p 6= 2.

3.2.4 Splitting procedure

Let us define

Cj(x, y) =
∑

m

√
a
(m

2j

)
Lm(x, z)) and Dj(x, y) =

∑

m

√
b
(m

2j

)
Lm(x, z).

Note that Cj and Dj have the same localization as the localization of Aj, Bj in
(3.8) (cf. [22]). Using (3.4), we get the desired splitting

Aj(x, y) =

∫

Bd

Cj(x, z)Cj(z, y)dz (3.13)

and

Bj(x, y) =

∫

Bd

Dj(x, z)Dj(z, y)dz. (3.14)

Obviously z 7→ Cj(x, z)Cj(z, y) is a polynomial of degree< 2j+1 and z 7→ Dj(x, z)Dj(z, y)
is a polynomial of degree < 2j+2. The next step is to discretize the kernels Aj(x, y)
and Bj(x, y).

3.2.5 Cubature formula and discretization

To construct the needlets on Bd we need one more ingredient - a cubature formula
on Bd exact for polynomials of a given degree.
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Recall first the bijection between the ball Bd (equipped with the usual Lebesgue
measure) and the unit upper hemisphere in R

d+1:

S
d
+ = {(x, y), x ∈ R

d, 0 ≤ y ≤ 1, |x|2d + y2 = 1}

equipped with dσ the usual surface measure.

T : (x, y) ∈ S
d
+ 7→ x ∈ R

d

and

T−1 : x ∈ R
d 7→ x̃ = (x,

√
1 − |x|2d) ∈ S

d
+

Applying the substitution T one has (see e.g. [27])
∫

S
d
+

F (x, y)dσ(x, y) =

∫

Bd

F (x,
√

1 − |x|2) dx√
1 − |x|2

(3.15)

and hence for f : R
d 7→ R

∫

(x,y)∈Sd
+

f(x)ydσd(x, y) =

∫

x∈Bd

f(x)
√

1 − |x|2d
dx√

1 − |x|2d
=

∫

Bd

f(x)dx. (3.16)

Therefore, given a cubature formula on S
d one can easily derive a cubature formula

on Bd. Indeed, suppose we have a cubature formula on S
d
+ exact for all polynomials

of degree n + 1, i.e, there exist χ̃n ⊂ S
d
+ and coefficients ωξ̃ > 0, ξ̃ ∈ χ̃n, such that

∫

S
d
+

P (u)dσ(u) =
∑

ξ̃∈χ̃n

ωξ̃P (ξ̃) ∀P ∈ Πn+1(R
d+1).

If P ∈ Πn(R
d) then P (x)y ∈ Πn+1(R

d+1) and hence

∑

ξ̃∈χ̃n

ωξ̃P (ξ)
√

1 − ξ2 =

∫

S
d
+

P (x)ydσ =

∫

Bd

P (x)dx.

Thus the projection χn of χ̃n onBd is the set of nodes and the associated coefficients
given by ωξ =

√
1 − ξ2ωξ̃ induce a cubature formula on Bd exact for Πn(R

d).
The following proposition follows from results in [22] and [27].

Proposition 3.1. Let {B(ξ̃i, ρ) : i ∈ I} be a maximal family of disjoint spherical

caps of radius ρ = τ2−j with centers on the hemisphere S
d
+. Then for sufficiently

small 0 < τ ≤ 1 the set of points χj = {ξi : i ∈ I} obtained by projecting the

set {ξ̃i : i ∈ I} on Bd is a set of nodes of a cubature formula which is exact for

Π2j+2(Bd). Moreover, the coefficients ωξi of this cubature formula are positive and

ωξi ∼Wj(ξi)2
−jd. Also, the cardinality #χj ∼ 2jd.
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3.2.6 Needlets

Going back to identities (3.13) and (3.14) and applying the cubature formula
described in Proposition 3.1, we get

Aj(x, y) =

∫

Bd

Cj(x, z)Cj(z, y)dz =
∑

ξ∈χj

ωξCj(x, ξ)Cj(y, ξ) and

Bj(x, y) =

∫

Bd

Dj(x, z)Dj(z, y)dz =
∑

ξ∈χj

ωξDj(x, ξ)Dj(y, ξ).

We define the father needlets φj,ξ and the mother needlets ψj,ξ by

φj,ξ(x) =
√
ωξCj(x, ξ) and ψj,ξ(x) =

√
ωξDj(x, ξ), ξ ∈ χj, j ≥ 0.

We also set ψ−1,0 =
1

Bd

|Bd| and χ−1 = {0}. From above it follows that

Aj(x, y) =
∑

ξ∈χj

φj,ξ(x)φj,ξ(y), Bj(x, y) =
∑

ξ∈χj

ψj,ξ(x)ψj,ξ(y).

Therefore,

Ajf(x) =

∫

Bd

Aj(x, y)f(y)dy =
∑

ξ∈χj

〈f, φj,ξ〉φj,ξ =
∑

ξ∈χj

αj,ξφj,ξ, αj,ξ = 〈f, φj,ξ〉.

(3.17)
and

Bjf(x) =

∫

Bd

Bj(x, y)f(y)dy =
∑

ξ∈χj

〈f, ψj,ξ〉ψj,ξ =
∑

ξ∈χj

βj,ξψj,ξ, βj,ξ = 〈f, ψj,ξ〉.

(3.18)
By (3.17) and (3.6) we have

‖φj,ξ‖2
2 ≥ 〈Ajφj,ξ, φj,ξ〉 = 〈

∑

ξ′∈χj

〈φj,ξ, φj,ξ′〉φj,ξ′, φj,ξ〉 =
∑

ξ′∈χj

|〈φj,ξ, φj,ξ′〉|2 ≥ ‖φj,ξ‖4
2

and hence
‖φj,ξ‖2 ≤ 1. (3.19)

From (3.5) and the fact that
∑

j≥0 b(t2
−j) = 1 for t ∈ [1,∞), it readily follows

that
f =

∑

j≥−1

∑

ξ∈χj

〈f, ψj,ξ〉ψj,ξ, f ∈ L2(Bd),
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and taking inner product with f this leads to

‖f‖2
2 =

∑

j

∑

ξ∈χj

|〈f, ψj,ξ〉|2,

which in turn shows that the family {ψj,ξ} is a tight frame for L2(Bd) and conse-
quently

‖ψj,ξ‖2
2 ≥ ‖ψj,ξ‖4

2, i.e. ‖ψj,ξ‖2 ≤ 1. (3.20)

Observe that using the properties of the cubature formula from Proposition 3.1,
estimate (3.8) leads to the localization estimate (cf. [22]):

|φj,ξ(x)|, |ψj,ξ(x)| ≤ CM
2jd/2√

Wj(ξ)(1 + 2jd(x, ξ))M
∀M > 0. (3.21)

Nontrivial lower bounds for the norms of the needlets are obtained in [15]. More
precisely, in [15] it is shown that for 0 < p ≤ ∞

‖ψj,ξ‖p ∼ ‖φj,ξ‖p ∼
( 2jd

Wj(ξ)

)1/2−1/p

, ξ ∈ χj. (3.22)

We next record some properties of needlets which will be needed later on. For
convenience we will denote in the following by hj,ξ either φj,ξ or ψj,ξ.

Theorem 3.2. Let 1 ≤ p ≤ ∞ and j ≥ 1. The following inequalities hold

∑

ξ∈χj

‖hj,ξ‖pp ≤ c2j(dp/2+(p/2−2)+) if p 6= 4, (3.23)

∑

ξ∈χj

‖hj,ξ‖pp ≤ cj2jdp/2 if p = 4, (3.24)

and for any collection of complex numbers {dξ}ξ∈χj

‖
∑

ξ∈χj

dξhj,ξ‖p ≤ c
( ∑

ξ∈χj

|dξ|p‖hj,ξ‖pp
)1/p

. (3.25)

Here c > 0 is a constant depending only on d, p, and τ .

To make our presentation more fluid we relegate the proof of this theorem to
the appendix.
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3.3 Linear needlet estimator

Our motivation for introducing the estimator described below is the excellent ap-
proximation power of the operators Aj defined in §3.2.2 and its compatibility with
the Radon SVD. We begin with the following representation of the unknown func-
tion f

f =
∑

k,l,i

〈f, fk,l,i〉 fk,l,i,

where the sum is over the index set {(k, l, i) : k ≥ 0, 0 ≤ l ≤ k, l ≡ k(mod 2), 1 ≤
i ≤ Nd−1(l)}. Combining this with the definition of Aj we get

Ajf =
∑

ξ∈χj

〈f, φj,ξ(y)〉φj,ξ =
∑

ξ∈χj

αj,ξφj,ξ,

where

αj,ξ = 〈f, φj,ξ〉 =
∑

k,l,i

γj,ξk,l,i〈f, fk,l,i〉 =
∑

k,l,i

γj,ξk,l,i
1

λk
〈R(f), gk,l,i〉µ =

∑

k,l,i

γj,ξk,l,i
1

λk

∫
gk,l,iR(f)dµ.

Here γj,ξk,l,i = 〈fk,l,i, φj,ξ(y)〉 can be precomputed.

It seems natural to us to define an estimator f̂j of the unknown function f by

f̂j =
∑

ξ∈χj

α̂j,ξφj,ξ, (3.26)

where

α̂j,ξ =
∑

k,l,i

γj,ξk,l,i
1

λk

∫
gk,l,idY. (3.27)

Here the summation is over {(k, l, i) : 0 ≤ k < 2j, 0 ≤ l ≤ k, l ≡ k(mod 2), 1 ≤ i ≤
Nd−1(l)} and j is a parameter.

Some clarification is needed here. The father and mother needlets, introduced
in §3.2.6, are closely related but play different roles. Both φj,ξ and ψj,ξ have su-
perb localization, however, the mother needlets {ψj,ξ} have multilevel structure
and, therefore, are an excellent tool for nonlinear n-term approximation of func-
tions on the ball, whereas the father needlets are perfectly well suited for linear
approximation. So, there should be no surprise that we use the father needlets for
our linear estimator.

Furthermore, even if the needlets are central in the analysis of the estimator,
the estimator f̂j can be defined without them. Indeed,

f̂j =
∑

ξ∈χj

∑

k,l,i

γj,ξk,l,i
1

λk

∫
gk,l,idY φj,ξ
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as all the sum are finite, their order can be interchanged, yielding

f̂j =
∑

k,l,i

1

λk

∫
gk,l,idY

∑

ξ∈χj

γj,ξk,l,iφj,ξ =
∑

k,l,i

1

λk

∫
gk,l,idY Ajfk,l,i

and thus the estimator is obtained by a simple componentwise multiplication on
the SVD coefficients

f̂j =
∑

k,l,i

a
(
k
2j

)

λk

∫
gk,l,idY fk,l,i.

However, as will be shown in the sequel, the precise choice of this smoothing
allows to consider  Lp losses and precisely because of the localization properties
of the atoms this approach will be extended using a thresholding procedure in a
further work, using this time the mother wavelet.

4 The risk of the needlet estimator

In this section we estimate the risk of the needlet estimator introduced above in
terms of the Besov smoothness of the unknown function.

4.1 Besov spaces

We introduce the Besov spaces of positive smoothness on the ball as spaces of
Lp-approximation from algebraic polynomials. As in §3.2.3 we will denote by
En(f, p) the best Lp-approximation of f ∈ Lp(Bd) from Πn. We will mainly use
the notations from [15].

Definition 4.1. [15] Let 0 < s <∞, 1 ≤ p ≤ ∞, and 0 < q ≤ ∞. The space Bs,0
p,q

on the ball is defined as the space of all functions f ∈ Lp(Bd) such that

|f |Bs,0
p,q

=
(∑

n≥1

(nsEn(f, p))q
1

n

)1/q

<∞ if q <∞,

and |f |Bs,0
p,q

= supn≥1 n
sEn(f, p) <∞ if q = ∞. The norm on Bs,0

p,q is defined by

‖f‖Bs,0
p,q

= ‖f‖p + |f |Bs,0
p,q
.

Remark : From the monotonicity of {En(f, p)} it readily follows that

‖f‖Bs,0
p,q

∼ ‖f‖p +
(∑

j≥0

(2jsE2j (f, p))q
)1/q
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with the obvious modification when q = ∞. ⋆

There are several different equivalent norms on the Besov space Bs,0
p,q .

Theorem 4.2. With indexes s, p, q as in the above definition the following norms

are equivalent to the Besov norm ‖f‖Bs,0
p,q

:

(i) N1(f) = ‖f‖p + ‖(2js‖f − Ajf‖p)j≥0‖lq ,
(ii) N2(f) = ‖f‖p + ‖(2js‖Bjf‖p)j≥1‖lq ,

(iii) N3(f) = ‖f‖p + ‖(2js
∑

ξ∈χj

|〈f, ψj,ξ〉|p‖ψj,ξ‖pp)j≥−1‖lq .

Proof. The equivalence N1(f) ∼ ‖f‖Bs,0
p,q

is immediate from (3.12).

To prove that N2(f) ∼ N1(f), we recall that Bj = (Aj+1−Aj) (see §3.2.2) and
hence ‖Bjf‖p ≤ ‖f−Aj+1f‖p+‖f−Ajf‖p which readily implies N2(f) ≤ cN1(f).
In the other direction, we have

‖f − Ajf‖p = ‖
∞∑

l=j

Blf‖p ≤
∞∑

l=j

‖Blf‖p.

Assuming that N2(f) <∞ we have ‖Bl(f)‖p = αl2
−ls with {αl} ∈ lq. Hence

∞∑

l=j

‖Bl(f)‖p =

∞∑

l=j

αl2
−ls = 2−js

∞∑

l=j

αl2
−(l−j)s =: 2−jsβj

and by the convolution inequality {βj} ∈ lq. Therefore, N1(f) ≤ cN2(f).
For the equivalence N3(f) ∼ ‖f‖Bs,0

p,q
, see [15, Theorem 5.4].

4.1.1 Comparison with the “standard” Besov spaces

The classical Besov space Bs
p,q(B

d) is defined through the Lp-norm of the finite
differences:

∆hf(x) = (f(x + h) − f(x))1x∈Bd1x+h∈Bd

and in general

∆N
h f(x) = 1x∈Bd1x+Nh∈Bd

N∑

k=0

(−1)N−k
(
N

k

)
f(x+ kh).

Then the Nth modulus of smoothness in Lp is defined by

ωNp (f, t) = sup
|h|≤t

‖∆N
h f‖p, t > 0.
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For 0 < s < N , 1 ≤ p ≤ ∞, and 0 < q ≤ ∞, the classical Besov space Bs
p,q is

defined by the norm

‖f‖Bs
p,q

= ‖f‖p +
(∫ 1

0

[tsωNp (f, t)]q
dt

t

)1/q

∼ ‖f‖p +
( ∞∑

j=0

[2jsωNp (f, 2−j)]q
)1/q

with the usual modification for q = ∞. It is well known that the definition of Bs
p,q

does not depend on N as long as s < N [13]. Moreover, the embedding

Bs
p,q ⊆ Bs,0

p,q , (4.1)

is immediate from the estimate En(f, p) ≤ cωNp (f, 1/n) [13].

4.2 Upper bound for the risk of the needlet estimator

Theorem 4.3. Let 1 ≤ p ≤ ∞, 0 < s < ∞, and assume that f ∈ Bs,0
p,∞ with

‖f‖Bs,0
p,∞

≤ M . Let

f̂J =
∑

ξ∈χJ

α̂J,ξφj,ξ

be the needlet estimator introduced in §3.3, where J is selected depending on the

parameters as described below.

1. If M2−J(s+d) ∼ ε when p = ∞, thenE‖f − f̂J‖∞ ≤ c∞M
d

s+d
ε

s
s+d

√
logM/ε.

2. If M2−Js ∼ ε2J(d−2/p) when 4 ≤ p <∞, thenE‖f − f̂J‖pp ≤ cpM
(d−2/p)p
s+d−2/p ε

sp
s+d−2/p ,

where when p = 4 there is an additional factor ln(M/ε) on the right.

3. If M2−Js ∼ ε2J(d−1/2) when 1 ≤ p < 4, thenE‖f − f̂j‖pp ≤ cpM
(d−1/2)p
s+d−1/2 ε

sp
s+d−1/2 .

Remarks :

• It will be shown in a forthcoming paper that the following rates of conver-
gence are, in fact, minimax, i.e. there exist positive constants c1 and c2 such
that

sup
‖f‖

B
s,0
p,∞

≤M
inf

f̃ estimator
E‖f − f̃‖pp ≥ c1 max{ε

sp
s+d−2/p , ε

sp
s+d−1/2},

sup
‖f‖

B
s,0
∞,∞

≤M
inf

f̃ estimator
E‖f − f̃‖∞ ≥ c2ε

s
s+d

√
log 1/ε.
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• The case p = 2 above corresponds to the standard SVD method which in-
volves Sobolev spaces. In this setting, minimax rates have already been

established (cf. [7], [19] [4], [3], [26], [11], [9]); these rates are ε
2s

s+d−1/2 . Also,
it has been shown that the SVD algorithms yield minimax rates. These re-
sults extend (using straightforward comparisons of norms) to Lp losses for
p < 4, but still considering the Sobolev ball {‖f‖Bs,0

2,∞
≤ M} rather than

the Besov ball {‖f‖Bs,0
p,∞

≤ M}. Therefore, our results can be viewed as an
extension of the above results, allowing a much wider variety of regularity
spaces.

• The Besov spaces involved in our bounds are in a sense well adapted to our
method. However, the embedding results from Section 4.1.1 shows that the
bounds from Theorem 4.3 hold in terms of the standard Besov spaces as well.
This means that in using the Besov spaces described above, our results are
but stronger.

• In the case p ≥ 4 we exhibit here new minimax rates of convergence, related
to the ill posedness coefficient of the inverse problem d−1

2
along with edge

effects induced by the geometry of the ball. These rates have to be compared
with similar phenomena occurring in other inverse problems involving Jacobi
polynomials (e.g. Wicksell problem), see [14].

⋆

4.3 Proof of Theorem 4.3

Assume f ∈ Bs,0
p,∞ and ‖f‖Bs,0

p,∞
≤M . Then by Theorem 4.2,

‖Ajf − f‖p ≤ c‖f‖Bs,0
p,∞

2−js ≤ cM2−js. (4.2)

Now from
dY = Rfdµ+ εdW

we have
∫
gk,l,i dY =

∫

Z

Rf gk,l,i dµ+ ε

∫
gk,l,i dW =

∫

Bd

f R∗gk,l,i dx+ ε Zk,l,i

= λk

∫

Bd

f fk,l,i dx+ ε Zk,l,i

and hence
1

λk

∫
gk,l,i dY =

∫

Bd

f fk,l,idx+
ε

λk
Zk,l,i.
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On account of (3.27) this leads to

α̂j,ξ =
∑

k,l,i

γj,ξk,l,i

∫

Bd

ffk,l,idx+
∑

k,l,i

γj,ξk,l,i
ε

λk
Zk,l,i

= αj,ξ + Zj,ξ.

Here the summation is over {(k, l, i) : 0 ≤ k < 2j, 0 ≤ l ≤ k, l ≡ k(mod 2), 1 ≤ i ≤
Nd−1(l)}. Since Zk,l,i are independent N(0, 1) random variables, Zj,ξ ∼ N(0, σ2

j,ξ)
with

σ2
j,ξ = ε2

∑

k,l,i

|γj,ξk,l,i|2
(k)d

πd−12dk
≤ (2j)d−1

πd−12d
≤ c2j(d−1)ε2 (4.3)

with c = (d/2π)d−1. Here we used that {fk,l,i} is an orthonormal basis for L2 and

hence
∑

k,l,i |γj,ξk,l,i|2 = ‖φj,ξ‖2
2 ≤ 1.

From (3.26) f̂j =
∑

ξ∈χj
α̂j,ξφj,ξand using (4.2) we have, whenever 1 ≤ p <∞,E‖f − f̂j‖pp ≤ 2p−1{‖f −Ajf‖pp +E‖Ajf − f̂j‖pp}
≤ 2p−1{cMp2−jsp +E‖Ajf − f̂j‖pp} (4.4)

and, for p = ∞, E‖f − f̂j‖∞ ≤ ‖f − Ajf‖∞ +E‖Ajf − f̂j‖∞
≤ cM2−js +E‖Ajf − f̂j‖∞. (4.5)

On the other hand, using inequality (3.25) of Theorem 3.2 we obtain, if 1 ≤ p <∞,

‖Ajf − f̂j‖pp = ‖
∑

ξ∈χj

(αj,ξ − α̂j,ξ)φj,ξ‖pp ≤ c
∑

ξ∈χj

|αj,ξ − α̂j,ξ|p‖φj,ξ‖pp

and henceE‖Ajf − f̂j‖pp ≤ c
∑

ξ∈χj

E|Zj,ξ|p‖φj,ξ‖pp ≤ c(ε2j(d−1)/2)p
∑

ξ∈χj

‖φj,ξ‖pp, (4.6)

where we used that E|Zj,ξ|p ≤ c(ε2j(d−1)/2)p. Similarly, for p = ∞,

‖Ajf − f̂j‖∞ = ‖
∑

ξ∈χj

(αj,ξ − α̂j,ξ)φj,ξ‖∞ ≤ cmax
ξ∈χj

|αj,ξ − α̂j,ξ|‖φj,ξ‖∞

and henceE‖Ajf − f̂j‖∞ ≤ cE{max
ξ∈χj

|Zj,ξ|‖φj,ξ‖∞}

≤ cε2j(d−1)/2 max
ξ∈χj

‖φj,ξ‖∞
√

2 log2 2jd ≤ cε2jd
√
j. (4.7)
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For the second inequality above we used Pisier’s lemma: If Zj ∼ N(0, σ2
j ), σj ≤ σ,

then E( sup
1≤j≤N

|Zj|) ≤ σ
√

2 log2N.

We also used that maxξ∈χj
‖φj,ξ‖∞ ≤ c2j(d+1)/2, which follows by inequality (3.23)

of Theorem 3.2.
Combining (4.5) and (4.7) we obtain, for p = ∞,E‖f − f̂j‖∞ ≤ c{M2−js + ε2jd

√
j}

and if M2−j(s+d) ∼ ε, thenE‖f − f̂j‖∞ ≤ cM
d

s+dε
s

s+d

√
logM/ε.

Similarly, combining estimate (3.23) of Theorem 3.2 with (4.6) and inserting the
resulting estimate in (4.4) we obtain in the case 4 ≤ p <∞E‖f − f̂j‖pp ≤ c{M2−jsp + (ε2j(d−1)/2)p2jdp/2+p/2−2}

= c{Mp2−jsp + εp2j(dp−2)}.

If M2−js ∼ ε2j(d−2/p) this yieldsE‖f − f̂j‖pp ≤ cM
(d−2/p)p
s+d−2/p ε

sp
s+d−2/p .

Accordingly, for p = 4 we combine inequality (3.24) with (4.6) and insert the result
in (4.4) to obtainE‖f − f̂j‖pp ≤ c{Mp2−jsp + (ε2j(d−1)/2)pj2jdp/2}

= c{Mp2−jsp + j(ε2j(d−1/2)p}

and if M2−js ∼ ε2j(d−1/2) this yieldsE‖f − f̂j‖pp ≤ cM
(d−2/p)p
s+d−2/p ε

sp
s+d−1/2 logM/ε.

Finally, if 1 ≤ p < 4 as above we obtain using (3.23), (4.6), and (4.4)E‖f − f̂j‖pp ≤ c{Mp2−jsp + (ε2j(d−1)/2)p2jdp/2}
= c{Mp2−jsp + (ε2j(d−1/2)p}.

So, if M2−js ∼ ε2j(d−1/p), thenE‖f − f̂j‖pp ≤ cM
(d−1/2)p
s+d−1/2 ε

sp
s+d−1/2 .

This completes the proof of the theorem.
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Figure 3: Simplified CAT device

5 Application to the Fan Beam Tomography

5.1 Radon and 2d Fan Beam Tomography

We have implemented this scheme for d = 2 in the radiological setting of Cormack[5].
This case corresponds to the fan beam Radon transform used in Computed Axial
Tomography (CAT). As shown if Figure 3, an object is positioned in the middle of
the device. X rays are sent from a pointwise source S(θ1) located on the boundary
and making an angle θ1 with the horizontal. They go through the object and are
received on the other side on uniformly sampled array of receptors R(θ1, θ2). The
log decay of the energy from the source to a receptor is proportional to the integral
of the density f of the object along the ray and thus one finally measures

R̃f(θ1, θ2) =

∫

eθ1
+λeθ1−θ2

∈B2

f(x)dλ

with eθ = (cos θ, sin θ) or equivalently the classical Radon transform

Rf(θ, s) =

∫

y∈θ⊥
sθ+y∈B1

f(sθ + y)dy, θ ∈ S1, s ∈ [−1, 1],

for θ = θ1 − θ2 and s = sin θ2. The device is then rotated to a different angle
θ1 and the process is repeated. Note that dθ ds

(1−s2) is nothing but the measure

corresponding to the uniform dθ1dθ2 by the change of variable that maps (θ1, θ2)
into (θ, s).

The Fan Beam Radon SVD basis of the disk is tensorial in polar coordinates:

fk,l,i(r, θ) = (2k+ 2)1/2P
(0, l)
j (2|r|2 − 1)|r|lYl,i(θ), 0 ≤ l ≤ k, k− l = 2j, 1 ≤ i ≤ 2,

where P 0,l
j is the corresponding Jacobi polynomial, and Yl,1(θ) = cl cos(lθ) and

Yl,2(θ) = cl sin(θ) with c0 = 1√
2π

and cl = 1√
π

otherwise. The basis of S2 × [−1, 1]
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has a similar tensorial structure as it is given by

gk,l,i(θ, t) = [hk]
−1/2(1 − t2)1/2C1

k(t)Yl,i(θ), k ≥ 0, l ≥ 0, 1 ≤ i ≤ 2,

where C1
k is the Gegenbauer of parameter 1 and degree k. The corresponding

eigenvalues are

λk =
2
√
π√

k + 1
.

In this paper, we have considered the theoretical framework of the white noise
model. In this model, we assume that we have access to the noisy “scalar product”∫
gk,l,idY , that is to the scalar product of Rf with the SVD basis gkl,i up to a i.i.d.

centered Gaussian perturbation of known variance ǫ2. This white noise model is
a convenient statistical framework closely related to a more classical regression
problem with a uniform design on θ1 and θ2, which is closer to the implementation
in real devices. In this regression design, one observe

Yi1,i2 = Rf

(
2π

(
i1
N1

− i2
N2

)
, sin 2π

i2
N2

)
+ ǫi1,i2 , i1 ≤ N1, i2 ≤ N2

where N1 and N2 gives the discretization level of the angles θ1 and θ2 and ǫi1,i2 is
an i.i.d. centered Gaussian sequence of known variance σ2. Note that this points
are not cubature points for the SVD coefficients. The correspondence between the
two model is obtain by replacing the noisy scalar product

∫
gk,l,idY with by the

corresponding Riemann sum

̂〈Rf, gk,l,i〉 =
1

N1 ×N2

N1−1∑

i1=0

N2−1∑

i2=0

gk,l,i

(
2π

(
i1
N1

− i2
N2

)
, sin 2π

i2
N2

)
Yi1,i2

and using the calibration ǫ2 = σ2/(N1 ×N2). It is proved, for instance in [2] that
the regression model with uniform design and the white noise model are close in
the sense of Le Cam’s deficiency -which roughly means that any procedure can
be transferred from one model to the other, with the same order of risk-. The
estimator f̂j defined in the white noise model by

f̂j =
∑

k,l,i

a
(
k
2j

)

λk

∫
gk,l,idY fk,l,i =

∑

k,l,i

a
(
k
2j

)√
k + 1

2
√
π

∫
gk,l,idY fk,l,i

is thus replaced in the regression model by

f̂j =
∑

k,l,i

a
(
k
2j

)

λk
̂〈Rf, gk,l,i〉 fk,l,i =

∑

k,l,i

a
(
k
2j

)√
k + 1

2
√
π

̂〈Rf, gk,l,i〉 fk,l,i .
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5.2 Numerical results

To illustrate the advantages of the linear needlet estimator over the linear SVD
estimator, we have compared their performances on a synthetic example, the clas-
sical Logan Shepp phantom[23], for different Lp norm and different noise level, and
for both the white noise model and the regression model. The Logan Shepp phan-
tom is a synthetic image used as a benchmark in the tomography community. It is
a simple toy model for human body structures simplified as a piecewise constant
function with discontinuities along ellipsoids (see Figure 6). This example is not
regular in a classical sense. Indeed, it belongs to B1,0

1,1 but not to any Bs,0
p,q with

s > 1.
To conduct the experiments, we have adopted the following scheme. Denote

by f of the Logan Shepp function presented above, its decomposition in the SVD
basis fk,l,i up to degree k̃ = 512 has been approximated with an initial numerical
quadrature χ valid for polynomial of degree 4 × k̃ = 2048,

〈f, fk,l,i〉 ≃
∑

(ri,θi)∈χ
ω(ri,θi)f(ri, θi)fk,l,i(ri, θi) = ck,l,i

and used this value to approximate the original SVD coefficients of R(f), the
noiseless Radon transform of f ,

〈R(f), fk,l,i〉 ≃ λkck,l,i.

In the white noise setting, for all k ≤ k0 = 256, a noisy observation
∫
gk,l,idY

is generated by ∫
gk,l,idY ≃ λkck,l,i + ǫWk,l,i

where ǫ is the noise level and Wk,l,i a iid sequence of standard Gaussian random

variables. Our linear needlet estimator f̂J of level J = log2(kN) is then computed
as

f̂J =
∑

k≤k0,l,i
a

(
k

2J

)
(ck,l,i +

ǫ

λk
Wk,l,i)fk,l,i

while the linear SVD estimator f̂SkS of degree kS is defined as

f̂SkS =
∑

k≤kS,l,i

(ck,l,i +
ǫ

λk
Wk,l,i)fk,l,i.

We also consider the naive inversion up to degree k0 f̂
I which is equal to f̂Sk0 . The

Lp estimation error is measured by reusing the initial quadrature formula,

‖f − f̂‖p ≃
∑

(ri,θi)∈χ
ω(ri,θi)|f(ri, θi) − f̂(ri, θi)|p.
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In the regression setting, we have computed the values of the Radon transform
Rf of f on a equispaced grid for the angles θ1 and θ2 specified by its sizes N1 and
N2 using its SVD decomposition up to k = k̃ = 512. We have then defined the
noisy observation as

Yi1,i2 = (Rf

(
2π

(
i1
N1

− i2
N2

)
, sin 2π

i2
N2

)
+ ǫi1,i2

with ǫi1,i2 an i.i.d. centered Gaussian sequence of known variance σ2. The esti-
mated SVD coefficients are obtained through the Riemann sums

̂〈Rf, gk,l,i〉 =
1

N1 ×N2

N1−1∑

i1=0

N2−1∑

i2=0

gk,l,i

(
2π

(
i1
N1

− i2
N2

)
, sin 2π

i2
N2

)
Yi1,i2 .

We plug then these values instead of the
∫
gk,l,idY in the previous estimators.

For each noise level and each norm, the best level J and the best degree K
has been selected as the one minimizing the average error over 50 realizations of
the noise. Figure 4 displays, in a logarithmic scale, the estimation errors ‖f − f̂‖p
in the white noise model plotted against the logarithm of the noise level ǫ. It
shows that, except for the very low noise case, both the linear SVD estimator and
the linear Needlet estimators reduce the error over a naive inversion linear SVD
estimate up to the maximal available degree k0. They also show that the Needlet
estimator outperforms the SVD estimator in a large majority of cases from the
norm point of view and almost always from the visual point of view as shown in
Figure 6. The localization of the needlet also ’localizes’ the errors and thus the
“simple” smooth regions are much better restored with the needlet estimate than
with the SVD because the errors are essentially concentrated along the edges for
the needlet. Remark that the results obtained for the regression model in Figure 5
are similar. We have plotted, in a logarithmic scale, the estimation errors against
the logarithm of the equivalent of the noise ǫ2 in the regression σ2/(N1 ×N2) with
N1 = N2 = 64 and various σ2. Observe that the curves are similar as long as σ2 is
not too small, i.e. as long as the error due to the noise dominate the error due to
the discretization. As can be seen both analysis do agree. This confirms the fact
that the white noise model analysis is relevant for the corresponding fixed design.

A fine tuning for the choice of the maximum degree is very important to obtain
a good estimator. In our proposed scheme, and in the Theorem, this parameter
is set by the user according to some expected properties of the unknown function
or using some oracle. Nevertheless, an adaptive estimator, which does not require
this input, can already be obtained from this family, for example, by using some
aggregation technique. A different way to obtain an adaptive estimator based on
thresholding is under investigation by some of the authors.
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Figure 4: Error decay in the white noise model: the red curve corresponds to the
needlet estimator and the black one to the SVD estimator.
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Figure 5: Error decay in the regression model: the red curve corresponds to the
needlet estimator and the black one to the SVD estimator.
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Original (f) Inversion (f̂ I)

Needlet (f̂N26 ) SVD (f̂D25)

Figure 6: Visual comparison for the original Logan Shepp phantom with ǫ = 8
(Low quality figure due to arXiv constraint)
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6 Appendix

6.1 Proof of identity (2.11)

From [20, p. 99] with some adjustment of notation, we have

λ2
k =

|Sd−2|π(d−1)/2

Γ
(
d+1
2

)
C
d/2
k (1)C

(d−2)/2
l (1)

∫ 1

−1

C
d/2
k (t)C

(d−2)/2
l (t)(1 − t2)(d−3)/2dt,

where 0 ≤ l ≤ k and l ≡ k (mod 2). As will be seen shortly λk is independent of l.
We will only consider the case d > 2 (the case d = 2 is simpler, see [20, p.

99]). To compute the above integral we will use the well known identity (cf. [25,
(4.7.29)])

(n+ λ)Cλ
n(t) = λ(Cλ+1

n (t) − Cλ+1
n−2(t)).

Summing up these identities (with indices n, n − 2, . . . ) and taking into account
that Cλ

0 (t) = 1, Cλ
1 (t) = 2λ(t), we get

Cλ+1
n (t) =

⌊n/2⌋∑

j=0

n− 2j + λ

λ
Cλ
n−2j(t). (6.1)

This with λ = (d − 2)/2 and the orthogonality of the polynomials C
(d−2)/2
n (t),

n ≥ 0, yield
∫ 1

−1

C
d/2
k (t)C

(d−2)/2
l (t)(1 − t2)(d−3)/2dt =

l + λ

λ

∫ 1

−1

[C
(d−2)/2
l (t)]2(1 − t2)(d−3)/2dt

=
l + λ

λ
h

(λ)
l =

(l + λ)21−2λπ

λΓ(λ)2

Γ(l + 2λ)

(l + λ)Γ(l + 1)
.

We use this and that Cλ
n(1) = Γ(n+2λ

n!Γ(2λ)
(see §2.3.1) and |Sd−2| = 2π(d−1)/2

Γ((d−1)/2)
to obtain

λ2
k =

2πd−1

Γ
(
d−1
2

)
Γ
(
d+1
2

) k!Γ(d)l!Γ(d− 2)

Γ(k + d)Γ(l + d− 2)

24−dπ

(d− 2)Γ
(
d−2
2

)2

Γ(l + d− 2)

Γ(l + 1)

=
25−dπd

Γ
(
d−1
2

)
Γ
(
d+1
2

) Γ(d)Γ(d− 2)

(d− 2)Γ
(
d−2
2

)2

1

(k + 1)d−1
. (6.2)

The doubling formula for Gamma-function says: Γ(2z) = 22z−1
√
π

Γ(z)Γ(z + 1) (see

e.g. [25]) and hence

Γ(d)Γ(d−2) = (d−1)(d−2)Γ(d−2)2 =
22(d−3)

π
(d−1)(d−2)Γ

(d− 2

2

)2

Γ
(d− 1

2

)2

.

We insert this in (6.2) and then a little algebra shows that λ2
k = 2dπd−1

(k+1)d−1
.
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6.2 Proof of Theorem 3.2

For the proof of estimates (3.23)-(3.24) we first note that by (3.3)

∑

ξ∈χj

‖hj,ξ‖pp ≤ c2jdp/22−jd
∑

ξ∈χj

1
(
2−j +

√
1 − |ξ|2

)p/2−1

and we need an upper bound for Ωr := 2−jd∑
ξ∈χj

1(
2−j+

√
1−|ξ|2

)r . To this end,

we will use the natural bijection between Bd and Sd+ considered in the remark in

§3.2.2. Thus for x ∈ Bd we write x̃ = (x,
√

1 − |x|2) ∈ Sd+. Let p̃ = (0, 1) be

the ”north pole” of Sd. For ξ̃ ∈ χj we denote by BSd(ξ̃, ρ) is the geodesic ball
on Sd of radius ρ centered at ξ̃, i.e. BSd(ξ̃, ρ) := {x̃ ∈ Sd : dSd(x̃, p̃) < ρ}, where
dSd(x̃, p̃) = Arccos (

√
1 − |x|2) = Arccos 〈x̃, p̃〉 is the geodesic distance between

x̃, p̃. Using that ||u| − |ξ|| ≤ |〈ũ, p̃〉 − 〈ξ̃, p̃〉| ≤ dSd(ξ̃, ũ) ≤ ρ for ũ ∈ BSd(ξ̃, ρ), and
ρ = τ2−j ≤ 2−j (see Proposition 3.1), it follows that

1

2−j +
√

1 − |ξ|2
≤ 2

2−j +
√

1 − |u|2
=

2

2−j + 〈ũ, p̃〉 ∀ũ ∈ BSd(ξ̃, ρ).

On the other hand, we have |BSd(ξ̃, ρ)| = |Sd−1|
∫ ρ

0
(sin θ)d−1dθ ≥ ρd|Sd−1| 2d−1

dπd−1

with |Sd−1| = 2πd/2

Γ(d/2)
. We use the above and the fact that the balls {BSd(ξ̃, ρ)}ξ∈χj

are disjoint to obtain

Ωr ≤ 2−jd
∑

ξ∈χj

1

|BSd(ξ̃, ρ)|

∫

BSd (ξ̃,ρ)

1

(2−j + 〈ũ, p̃〉)rdσ(ũ)

≤ c

∫Sd
+

1

(2−j + 〈ũ, p̃〉)r dσ(ũ) ≤ c|Sd−1|
∫ π/2

0

(sin θ)d−1

(2−j + cos θ)r
dθ

≤ c

∫ π/2

0

sin θ

(2−j + cos θ)r
dθ = c

∫ 1

0

1

(2−j + t)r
dt ≤ c(d, τ, r)

∫ 2

2−j

t−rdt.

This yields estimates (3.23)-(3.24).
We now turn to the proof of estimate (3.25). We will employ the maximal

operator Mt (t > 0), defined by

Mtf(x) := sup
B∋x

(
1

|B|

∫

B

|f(y)|tdy
)1/t

, x ∈ Bd, (6.3)

where the sup is over all balls B ⊂ Bd with respect to the distance d(·, ·) from (3.9)
containing x. It is easy to show that (see §2.3 in [15]) the Lebesgue measure onBd is
a doubling measure with respect to the distance d(·, ·). Hence the general theory
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of maximal operators applies. In particular, the Fefferman-Stein vector-valued
maximal inequality is valid: If 0 < p <∞, 0 < q ≤ ∞, and 0 < t < min{p, q} then
for any sequence of functions {fν}ν on Bd

‖(
∞∑

ν=1

|Mtfν(·)|q)1/q‖p ≤ c‖(
∞∑

ν=1

|fν(·)|q)1/q‖p. (6.4)

Denote by B(ξ, r) the projection of BSd(ξ̃, r) onto Bd, i.e. B(ξ, r) := {x ∈ Bd :
d(x, ξ) < r}. By [15, Lemma 2.5], we have

(Mt1B(ξ,r))(x) ≥ c
(

1 +
d(ξ, x)

r

)−(d+1)/t

, ξ ∈ Bd, 0 < r ≤ π. (6.5)

It is easy to see (cf. [15]) that

|B(ξ, ρ)| ∼ 2−jd(2−j +
√

1 − |ξ|2) ∼ 2−jdWj(ξ), ξ ∈ χj. (6.6)

Also, we let 1̃E := 1
|E|1E denote the L2-normalized characteristic function of E ⊂

Bd. Then (3.21) and (6.6) imply

‖hj,ξ‖p ∼ ‖1̃B(ξ,ρ)‖p, ξ ∈ χj . (6.7)

Now, pick 0 < t < 1 and M > (d+ 1)/t. From (3.21) and (6.5) it follows that

|hj,ξ(x)| ≤ c(Mt1̃B(ξ,ρ))(x), x ∈ Bd. (6.8)

Using this, the maximal inequality (6.4), and (6.7) we obtain

‖
∑

ξ∈χj

dξhj,ξ‖p ≤ c‖
∑

ξ∈χj

Mt(dξ1̃B(ξ,ρ))‖p ≤ c‖
∑

ξ∈χj

dξ1̃B(ξ,ρ)‖p

≤ c
( ∑

ξ∈χj

‖dξ1̃B(ξ,ρ)‖pp
)1/p

≤ c
( ∑

ξ∈χj

‖dξhj,ξ‖pp
)1/p

.

This completes the proof of (3.25).
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