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Assessment of Texture Stationarity using the Asymptotic Behavior of the Empirical Mean and Variance
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Given textured images considered as realizations of 2-D stochastic processes, a framework is proposed to evaluate the stationarity of their mean and variance. Existing strategies focus on the asymptotic behavior of the empirical mean and variance (respectively EM and EV), known for some types of non deterministic processes. In this paper, the

I. INTRODUCTION

ANAGING texture in image analysis tasks such as segmentation, classification or indexation generally requires the description of its statistical properties (e.g. [START_REF] Haralick | Statistical and structural approaches to textures[END_REF][2] [START_REF] Stoica | Indexing and Retrieval in Multimedia Libraries Through Parametric Texture Modeling using the 2D Wold Decomposition[END_REF][4] [START_REF] Liu | Periodicity, Directionality, and Randomness: Wold Features for Image Modelling and Retrieval[END_REF]). Not only first-order but also second-and higher-order statistics have long been proved to influence texture perception and to efficiently help in machine-based texture recognition (e.g. [START_REF] Haralick | Statistical and structural approaches to textures[END_REF][6] [START_REF] Julesz | Visual pattern discrimination[END_REF]). The mean and variance of pixel intensity are first order statistics, whereas autocovariance, co-occurrences [START_REF] Haralick | Statistical and structural approaches to textures[END_REF] or multidimensional histograms [START_REF] Ojala | Texture discrimination with multi-dimensional distributions of signed graylevel differences[END_REF] can be used efficiently as texture descriptors of the second and higher order.

In many practical cases, the estimation of such statistical features is performed on one single, finite sample image and thus requires the double assumption of stationarity and ergodicity of the underlying 2-D random process. More precisely, stationarity and ergodicity must be assumed for every statistical moment of interest. For instance, on second order stationary-ergodic processes, the estimation of moments up to the second order, e.g. mean, variance and autocovariance, can be performed by spatial averages provided that a spatially infinite sample is available, which of course is illusory in practice. As a consequence, if the image is not stationary, the estimated statistical features are irrelevant and useless. A segmentation of the image into several homogeneous regions is then required to obtain relevant descriptive features, unless the features slowly evolve over the image, e.g. in presence of a deterministic trend, which would then have to be estimated and removed.

On the contrary, statistical features estimated on a stationary region are representative not only of the observed image, but of any realization of its underlying random process, and can thus be used as a basis for comparing textures. For example, Stoica et al. [3][4] propose a method for measuring a distance between stationary textures using a parametric representation based on the Wold decomposition [START_REF] Francos | A Unified Texture model Based on a 2-D Wold-Like Decomposition[END_REF], which is employed in an indexing and retrieval application, but also for segmentation purposes. Taking advantage of the image stationarity, Blanc et al. [START_REF] Blanc | Variance of the mean value estimation of a spatial process. Application to composite material images[END_REF] evaluate approximate confidence intervals for estimating the true fiber fraction of a composite material based on the observation of a single image.

Criteria employed to decide whether an image is stationary or not are often empirical and rely on visual inspection, thus introducing a high degree of subjectivity in the decision. That is the reason why, in practice, stationarity is generally presupposed. However, a few authors have proposed some objective criteria to study the stationarity and the ergodicity of textures. For instance in [START_REF] Lantuéjoul | Ergodicity and Integral Range[END_REF], ergodicity is assumed if the sample size is greater than the integral range, i.e. the integral of the normalized autocovariance. In such a case, the image sample can be considered as representative of the random process. The ergodicity can then be verified provided that several realizations of the 2-D image process are available, which seldom occurs in real-life image processing. In contrast, some tests of second order stationarity of spatial processes M have been proposed, which rely on the covariance structure [START_REF] Bose | Invariant Tests for Spatial Stationarity using Covariance Structure[END_REF], on spectral methods [START_REF] Ephraty | Underwater Source Detection using a Spatial Stationarity Test[END_REF] or on the asymptotic distribution of spatial spectral estimates [START_REF] Fuentes | A Formal Test for Nonstationarity of Spatial Stochastic Processes[END_REF].

For a few decades, numbers of studies have dealt with the estimation of statistical moments on second order stationary-ergodic 2-D processes. For instance, various methods aim at drawing inferences for the statistical mean, by providing measures of its estimation variance and, by the way, of its uncertainty. Such methods are based either on geostatistical concepts [14][15] or on image sub-sampling, re-sampling or on block-bootstrap; see [START_REF] Sherman | Nonparametric Estimation of the Moments of a General Statistic Computed from Spatial Data[END_REF]- [START_REF] Lahiri | Prediction of Spatial Cumulative Distribution Functions Using Subsampling[END_REF]. These approaches, though meant to measure the uncertainty in the estimation of statistical moments, can be used to evaluate their stationarity since the asymptotic behavior of their estimation variance closely depends on their homogeneity.

In the present paper, we deal with textured images considered as realizations of 2-D stochastic processes sampled on a regular grid and propose a framework to analyze the stationarity of their mean and variance in an objective way. The proposed strategy consists in comparing the asymptotic behavior of their estimation variance with the theoretical behaviors of standard processes in the sense of Wold's decomposition i.e. stochastic, harmonic and evanescent processes [START_REF] Francos | A Unified Texture model Based on a 2-D Wold-Like Decomposition[END_REF][4] [START_REF] Liu | Periodicity, Directionality, and Randomness: Wold Features for Image Modelling and Retrieval[END_REF]. As any stationary random process can be decomposed as a sum of such processes, the established standard behaviors are used as references to discuss the assumption of stationarity.

The manuscript is organized as follows. Section 2 focuses on the empirical mean (EM) and empirical variance (EV) as estimators of the mean and variance of a spatial process.

Theoretical expressions of their variance are given. In section 3, we provide the asymptotic laws of the EM and EV for second order stationary ergodic process, including harmonic and evanescent processes. In section 4, estimators of the variance of the EM and EV are proposed; their asymptotic behavior is studied on image samples generated according to Wold's decomposition. Finally, in section 5, our strategy for stationarity assessment is presented. It is applied to synthetic processes with stationary and non stationary mean and variance and to various real textures. Conclusions are then drawn and possible extensions of the method are discussed.

II. ESTIMATION OF THE MEAN AND OF THE VARIANCE OF SPATIAL PROCESSES

We consider a random process (.) Z in d dimensions. We assume that a single realization (.) z of (.) Z is available.

(.) z is known only on a finite number N of points. In an image analysis context, the set of N points corresponds to the vertices of the regular lattice, or window W. N is also the Lebesgue measure of this set. For shorter notation, we will simply write ( ) Z Z = u at an unspecified point u, ( )

i i Z Z = u and ( ) i i
z z = u respectively for the random process and for its available realization at the specific point

i u . Let [ ] ( ) ( ) E Z µ = u
u be the mathematical expectation (i.e. the mean) of ( ) Z u and ˆ( ) N µ be the sample mean computed on the spatial sample of size N:

1 1 ˆ( ) N i i N z N µ = = ∑ . (1) If (.) Z is first-order stationary, ( ) µ µ = u is invariant by translation. The sample mean ˆ( ) N µ
is an unbiased estimator of µ . Herein, it will also be denoted EM (Empirical Mean). Its variance can be expressed as follows:

( ) ( ) ( ) 2 2 1 1 2 1 1 1 ˆ1 , N N i j i j N N i j i j Var N E Z Z N Cov Z Z N µ µ = = = = = -     = ∑∑ ∑∑ . (2) 
where ( )

, i j
Cov Z Z is the covariance for the two points i u and j u , see [START_REF] Lantuéjoul | Ergodicity and Integral Range[END_REF].

If the i Z are independently and identically distributed (i.i.d.), this equation reduces to the classical expression:

( ) ( ) 2 ˆiid Var N N σ µ = , (3) 
where 2

σ is the variance of the process.

In the non i.i.d. case, the evaluation of ( )

( )

Var N µ requires the knowledge of the covariance ( )

, i j Cov Z Z
between any pair of sites in the observation window W. For second order stationary processes, ( )

, i j Cov Z Z is translation invariant: ( ) , ( ), i j i j Cov Z Z Cov where = = - h h u u . ( 4 
) Equation 4 then yields:

( ) ( ) 2 1 ˆ( ) ( ) W Var N c Cov N µ = ∑ h h h , (5) 
where ( ) W c h is the number of pairs of points in W that are separated by h, also called the geometric covariogram, e.g. [START_REF] Serra | Image Analysis and Mathematical Morphology[END_REF]. Under 2 nd order stationarity and ergodicity, the autocovariance ( ) Cov h can be estimated using spatial averages, thus providing an estimation of ( ) ( )

Var N µ
. This approach will be discussed, later on, in section 4.

B. Estimation of the Variance of a Spatial Process

A simple estimator of the variance of the spatial process (.) Z is the empirical variance:

( )

2 2 1 1 ˆ( ) ( ) 1 N i i N z N N σ µ = = - -∑ . ( 6 
)
From now on, it will also be denoted EV (empirical variance). The calculation of the mathematical expectation and variance of this estimator is tractable and yields:

[ ] ( ) ( ) 2 2 
,

2 1 1 ˆ( ) 1 ˆi j i j E N NE Z E Z Z N N Var N σ σ µ     = -         -  = - ∑ (7) and ( ) ( ) ( ) ( ) [ ] ( ) 2 2 , , , 2 2 2 
, , ,

1 2 ˆ1 1 îijj iijk i j i j k ijkl i j k l Var N R R N N R E N N σ σ  = -  -   + -   ∑ ∑ ∑ (8) 
where

{ } , , , 1, , i j k l N ∈ … and ijkl i j k l R E Z Z Z Z =     .
When the spatial realizations are i.i.d., 

( ) ( ) [ ] [ ] ( ) 4 3 4 4 2 2 2 ˆ1 1 4 3 3 6 , iid Var N N E Z E Z N σ σ µ σ µ µ σ = - + - - + + (9) 
which simplifies to

( ) 1 4 2 1 N σ - -
in the Gaussian case.

The formula of ( ) ( )

2
Var N σ , see [START_REF] Francos | A Unified Texture model Based on a 2-D Wold-Like Decomposition[END_REF], involves moments of the 4 th order. Stationarity and ergodicity up to the 4 th order are thus required to estimate such moments using spatial averages. Even then, their estimation implies the use of algorithms of high computational complexity.

III. VARIANCE OF THE EM AND EV: ASYMPTOTIC

BEHAVIOR ON WOLD PROCESSES.

A. Wold Decomposition of Stationary Random Processes

We restrict here to the case of 2-dimensional second order stationary random processes. According to Wold's decomposition [START_REF] Francos | A Unified Texture model Based on a 2-D Wold-Like Decomposition[END_REF][4] [START_REF] Liu | Periodicity, Directionality, and Randomness: Wold Features for Image Modelling and Retrieval[END_REF], any such process is the sum of a purely stochastic component with an absolutely continuous spectrum, a finite number of harmonic components and a finite number of evanescent components. All harmonic and evanescent components are singular on the spectrum. In the following, we investigate the variances of the EM and EV on second order stationary processes following the Wold decomposition. More specifically, we are interested in the asymptotic behavior of these variances. We consider discrete rectangular windows W of sides X L and Y L .

X Y

N L L = data points are thus available.

B. The Stochastic Component

In [START_REF] Lantuéjoul | Ergodicity and Integral Range[END_REF], it is assessed that the estimation of the mean of a stationary ergodic process is reliable when the integral range A is finite i.e. when the process exhibits weak spatial dependences:

2 1 lim ( ) W W A Cov d σ →∞ = < ∞ ∫ h h , (10) 
where 2

σ is the variance of the process. If the covariance tends to zero as the modulus of h increases, if 0 A ≠ and if the sample size N is much larger than A, then the variance of the EM of a stationary ergodic random process has the following asymptotic behavior:

( ) ( ) 2 ˆA Var N N σ µ ∼ . ( 11 
)
Experiments using synthetic processes show that the asymptotic behavior can be observed when the image size is about a hundred times larger than the integral range A [START_REF] Lantuéjoul | Ergodicity and Integral Range[END_REF].

If 0 A = , the decrease of ( ) ( )
Var N µ is faster, see sections III.C and III.D hereafter. In the case of non deterministic stationary processes with long range dependences, i.e. infinite integral range, the decrease of the variance is slower. In such a case, the validity of the stationary ergodic assumption for the available sample can be questioned [START_REF] Lantuéjoul | Ergodicity and Integral Range[END_REF]. Such processes will not be considered here.

Besides, we have studied the asymptotic behavior of the variance of the EV, i.e. ( )

( ) 2 ˆ, Var N N α σ α + ∈ ∼ ℝ . ( 12 
)

C. The Harmonic Component

A harmonic process can be defined at any pixel ( ) , x y as follows:

( ) ( ) ( , ) sin 2 X Y Z x y a f x f y π ϕ = + + , ( 13 
)
where the phase ϕ is a real valued random variable whereas the amplitude a and the frequencies X f and Y f along the two axes are constant parameters. For such a harmonic process, the variance of the EM has been expressed as: Similar calculations lead to the variance of the EV:

( ) ( ) ( ) ( ) ( ) ( ) 2 2 2 2 2 2 2 sin sin ˆ2 sin sin X X Y Y X Y X Y a f L f L Var N f f L L π π µ π π = , (14) where 
( ) ( ) ( ) ( ) ( ) ( ) 4 2 2 2 2 2 2 2 2 2 sin 2 sin 2 ˆ8sin 2 sin 2 1 X X Y Y X Y X Y X Y a f L f L Var N f f L L o L L π π σ π π =   +     (15) 
which asymptotically decreases as 2 N -.

D. The Stochastic Component

An evanescent process can be written as a composition of two orthogonal 1-D processes:

( ) ( ) ( ) ( , ) sin 2 Z x y T x y x y f α β π β α ϕ = + - + , (16) 
where (.) T is a 1-D stochastic process orthogonal to the direction of the 1-D harmonic process. σ and a uniform distribution on the interval [ [ 0, 2π . We found the following variance of the EM:

( ) ( ) ( ) ( ) ( ) 2 2 2 2 2 sin ˆ2sin Y X Y fL Var N f L L π σ µ µ π + = ⋅ , (17) 
and the variance of the EV :

( ) ( ) ( ) 2 2 2 2 2 1 ˆ2 X X Y Var N o L L L σ σ µ σ +   = +     . ( 18 
)
Contrary to the harmonic case, the asymptotic laws do not depend on the direction θ of the process. In the case of square samples, the variances of the EM and EV thus asymptotically decrease as 3/ 2

N - and 1/ 2 N - respectively.

These results were verified experimentally even in the case where T was a colored noise with small range dependences, i.e. an autoregressive process, see the following section.

IV. EXPERIMENTAL ESTIMATION OF THE VARIANCE OF THE EM AND EV.

In this section, we propose estimators for 

The evanescent case

Finally, similar experiments were driven in the case of a strictly evanescent component, following the model of equation ( 16). The stochastic part T( ) was generated using an autoregressive process instead of the white noise used to establish the theoretical result in section III.D. Fig. 4 shows the results obtained through 1000 realizations. In spite of the difference in the nature of T( ), the observed asymptotic behaviors are similar to the foreseen theoretical results. The envelope of ( ) ( )

Var n µ decreases as 3/ 2 n - whereas ( ) ( ) 2 
Var n σ decreases as 1/ 2 n -. Besides, we remark here again that, the greater the scale n is, the wider the confidence intervals are.

C. Simulations on Wold Processes

Table 1 summarizes the asymptotic laws obtained by theory and verified experimentally on a few examples.

Results are given for various types of second order stationary processes according to Wold's decomposition. It is worthwhile to mention that these results do not include non deterministic stationary processes with long range dependences, i.e. with infinite integral range [START_REF] Lantuéjoul | Ergodicity and Integral Range[END_REF].

In view of these standard asymptotic behaviors, as second order stationary processes can be decomposed as sums of elementary stochastic, harmonic or evanescent components [START_REF] Francos | A Unified Texture model Based on a 2-D Wold-Like Decomposition[END_REF], it is possible to discuss the likelihood of the stationarity assumption for any process. Indeed, it can be shown that the variance of the EM (respectively of the EV) decreases as fast as or faster than the slowest of the process components.

Consequently, whatever the nature of the process considered, if its mean (resp. its variance) is stationary, the rate of decrease of the EM (resp. the EV) is at least

1 N - (resp. 1/ 2 N -).
In other words, if the decrease is slower than 1 N -(resp.

1/ 2

N -), the mean (resp. the variance) of the process is clearly non stationary. This makes an objective criterion to reject stationarity.

V. APPLICATION TO THE ASSESSMENT OF TEXTURE

STATIONARITY

In the following, we take advantage of the properties discussed in sections III and IV to propose a method to detect non-stationarities on real image data. This method will be tested both on synthetic stationary and non stationary processes and on real textures.

A. How to Assess the Stationarity

Given a spatial sample of size N, the method of Sherman and Carlstein [START_REF] Sherman | Nonparametric Estimation of the Moments of a General Statistic Computed from Spatial Data[END_REF] provides with an estimate of the variances of the EM and the EV at scale n N < . Drawing the evolution of those variances for increasing values of n allows us to verify experimentally the rates of decrease found by theory on various stationary processes. Inversely, we can expect that, for a spatial process suffering from nonstationarities, the variances of the EM and EV will show anomalies in their rate of convergence. This gives us a method to detect non-stationarities of the mean and variance fast enough to consider that the process has a stationary variance.

Texture D11 in Fig. 10 looks quite homogeneous too.

However, some dark spots are visible in the top left and bottom right corners. This non homogeneity is revealed by the variance of the EM. The variance of the EV, which decreases slower than 1/ 2 n -, indicates that the variance is not homogeneous either. To help interpreting these results, we computed the local mean and the local variance of the image on a 101 101 × square neighborhood. We then corrected the original texture, so that the mean and variance became homogeneous. First, we subtracted the local mean to the original image, leading to a mean-corrected image with a homogeneous zero mean. The image of the local variance was rescaled so that it ranged from 0.8 to 1.2. The corrected image (see Fig. 11) was finally obtained by dividing the mean-corrected image with the rescaled local variance. The analysis of the asymptotic behavior of the variances of the EM and EV on the corrected image shows that the non-stationarities of the mean and variance have been removed.

Finally, we present briefly the output of the method on a set of various natural textured images, extracted from the free online photo collection http://www.imageafter.com.

The images are presented on Fig. 12, Table 2 summarizes the output of our method, which are discussed below.

The have been transformed using the same method as for texture D11 in the previous section IV.

4 E Z and [ ] 3 E

 43 variance tends to zero when N increases, provided that the moments [ ] Z are finite:

.

  Formal calculations, not reported in this manuscript, have shown that it depends on the convergence of integrals of fourth order moments. In the case of weak spatial dependences, i.e. with finite integral range, it was shown that
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 2 -if neither X f nor Y f are zero.On the contrary, if the harmonic process is vertical or horizontal,

  frequency and the direction of the harmonic part. The phase ϕ is a real valued random variable. Theoretical derivations have been carried out when 1 α = , 0 β = , (.) T and ϕ are independent white noises, following respectively a normal distribution of mean µ and variance 2

  . for the variance of the EM and EV.
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 3 Fig. 3.

  three images on the first row (a-c) are shown to present a stationary mean and variance, whereas the image on the second row are shown to present either a non stationary mean, a non stationary variance, or both. Image (f), on the bottom right corresponds to a filtered version of image (e) using the same correction as proposed above.Though this transformation changes significantly the aspect of the image, it is not powerful enough to produce a stationary texture, confirming that the non stationarity detected on image (e) is not due to simple causes such as lighting condition.VI. CONCLUSIONSIn this paper, we dealt with textured images considered as realizations of 2-D spatial processes and investigated the empirical estimators of their mean (EM) and variance (EV).Theoretical expressions of their variances were given and their asymptotic behaviors were studied for large classes of 2nd order stationary ergodic processes, in the sense of the Wold decomposition scheme. In particular, minimal decreasing rates were provided for the variance of the EM and of the EV. Experimental non parametric estimators of these variances based on sub-sampling were proposed. They allowed verification of the theoretical results and showed to be consistent estimators of the variances of interest.Based on the theoretical study and on the experimental estimation method, we proposed a strategy to inspect texture homogeneity. This strategy was applied to synthetic processes with controlled stationarity properties and to real textures from Brodatz's album. It was shown that anomalies in the asymptotic behavior of the estimators allowed detecting non stationarities of the mean or of the variance of the processes which were difficult to detect perceptually in an objective way. This makes the presented non parametric method an interesting objective technique for the inspection of texture homogeneity.Extensions of this work are under study. They concern the generalization of the approach to other second order statistics, i.e. the autocovariance, in order to propose a method for assessing the full 2nd order stationarity. We also expect to extend the theoretical results and empirical subsampling based estimators to the case of non scalar processes such as orientation vector fields. Possible applications concern the description of structural and stochastic textures with strong anisotropy properties. Image group of the IMS Lab. His research interests include orientation estimation and texture characterisation in 2-D and 3-D images. Applications concern material characterization, Non Destructive Testing and high resolution remote sensing.

Fig. 1

 1 Fig. 1 Left: sample of a purely stochastic image. Middle: theoretical asymptotic curve (in gray) and experimental variance (in black) of the EM. Right: theoretical asymptotic curve (in gray) and experimental variance (in black) of the EV. The plots are in log-log scales.

Fig. 2 .

 2 Fig. 2. Left: purely harmonic image sample with a sloped sinusoidal component. Middle: theoretical asymptotic curve (in gray) and experimental variance (in black) of the EM. Right: theoretical asymptotic curve (in gray) and experimental variance (in black) of the EV. The plots are in log-log scales.

Fig. 3 .Fig. 4 .Fig. 5 .

 345 Fig. 3. Left: purely harmonic image sample with a horizontal sinusoidal component. Middle: theoretical asymptotic curve (in gray) and experimental variance (in black) of the EM. Right: theoretical asymptotic curve (in gray) and experimental variance (in black) of the EV. The plots are in log-log scale.

Fig. 6 .

 6 Fig. 6. Left: sample of a first order stationary process (process of Fig. 5, with non-stationary variance). Middle and right: plots of the estimated variances of the ME and VE versus the sample scale. The plots are in log-log scales. The curves in gray are the asymptotic trends of the corresponding stationary processes.

Fig. 7 .

 7 Fig. 7. Left: process sample with non-stationary mean and stationary variance (process of Fig. 5, with non-stationary mean). Middle and right: plots of the estimated variances of the EM and EV versus the sample scale. The plots are in log-log scales. The curves in gray are the asymptotic trends of the corresponding stationary processes.

Fig. 8 .

 8 Fig. 8. Left: texture D64 from Brodatz's album. Middle and right: plots of the estimated variances of the EM and EV versus the sample scale. The plots are in log-log scales. The curves in gray are the estimated asymptotic trends.

Fig. 9 .

 9 Fig. 9. Left: texture D57 from Brodatz's album. Middle and right: plots of the estimated variances of the EM and EV versus the sample scale. The plots are in log-log scales. The curves in gray are the estimated asymptotic trends.

Fig. 10 .

 10 Fig. 10. Left: texture D11 from Brodatz's album. Middle and right: plots of the estimated variances of the EM and EV versus the sample scale. The plots are in log-log scales. The curves in gray are the estimated asymptotic trends. The estimated decrease rates suggest that both the mean and the variance are not homogeneous on the image.

Fig. 11 .

 11 Fig. 11. Left: Corrected version of texture D11 from Brodatz's album. Middle and right: plots of the estimated variances of the EM and EV versus the sample scale. The plots are in log-log scales. The curves in gray are the estimated asymptotic trends.

Fig. 12 .

 12 Fig. 12. Additional test images extracted or made from the free online photo collection http://www.imageafter.com. First row, from left to right: b19fabrics101 (a), b19walls317 (b), b1canefence_tr (c). Second row: compos1 (d), b9elements000 (e), b9elements000_tr (f). Images b1canefence_tr and b9elements000_tr

This work was funded in part by the regional council of Aquitaine, France, with the financial and technical support of the company Snecma Propulsion Solide, Safran Group.

These estimators are then used to verify the theoretical results of section 3.

A. Estimating the variances of the EM and EV

Geostatistics-based methods

As shown by [START_REF] Liu | Periodicity, Directionality, and Randomness: Wold Features for Image Modelling and Retrieval[END_REF], the variance of the empirical mean estimator, i.e.

( ) ( )

, can be expressed using the autocovariance. Estimating this variance is then possible provided that an estimator of the autocovariance itself is available. Geostatistics [START_REF] Matheron | Estimating and Choosing[END_REF][15] provide the mathematical background and the tools necessary to undertake this estimation. Parametric methods are usually preferred in order to guarantee that the estimation of the autocovariance is definite positive. Such methods are based, for instance, on the least square adjustment of autocovariance models or on the maximum likelihood estimation of the parameters of the process model itself, see for instance [START_REF] Cressie | Statistics for Spatial Data -Revised Edition[END_REF] [START_REF] Todini | Influence of Parameter Estimation Uncertainty in Kriging: Part 1, Theoretical Development[END_REF]. However, different choices for the autocovariance model can lead to very different estimations of the variance, while the goodness-of-fit of the models remains similar.

Likewise, equation ( 8) provides a framework for the estimation of

Var N σ . However, it implies integrals of fourth order moments. Not only the estimation of such moments would be computationally expensive but it would also require the use of parametric methods in order to guarantee the integrability of the moments and the positivity of the variance. As in the case of the autocovariance, the choice of the best parametric models would not be straightforward, making such methods inappropriate for implementation.

Nonetheless, consistent non parametric estimations based on sub-sampling exist, both for the EM and the EV, as described in the subsequent section.

Sub-sampling method

Various methods based on sub-sampling, re-sampling or block bootstrap have been proposed in literature to estimate the uncertainty of statistical moments of spatial processes (e.g. [START_REF] Sherman | Nonparametric Estimation of the Moments of a General Statistic Computed from Spatial Data[END_REF]- [START_REF] Lahiri | Prediction of Spatial Cumulative Distribution Functions Using Subsampling[END_REF]).

The method proposed by Sherman and Carlstein [START_REF] Sherman | Nonparametric Estimation of the Moments of a General Statistic Computed from Spatial Data[END_REF] consists in splitting the image sample into various sub- 

where K is the number of available sub-samples,

For better accuracy, sub-samples can even be chosen randomly or with overlapping [START_REF] Serra | Image Analysis and Mathematical Morphology[END_REF]. These estimations are known to be consistent under mixing assumptions [START_REF] Lahiri | Prediction of Spatial Cumulative Distribution Functions Using Subsampling[END_REF]. In other words, for large n, these estimations behave like 

B. Simulations on Wold Processes

Let us now compare these experimental estimators to the theoretical results of section 3 on synthetic image samples.

The stochastic case

Experiments were carried out to check the asymptotic behaviors of ( As shown by the asymptotes (in gray), the experimental estimations (in black) appear to decrease as 1 n -for large sample sizes as expected by the theoretical results of section 3.2. The confidence intervals also show that the greater the scale n is, the more variable the estimations of the variances are.

The harmonic case

The same kind of experiment was carried out on harmonic processes. Here, two cases were considered depending on whether the harmonic component is oblique or not. Fig. 2 shows the results obtained on synthetic images generated following an oblique harmonic process. The asymptotic behavior observed for Equivalent results are obtained on harmonic components with horizontal or vertical orientation. In this case, the variability is linked to one specific direction. The decreasing rate of both variance estimations is 1 n -instead of 2 n -. The corresponding experimental results are given in of spatial processes.

B. Illustration on Synthetic Processes

Second order stationary process Fig. 5 shows a realization of a synthetic stationary process generated by adding a stochastic, a harmonic and an evanescent component, mutually independent. The variance of the EM reaches its asymptotic behavior and then decreases as 1 n -. This rate of convergence was expected by theory since it corresponds to the rate of the slowest of its components i.e. the stochastic one. As for the variance of the EV, the decrease is at the rate of

n - which is consistent with the evanescent component. In this case, the stationarity of the mean and variance can not be rejected.

Stationarity is plausible.

First order stationary process

We consider now a process with a stationary mean and a non-stationary variance. The image sample in Fig. 6 corresponds to the zero mean stationary process of Fig. 5 modified by a multiplicative perturbation. The perturbation is a linear trend increasing from the top left corner to the bottom right corner so that the variance is minimum in the top left and maximum in the bottom right corner. Var n σ decreases slower than 1/ 2 n -, which shows that this process has a non stationary variance, and thus can not be considered as second order stationary. shows that the mean is not stationary. However, the variance of the EV is not affected by the trend and appears homogeneous all over the image.

Second order stationary process

C. Illustration on Real Textures

The texture samples used in this section come from Brodatz's album [START_REF] Brodatz | Textures: A Photographic Album for Artists and Designers[END_REF]. The objective here is to evaluate the