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Assessment of Texture Stationarity

using the Asymptotic Behavior of the Empirical

Mean and Variance

Rémy Blanc, Jean-Pierre Da Costa, Youssef Stiteuré®Baylou, and Christian GermaMember, IEEE

Abstract— Given textured images considered as realizations
of 2-D stochastic processes, a framework is propabeto
evaluate the stationarity of their mean and variane. Existing
strategies focus on the asymptotic behavior of thempirical
mean and variance (respectively EM and EV), knowndr some

types of non deterministic processes. In this papgrthe
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theoretical asymptotic behaviors of the EM and EV ee studied
for large classes of second order stationary ergatliprocesses,
in the sense of the Wold decomposition scheme, inding
harmonic and evanescent processes. Minimal rates of
convergence for the EM and the EV are derived for lese
processes; they are used as criteria for assessinte
stationarity of textures. The experimental estimatn of the
rate of convergence is achieved using a non paramet block
sub-sampling method. Our framework is evaluated on
synthetic processes with stationary or non statiomg mean and
variance and on real textures. It is shown that anmalies in the
asymptotic behavior of the empirical estimators abbw detecting
non stationarities of the mean and variance of therocesses in

an objective way.

Index Terms—Image Analysis, Stationarity, Texture, Wold

Decomposition



I. INTRODUCTION

M ANAGING texture in image analysis tasks such as
segmentation, classification or indexation gengrall
requires the description of its statistical prosrt(e.g.
[11[2][3]1[4][5]). Not only first-order but also semnd- and
higher-order statistics have long been proved fluénce
texture perception and to efficiently help in maehbased
texture recognition (e.g. [1][6][7]). The mean avatiance
of pixel intensity are first order statistics, weas
autocovariance, co-occurrences [1] or multidimemasio
histograms [2] can be used efficiently as textugsctiptors
of the second and higher order.

In many practical cases, the estimation of suctistital
features is performed on one single, finite sampkge and
thus requires the double assumption of stationaaity
ergodicity of the underlying 2-D random process. r&lo
precisely, stationarity and ergodicity must be essd for
every statistical moment of interest. For instarmesecond
order stationary-ergodic processes, the estimatain
moments up to the second order, e.g. mean, variande
autocovariance, can be performed by spatial average
provided that a spatially infinite sample is aviliiég which
of course is illusory in practice. As a consequerit¢he
image is not stationary, the estimated statisfealures are
irrelevant and useless. A segmentation of the imate
several homogeneous regions is then required tairobt

relevant descriptive features, unless the featstesvly

evolve over the image, e.g. in presence of a datestic

trend, which would then have to be estimated antbved.
On the contrary, statistical features estimated stationary
region are representative not only of the obselneae,
but of any realization of its underlying random gess, and
can thus be used as a basis for comparing texténas.
example, Stoica et al. [3][4] propose a method for
measuring a distance between stationary textureg ws
parametric representation based on the Wold decsitigo

[8], which is employed in an indexing and retrieval
application, but also for segmentation purposesinba
advantage of the image stationarity, Blanc et9lejaluate
approximate confidence intervals for estimating thge
fiber fraction of a composite material based on the
observation of a single image.

Criteria employed to decide whether an image is
stationary or not are often empirical and rely deual
inspection, thus introducing a high degree of sutbjity in
the decision. That is the reason why, in pracstatjonarity
is generally presupposed. However, a few authorse ha
proposed some objective criteria to study the mtatity
and the ergodicity of textures. For instance in][10
ergodicity is assumed if the sample size is greduan the
integral range, i.e. the integral of the normalized
autocovariance. In such a case, the image sampléebea
considered as representative of the random prodées.
ergodicity can then be verified provided that saber
realizations of the 2-D image process are availallech

seldom occurs in real-life image processing. Intiast,

some tests of second order stationarity of spptiatesses



have been proposed, which rely on the covariarmcetste
[11], on spectral methods [12] or on the asymptotic
distribution of spatial spectral estimates [13].

For a few decades, numbers of studies have dehlthe
estimation of statistical moments on second order
stationary-ergodic 2-D processes. For instancejowsr
methods aim at drawing inferences for the sta#ikticean,
by providing measures of its estimation variancg, &y the
way, of its uncertainty. Such methods are basdtteibn
geostatistical concepts [14][15] or on image suidang,
re-sampling or on block-bootstrap; see [16]-[20he3e
approaches, though meant to measure the uncertaititg
estimation of statistical moments, can be usedvauate
their stationarity since the asymptotic behavior théir
estimation variance closely depends on their homeige

In the present paper, we deal with textured images
considered as realizations of 2-D stochastic psEes
sampled on a regular grid and propose a framework t
analyze the stationarity of their mean and variaimcean
objective way. The proposed strategy consists mpawing
the asymptotic behavior of their estimation varath
the theoretical behaviors of standard processéiseirsense
of Wold’'s decomposition i.e. stochastic, harmonicd a
evanescent processes [8][4][5]. As any stationarydom
process can be decomposed as a sum of such praciwgse
established standard behaviors are used as reésrdnc
discuss the assumption of stationarity.

The manuscript is organized as follows. Sectioaci$es

on the empirical mean (EM) and empirical variare¥)(as

estimators of the mean and variance of a spatiatgss.
Theoretical expressions of their variance are givien
section 3, we provide the asymptotic laws of the BRI
EV for second order stationary ergodic procesduitiog
harmonic and evanescent processes. In sectionidha&ss
of the variance of the EM and EV are proposed;rthei
asymptotic behavior is studied on image samplegsrgéed
according to Wold's decomposition. Finally, in sent5,
our strategy for stationarity assessment is preserit is
applied to synthetic processes with stationary awod
stationary mean and variance and to various realres.
Conclusions are then drawn and possible extensibiise

method are discussed.

Il.  ESTIMATION OF THE MEAN AND OF THE VARIANCE OF
SPATIAL PROCESSES

We consider a random proceg$.) in d dimensions. We
assume that a single realizatia(.) of Z(.) is available.
z(.) is known only on a finite humbeX of points. In an
image analysis context, the setMfpoints corresponds to
the vertices of the regular lattice, or windéwN is also the
Lebesgue measure of this set. For shorter notatienyill
simply write Z=2Z(u) at an unspecified pointu,
Z =Z(u) and z = Zu)

respectively for the random

process and for its available realization at thecsjc point



A. Estimation of the Mean of a Spatial Process
Let p(u)=E[Z(u)] be the mathematical expectation

(i.e. the mean) ofZ(u) and &(N) be the sample mean

computed on the spatial sample of dize

. 1<
N)=— AR 1
A(N) N;z D)
If Z(.) is first-order stationaryu(u) = i is invariant by
translation. The sample meariz(N) is an unbiased
estimator of x. Herein, it will also be denoted EM

(Empirical Mean). Its variance can be expressddlbsvs:

'\:IL |;1 j;l . (2)
wESeotns

where Cov( Z, ;) is the covariance for the two points
and u;, see [10].

If the Z, are independently and identically distributed
(i.i.d.), this equation reduces to the classica@lregsion:
0.2

: 3

where g? is the variance of the process.

Var(g, (N)) =

In the non iid. case, the evaluation war(z(N))
requires the knowledge of the covarian@ov(Z, Z)
between any pair of sites in the observation windféwror
second order stationary processerv(Z, ;) is

translation invariant:

wheré =

Cov(Z, Z)= Coxh),
Equation 4 then yields:

u - U,

4

var(z(N)) Z ¢, (h) Coyh) , (5)

where ¢, (h) is the number of pairs of points W that are

separated by, also called the geometric covariogram, e.g.
[22]. Under 3% order stationarity and ergodicity, the

autocovarianceCovh) can be estimated using spatial
averages, thus providing an estimationvai (Z2(N)). This

approach will be discussed, later on, in section 4.

B. Estimation of the Variance of a Spatial Process

A simple estimator of the variance of the spatiacpss

Z(.) is the empirical variance:

N 1
2(N)—— (z (N (6)
From now on, it will also be denoted EV (empirical

variance). The calculation of the mathematical etqien

and variance of this estimator is tractable anttigie

loml=t M-y ez
-0 —Var([/( )
and
var(a2(N))=—* )2 (Z Ri ~ Z R
i le (8)

=) R,kl]—(E[ai( N])

ikl
wherei, j k| O{1,.. N} andR, =E[2Z 7 7].

When the spatial realizations are i.i.dg?(N) is
unbiased and its variance tends to zero wKencreases,

provided that the momen&|[z*] and E[Z3] are finite:
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Var (62, (N) =22
d N _1 (9)

+%(E[z4] —apEl 2] - 30+ 3t + euo )
which simplifies to20* (N -1)"" in the Gaussian case.

The formula ofvar(62(N)), see (8), involves moments

of the 4" order. Stationarity and ergodicity up to th8 4
order are thus required to estimate such momeritgy us
spatial averages. Even then, their estimation espihe use

of algorithms of high computational complexity.

Ill.  VARIANCE OF THEEM AND EV: ASYMPTOTIC

BEHAVIOR ONWOLD PROCESSES

A. Wold Decomposition of Stationary Random Processes

We restrict here to the case of 2-dimensional s#con
order stationary random processes. According todWol
decomposition [8][4][5], any such process is thensaf a
purely stochastic component with an absolutely inoous
spectrum, a finite number of harmonic componentd an
finite number of evanescent components. All harmamd
evanescent components are singular on the spedinutime
following, we investigate the variances of the ENO&EV
on second order stationary processes following\Wired
decomposition. More specifically, we are interesiedhe
asymptotic behavior of these variances. We consider

discrete rectangular windows W of sidds, and L,.

N = L, L, data points are thus available.

B. The Stochastic Component

In [10], it is assessed that the estimation ofrtiean of a

stationary ergodic process is reliable when thegiral
rangeA is finite i.e. when the process exhibits weak igpat

dependences:

_ 1.
A—?JJEnMJWCO\(h) th< o, (10)
where ¢? is the variance of the process. If the covariance
tends to zero as the modulus of h increases,#0 and if
the sample sizBl is much larger thaA, then the variance of

the EM of a stationary ergodic random process has t

following asymptotic behavior:

Var([z(N))~%.

Experiments using synthetic processes show that the

(11)

asymptotic behavior can be observed when the irsageis

about a hundred times larger than the integralea§lO].
If A=0, the decrease oWar(i(N)) is faster, see

sections [II.C and Ill.D hereafter. In the case mdn

deterministic stationary processes with long range
dependences, i.e. infinite integral range, the elese of the
variance is slower. In such a case, the validity thudé
stationary ergodic assumption for the available @ancan

be questioned [10]. Such processes will not beidensd
here.

Besides, we have studied the asymptotic behavidheof
variance of the EV, i.eVar(42(N)). Formal calculations,

not reported in this manuscript, have shown thdefends
on the convergence of integrals of fourth order mois In

the case of weak spatial dependences, i.e. witle fimegral

range, it was shown thavar(42(N)) asymptotically



decreases abl™*:

Var(&z(N))~%, aOR". (12)

C. The Harmonic Component
A harmonic process can be defined at any p(xely) as

follows:

Z(x y) = asin(27( § x+ § y)+g),
where the phaseg

(13)
is a real valued random variable

whereas the amplitude a and the frequendigsand f,

along the two axes are constant parameters. Fdr auc
harmonic process, the variance of the EM has been

expressed as:

. _a’sin®(mrf, L, ) sin’(7rf,L,)
var(a(N)) = 2sir? (7rf, ) sirf (7f, ) L2L2
and L, are the horizontal and vertical

(14)

where L,
dimensions of the sampIeVar([/(N)) thus decreases

asymptotically asN ™ if neither f, nor f, are zero.
On the contrary, if the harmonic process is vertma

horizontal, Var(,El(N)) decreases ad;’ (respectively

L?). For square samples, ie.L, =L, =N"?,

var(/1(N)) thus decreases a¢™.

Similar calculations lead to the variance of the EV

o _a*sin®(2rf, Ly ) sirf ( 2rf, L)
var(9*(N)) = gsir? ( 2rrf, ) sirt ( 2rf, ) L5L2

GG

which asymptotically decreases Ks” .

(15)

D. The Stochastic Component

An evanescent process can be written as a conpositi

two orthogonal 1-D processes:

Z(x Y)=T(ax+ B ysin(21(B xa y +¢), (16)
where T(.) is a 1-D stochastic process orthogonal to the

direction of the 1-D harmonic proce$snd 8 = tan(a /)

are respectively the frequency and the directionthaf

harmonic part. The phase¢ is a real valued random

variable.

Theoretical derivations have been carried out when
a=1, =0, T() and ¢ are independent white noises,
following respectively a normal distribution of megz and
variance g® and a uniform distribution on the interval

[0, 271] . We found the following variance of the EM:

(0% +u?) _sin?(mfL,)

Var(z(N)) = , 17
(a(N) 2sint (mf) L2 7
and the variance of the EV :
2 2 2
var(62(N)) =< (0% +21) (1) (18)
2L, L, L,

Contrary to the harmonic case, the asymptotic Bovaot
depend on the directio@ of the process. In the case of

square samples, the variances of the EM and EV thus

asymptotically decrease ad™¥? and N2 respectively.
These results were verified experimentally evethancase
whereT was a colored noise with small range dependences,

i.e. an autoregressive process, see the follovéntic.

IV. EXPERIMENTAL ESTIMATION OF THE VARIANCE OF THE

EM AND EV.
In this section, we propose estimators fear(2(N))

and Var(6%(N)) i.e. for the variance of the EM and EV.



These estimators are then used to verify the ttieate

results of section 3.

A. Estimating the variances of the EM and EV

Geostatistics-based methods

As shown by (5), the variance of the empirical mean
estimator, i.e.Var(,Zl(N)), can be expressed using the

autocovariance. Estimating this variance is thesside
provided that an estimator of the autocovarianselfitis
available. Geostatistics [14][15] provide the mathgical
background and the tools necessary to undertake thi
estimation. Parametric methods are usually predeire
order to guarantee that the estimation of the awtmgance
is definite positive. Such methods are based nfstaince, on
the least square adjustment of autocovariance madabn
the maximum likelihood estimation of the parametdrthe
process model itself, see for instance [15][23]weeer,
different choices for the autocovariance model lemau to
very different estimations of the variance, whilbet
goodness-of-fit of the models remains similar.

Likewise, equation (8) provides a framework for the
estimation ofVar(62(N)). However, it implies integrals

of fourth order moments. Not only the estimationsath
moments would be computationally expensive butduba
also require the use of parametric methods in otder
guarantee the integrability of the moments andpthstivity

of the variance. As in the case of the autocovagaihe
choice of the best parametric models would not be

straightforward, making such methods inapproprifie

implementation.
Nonetheless, consistent non parametric estimabessd
on sub-sampling exist, both for the EM and the B&¥,

described in the subsequent section.

Sub-sampling method

Various methods based on sub-sampling, re-sampling
block bootstrap have been proposed in literaturestonate
the uncertainty of statistical moments of spatiacgsses
(e.g. [16]-[20]).

The method proposed by Sherman and Carlstein [16]
consists in splitting the image sample into varicubh-

samples (i.e. sub-windows), of sizen< N. On each sub-
samplev,, an estimation of the statistic of interest (EM or

EV) can be computed:i (n) or &7(n). The sample

variances can then be computed from all sub-sample

estimates:
Var(2(n) =Ki_li(ﬂk(n)—ﬂ( n) (19)
Vai(* () = 23 (62 (0 -5°(n) (20)

k=L . (21)

For better accuracy, sub-samples can even be chosen
randomly or with overlapping [22]. These estimasicare
known to be consistent under mixing assumptiong. [0

other words, for large n, these estimations beh#we



var(2(N)) and Var(42(N)). Plotting Var(2(n)) and

Var(82(n)) for increasing values afi < N will then allow
us to verify experimentally the rates of convergenc
provided by theory in section IlI.

B. Simulations on Wold Processes

Let us now compare these experimental estimatotiseto

theoretical results of section 3 on synthetic imsa@ples.

The stochastic case

Experiments were carried out to check the asymptoti
behaviors ofvar(/(n)) andVar(4?(n)) and to compare

them with those provided by theory. Fig. 1 providee of

these experiments. It involves one thousand syinthet

images generated using an autoregressive process.

For each scale n, each image was patrtitioned Hsiazed

sub-samples. The EM and the EV (respectivglyn) and
67(n)) were then computed for each sub-sanipldhe

experimental variancesvar(z(n)) and Var(&%(n)),
calculated over all sub-samples, were expectedltowf

asymptotic laws inn™ (see section 3.2) for increasing

sample sizem. The average values df'/z;r([/(n)) and

Var(62(n)), computed over the 1000 images, were plotted

as functions of the sample sizeThe corresponding curves
are provided in Fig. 1. 95% confidence intervalsaeh
from the 1000 realizations) are also specified bytival

segments.

As shown by the asymptotes (in gray), the experiaien

estimations (in black) appear to decreasendsfor large
sample sizes as expected by the theoretical resfudisction
3.2. The confidence intervals also show that theatgr the
scale n is, the more variable the estimations efvdriances

are.

The harmonic case

The same kind of experiment was carried out on
harmonic processes. Here, two cases were considered
depending on whether the harmonic component igjoéli
or not. Fig. 2 shows the results obtained on syittimages

generated following an oblique harmonic processe Th

asymptotic behavior observed fowar(i(n)) (resp.

Var(62(n))) is plotted on the graph in the middle (resp. on
the right) of fig. 2. As anticipated in equation$ and 15,

the variance&/ar(2(n)) andVar (42 (n)) show envelopes

with an asymptotic decrease m?. The high variability
observed at high scales is noteworthy. For harmonic
processes, this variability is emphasized by tresgmce of
sines and cosines in the theoretical expressionshef
variance.

Equivalent results are obtained on harmonic compisne
with horizontal or vertical orientation. In this s the
variability is linked to one specific direction. @&h

decreasing rate of both variance estimationsfsinstead

of n2. The corresponding experimental results are given



Fig. 3.

The evanescent case

Finally, similar experiments were driven in the ead a
strictly evanescent component, following the modaél
equation (16). The stochastic pa&(t) was generated using
an autoregressive process instead of the white nmied to
establish the theoretical result in section IlIH). 4 shows
the results obtained through 1000 realizationssgite of
the difference in the nature & ), the observed asymptotic

behaviors are similar to the foreseen theoretesllts. The

envelope of Var(2(n)) decreases asn®? whereas

Var(62(n)) decreases as™2. Besides, we remark here

again that, the greater the scateis, the wider the

confidence intervals are.

C. Simulations on Wold Processes

Table 1 summarizes the asymptotic laws obtained by
theory and verified experimentally on a few exaraple
Results are given for various types of second order
stationary processes according to Wold’'s decomipasitt
is worthwhile to mention that these results do inotude
non deterministic stationary processes with longgea
dependences, i.e. with infinite integral range [10]

In view of these standard asymptotic behaviorseasnd
order stationary processes can be decomposed asafum
elementary stochastic, harmonic or evanescent coemi®
[8], it is possible to discuss the likelihood oétktationarity

assumption for any process. Indeed, it can be stioatrthe

variance of the EM (respectively of the EV) decesaas
fast as or faster than the slowest of the procesgponents.
whatever the nature of

Consequently, the process

considered, if its mean (resp. its variance) itiagtary, the

rate of decrease of the EM (resp. the EV) is adtléd™”

-1/2

(resp. N™°). In other words, if the decrease is slower than

N (resp. N"M?), the mean (resp. the variance) of the
process is clearly non stationary. This makes gactike

criterion to reject stationarity.

V. APPLICATION TO THEASSESSMENT OA EXTURE

STATIONARITY

In the following, we take advantage of the propmsrti
discussed in sections Il and IV to propose a ntttm
detect non-stationarities on real image data. Timthod
will

be tested both on synthetic stationary and non

stationary processes and on real textures.

A. How to Assess the Stationarity

Given a spatial sample of side the method of Sherman
and Carlstein [16] provides with an estimate of the
variances of the EM and the EV at scale N . Drawing
the evolution of those variances for increasingieslof n
allows us to verify experimentally the rates of mese
found by theory on various stationary processeserkely,
we can expect that, for a spatial process suffdrimg non-
stationarities, the variances of the EM and EV whbw
anomalies in their rate of convergence. This giussa

method to detect non-stationarities of the meanvanidince



of spatial processes.

B. lllustration on Synthetic Processes

Second order stationary process

Fig. 5 shows a realization of a synthetic statignar
process generated by adding a stochastic, a hazrandian
evanescent component, mutually independent. THanar

of the EM reaches its asymptotic behavior and then

decreases as™. This rate of convergence was expected by
theory since it corresponds to the rate of the skivof its

components i.e. the stochastic one. As for theamag of

the EV, the decrease is at the rate wf’? which is
consistent with the evanescent component. In tée cthe
stationarity of the mean and variance can not [pectex.

Stationarity is plausible.

First order stationary process
We consider now a process with a stationary mednaan
non-stationary variance. The image sample in Fig. 6

corresponds to the zero mean stationary proce$sgofs
modified by a multiplicative perturbation. The petation
is a linear trend increasing from the top left erto the
bottom right corner so that the variance is minimuanthe
in the bottom

top left and maximum right corner.

Var(j1(n)) does not show any anomaly in the rate of
decrease. Stationarity of the mean is plausiblbe flot of

1/2

Var(62(n)) decreases slower thai/?, which shows that

this process has a non stationary variance, argidhn not

10

be considered as second order stationary.

Second order stationary process

Fig. 7 represents a process generated by applying a
additive perturbation to a stationary stochastarpss. This
perturbation is a linear trend increasing from tbp left
corner to the bottom right corner. The first pldeasly
shows that the mean is not stationary. Howeverydnance
of the EV is not affected by the trend and appears

homogeneous all over the image.

C. lllustration on Real Textures

The texture samples used in this section come from
Brodatz's album [21]. The objective here is to et the
homogeneity of the textures by testing the stationaf the

underlying processes. We use the sub-sampling based

approach proposed in section IV. The variaries( z(n))

and Var(6%(n)) are thus plotted together with their

estimated asymptotic trends.

Texture D64, shown in Fig. 8, gives the impressdma
homogeneous texture. The rates of decrease oftlences
do not invalidate this assumption, the mean andianee
can thus be considered stationary.

Texture D57 in Fig. 9 looks stationary as well. Hwear,
under attentive observation, the top left corngreaps to be
slightly darker than the rest of the image. Thisnno
stationarity is clearly revealed by the variancetred EM,
which decreases much slower thar-1 when the sample

size increases. In contrast, the variance of thel&sfeases



fast enough to consider that the process has mreat
variance.

Texture D11 in Fig. 10 looks quite homogeneous too.
However, some dark spots are visible in the top def
bottom right corners. This nhon homogeneity is réaedy

the variance of the EM. The variance of the EV, chhi

decreases slower tham®'2

, indicates that the variance is
not homogeneous either. To help interpreting thesalts,
we computed the local mean and the local variarfidbeo
image on al1l01x 101 square neighborhood. We then
corrected the original texture, so that the meahwamiance
became homogeneous. First, we subtracted the foeah
to the original image, leading to a mean-corredtadge
with a homogeneous zero mean. The image of thd loca
variance was rescaled so that it ranged from 0B20The
corrected image (see Fig. 11) was finally obtairmd
dividing the mean-corrected image with the rescédedl
variance. The analysis of the asymptotic behaviothe
variances of the EM and EV on the corrected imdgevs
that the non-stationarities of the mean and vaeanave
been removed.

Finally, we present briefly the output of the methan a
set of various natural textured images, extracted fthe
free online photo collection http://www.imageaftem.
The images are presented on Fig. 12, Table 2 sumesar
the output of our method, which are discussed below

The three images on the first row (a-c) are shown t

present a stationary mean and variance, whereasntige

11

on the second row are shown to present either a non
stationary mean, a non stationary variance, or.datage

(f), on the bottom right corresponds to a filteretsion of
image (e) using the same correction as proposegieabo
Though this transformation changes significantly #spect

of the image, it is not powerful enough to produee
stationary texture, confirming that the non stadidty
detected on image (e) is not due to simple causels as

lighting condition.

VI. CONCLUSIONS

In this paper, we dealt with textured images caergd as
realizations of 2-D spatial processes and invesifjahe
empirical estimators of their mean (EM) and var@&(igV).
Theoretical expressions of their variances weremiand
their asymptotic behaviors were studied for largesses of
2nd order stationary ergodic processes, in theesehshe
Wold decomposition scheme. In particular, minimal
decreasing rates were provided for the variancth®fEM
and of the EV. Experimental non parametric estimsatdf
these variances based on sub-sampling were propbsey
allowed verification of the theoretical results asibwed to
be consistent estimators of the variances of iatere

Based on the theoretical study and on the expetahen
estimation method, we proposed a strategy to ingpeture
homogeneity. This strategy was applied to synthetic
processes with controlled stationarity propertied to real

textures from Brodatz's album. It was shown thairaalies

in the asymptotic behavior of the estimators alldwe



detecting non stationarities of the mean or ofvidigance of
the processes which were difficult to detect peticafy in
an objective way. This makes the presented nompeiric
method an interesting objective technique for tiepéction
of texture homogeneity.

Extensions of this work are under study. They comce
the generalization of the approach to other secwonldr
statistics, i.e. the autocovariance, in order toppse a
method for assessing the full 2nd order statiopavite also
expect to extend the theoretical results and eogisub-
sampling based estimators to the case of non scalar

processes such as orientation vector fields. Plessib

applications concern the description of structueadd

stochastic textures with strong anisotropy properti
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Fig. 1 Left: sample of a purely stochastic imageaddie: theoretical asymptotic curve (in gray) ange&imental variance (in black) of the EM. Right:

theoretical asymptotic curve (in gray) and experitakvariance (in black) of the EV. The plots arédg-log scales.
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Fig. 2. Left: purely harmonic image sample withlaped sinusoidal component. Middle: theoreticalnastotic curve (in gray) and experimental varianice (

black) of the EM. Right: theoretical asymptotic\wi(in gray) and experimental variance (in bladkhe EV. The plots are in log-log scales.
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Fig. 3. Left: purely harmonic image sample withaibontal sinusoidal component. Middle: theoreti@aymptotic curve (in gray) and experimental varean

(in black) of the EM. Right: theoretical asymptatigrve (in gray) and experimental variance (in kjaif the EV. The plots are in log-log scale.
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Fig. 4. Left: purely evanescent image sample. Midtheoretical asymptotic curve (in gray) and expental variance (in black) of the EM. Right: thetical

asymptotic curve (in gray) and experimental varga(io black) of the EV. The plots are in log-logc
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Fig. 5. Left: sample of a second order stationacess with stochastic, harmonic and evanescenpaonemts. Middle and right: plots of the estimated

variances of the EM and EV versus the sub-samplle sc The plots are in log-log scales. The cuinegay are the asymptotic trends.
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Fig. 6. Left: sample of a first order stationarpgess (process of Fig. 5, with non-stationary veséd. Middle and right: plots of the estimated &ades of the

ME and VE versus the sample scale. The plots dagHog scales. The curves in gray are the asytigpti@nds of the corresponding stationary processe
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Fig. 7. Left: process sample with non-stationaryameand stationary variance (process of Fig. 5, with-stationary mean). Middle and right: plots loé t
estimated variances of the EM and EV versus thelastale. The plots are in log-log scales. Theesim gray are the asymptotic trends of the cpmeding

stationary processes.
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Fig. 8. Left: texture D64 from Brodatz’'s album. Mid and right: plots of the estimated variancethefEM and EV versus the sample scale. The pletsnar

log-log scales. The curves in gray are the estichasgmptotic trends.
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Fig. 9. Left: texture D57 from Brodatz’s album. Mid and right: plots of the estimated variancethefEM and EV versus the sample scale. The pletsnar

log-log scales. The curves in gray are the estidhasgmptotic trends.
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Fig. 10.

Left: texture D11 from Brodatz’s album.ddie and right: plots of the estimated variancethefEM and EV versus the sample scale. The pietéa
log-log scales. The curves in gray are the estichagymptotic trends. The estimated decrease ratggest that both the mean and the variance are not

homogeneous on the image.
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Fig. 11. Left: Corrected version of texture D11nfr@rodatz’s album. Middle and right: plots of thetimated variances of the EM and EV versus the &amp

scale. The plots are in log-log scales. The cuirvesay are the estimated asymptotic trends.

|

Fig. 12. Additional test images extracted or madenfthe free online photo collection http://www.igeafter.com. First row, from left to right: b19fad®101
(a), b19walls317 (b), blcanefence_tr (c). Secomd mmmposl (d), b9elements000 (e), b9elements0Qf). timages blcanefence_tr and b9elements000_tr

have been transformed using the same method ¢extare D11 in the previous section IV.
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TABLE |

ASYMPTOTICBEHAVIORS oF Var ([1( N)) AND Var(&2 ( N)) ON SECONDORDER STATIONARY PROCESSES FOSQUARE IMAGE SAMPLES

Process nature var(i(N))  var(5%(N))

Stochastic N2 N2
(with finite integral range)
Harmonic N2 N2

(non oblique)

Harmonic N2 N2
(oblique)
Evanescent N-32 N2

(magnitude with finite integral range)

TABLE Il

STATIONARITY ASSESSMENT FOR THIME AND VE OF THESIX IMAGES OF FIGUREL2.

(@) (b) (©) (d) (e) ()

Slope ofvar(i(n)) 100  -1.04 -1.00 -0.38  -0.2 -1
Stationarity of the ME yes yes yes no no yes
Slope ofVar (4% (n)) -1.19 11 061  -0.35 +0.17  -0.14

Stationarity of the VE yes yes yes no no no




