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Abstract. Multiphysics phenomena lead to computationally intensive structural analyses.
Recently, a new strategy derived from the LATIN method was described and successfully
applied to the consolidation of saturated porous soils.

One of the main achievements was the use of the LATIN method to take into account
the different time scales which usually arise from the different physics: a multi-time-scale
strategy was proposed.

We focus herein on two different improvements of the aforementioned approach: (i)
we study the behavior of the method for classical nonlinearities involved in poroelasticity
problems and (ii) to improve modularity of the partitioning we propose a multi-space-scale
appoach to deal with independent meshes for each physics.
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1 MULTIPHYSICS COUPLED PROBLEMS

1.1 Introduction

For coupled multiphysics problems such as fluid-structure interaction, partitioned pro-
cedures and staggered algorithms are often preferred, from the point of view of compu-
tational efficiency, to direct analysis (also called the monolithic approach). Moreover,
partitioning strategies enable one to use different analyzers for different subsystems, and
help keep the software manageable.

A typical example of a highly coupled fluid-structure interaction problem is the consol-
idation of saturated porous soils. The term consolidation designates the slow deformation
of the solid phase accompanied by flow of the pore fluid. One of the consequences of
natural consolidation is surface subsidence, i.e. the lowering of the ground surface. The
consolidation analysis of soils has long been recognized as an important problem in civil
engineering design [1].

1.2 Example of linear poroelacticity

Let us briefly describe a typical consolidation problem [1, 2]. A structure Ω is made
of a saturated porous material undergoing small perturbations and isothermal evolution
over the time interval [0, T ] being studied.

The loading consists of a prescribed displacement Ud on a part ∂1Ω of the boundary, a
traction force F d on the complementary part ∂2Ω of ∂1Ω, a fluid flux wd on another part
∂3Ω of the boundary and, finally, a prescribed pore pressure pd on the complementary
part ∂4Ω of ∂3Ω. For the sake of simplicity, we assume that there are no body forces.

For solid quantities, strain and stress are denoted ε and σ respectively; for fluid quan-
tities, the pore pressure gradient is denoted Z and the opposite of Darcy’s velocity W ;
finally, q denotes the rate of fluid mass accumulation in each representative elementary
volume.

The state of the structure is given by the set of the fields s = (ε, p, Z, σ, q, W ) defined
on the whole structure Ω and over the time interval [0, T ] being considered. The problem
consists in finding s in the corresponding space S[0,T ] which verifies at each time step the
following equations:

• in the solid, compatibility of strains ε and equilibrium of stresses σ:

U ∈ U [0,T ] and ε = ε(U) on Ω

divσ = 0 on Ω and σn = F d on ∂2Ω
(1)

U [0,T ] being the set of the finite-energy displacement fields on Ω×[0, T ] equal to Ud

on ∂1Ω;

2
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• in the fluid, flow conservation for Darcy’s velocity −W :

p ∈ P [0,T ] and Z = grad p on Ω

q = div W on Ω and W · n = wd on ∂4Ω
(2)

P [0,T ] being the set of the finite-energy pressure fields on Ω× [0, T ] equal to pd on
∂3Ω;

• the constitutive relations:

– Hooke’s law, which relates the macroscopic stress σ to the strain ε and the
pore pressure p so that:

σ = Dε − bpI (3)

– Darcy’s law, which relates Darcy’s velocity to the pore pressure gradient:

W =
K

µw

Z (4)

– compressibility, which relates the fluid accumulation rate to the pressure rate
and couples it with the rate of volume modification:

q =
1

Q
ṗ + be (5)

e = Tr ε̇ is the trace of the strain rate tensor, D is Hooke’s tensor of the drained
skeleton, b is Biot’s coefficient, K is the intrinsic macroscopic permeability and µw

is the dynamic viscosity of the saturation fluid. Throughout the following sections,
the operator K

µw
I will be designated by H. Finally, Q is Biot’s modulus.

2 THE LATIN METHOD FOR MULTIPHYSICS PROBLEMS

Recently, a strategy suitable for multiphysics problems was developed based on the
LArge Time INcrement method (LATIN) [3]. The LATIN method is a nonincremental
iterative approach originally designed for nonlinear time-dependent problems. However,
its principles have also been successfully applied to dynamic problems, post-buckling anal-
ysis and domain decomposition. (see [4, 5, 6, 7, 8]). For coupled multiphysics problems,
the method consists in extending the notion of material interface (between substructures)
[6] to that of multiphysics interface. Such an interface must take into account the cou-
pling between the constitutive relations. To be self-consistent, we only briefly recall in
this section the main features of the LATIN strategy for multiphysics problems and the
previously obtained results. More details can be found in [9, 10].

At each iteration, the LATIN method produces an approximation of the solution over
the whole domain and over the entire time interval being studied. The method is based
on three principles:
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• The first principle consists in separating the difficulties. For coupled field prob-
lems, a first set of equations, Ad, containing the so-called admissibility conditions is
defined. In order to avoid dealing with both a global and a coupled problem simul-
taneously, the remaining equations are grouped into a second set of equations, Γ;
these equations, which are local in the space variables, are the constitutive relations.
The solution, i.e. the set of the fields belonging to both Ad and Γ, is found using
an iterative procedure.

• The second principle of the method consists in using search directions to build
approximate solutions of Ad and Γ alternatively until a sufficient convergence level
has been reached (see Figure 1).

Ad

E+E−

sn

^sn+1/2

sn+1s

Figure 1: 2-stage LATIN iteration number n + 1

Each iteration consists of 2 stages: once an element sn ∈ Ad is known, the local
stage of iteration n + 1 uses an initial search direction E+ to provide an element
ŝn+1/2 ∈ Γ. We choose the form of the search direction at the local stage as:

(σ̂n+1/2 − σn) + L(ˆ̇εn+1/2 − ε̇n) = 0

(q̂n+1/2 − qn) + r(p̂n+1/2 − pn) = 0

(Ŵ n+1/2 − W n) + H(Ẑn+1/2 − Zn) = 0

(6)

L, r and H are three parameters of the method; they do not influence the solution
once convergence has been reached. However, their values modify the convergence
rate of the algorithm.

At each integration point, using the constitutive relations (3,4,5), the local stage
leads to the resolution of a small system of ordinary differential equations in the
local space variables. This small sized system is linear as long as the constitutive
relations are also linear:

Lˆ̇εn+1/2 + Dε̂n+1/2 − bp̂n+1/2I = An

1

Q
ˆ̇pn+1/2 + rp̂n+1/2 + bên+1/2 = αn

2HẐn+1/2 = β
n

(7)
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where An = σn + Lε̇n, αn = qn + rpn and β
n

= W n + HZn are known quantities
from local stage n + 1, and with the initial conditions on the pressure and strain
fields.

Once an element ŝn+1/2 ∈ Γ is known, the linear stage provides an element sn+1 ∈
Ad. sn+1, which must satisfy the admissibility relations, is sought along a search
direction E− conjugate of the previous one, so that the mechanical and hydraulic
problems remain uncoupled:

(σn+1 − σ̂n+1/2) − L(ε̇n+1 − ˆ̇εn+1/2) = 0

(qn+1 − q̂n+1/2) − r(pn+1 − p̂n+1/2) = 0

(W n+1 − Ŵ n+1/2) −H(Zn+1 − Ẑn+1/2) = 0

(8)

One can note that the search directions in linear stage n and local stage n + 1 are
conjugates if the parameters of these directions are kept constant.

In order to use a finite element approach, the admissibility of sn+1 is expressed using
a variational formulation. On the one hand, this admissibility condition consists in
U ∈ U [0,T ] and σ ∈ S [0,T ] such that:

∀t ∈ [0, T ], ∀U ? ∈ U0,

∫

Ω

Tr[σε(U?)]dΩ =

∫

∂2Ω

F d · U
?dS (9)

where U0 is the set of the finite-energy displacement fields on Ω which vanish on ∂1Ω.
On the other hand, the admissibility condition also consists in p ∈ P [0,T ], q ∈ Q[0,T ]

and W ∈ W [0,T ] such that:

∀t ∈ [0, T ], ∀p? ∈ P0,

∫

Ω

(qp? + W · grad p?)dΩ =

∫

∂4Ω

wdp
?dS (10)

where P0 is the set of the finite-energy pressure fields on Ω which vanish on ∂3Ω.
Equations (9) and (10) define two uncoupled global problems parameterized by time
t.

The convergence of this approach is proved for the case where L, r and H are posi-
tive definite operators which remain constant throughout the iterations [3].

• The third principle uses the fact that the successive approximations are defined
over both the entire domain and the entire time interval to represent the solution
on a radial loading basis. This last point was detailed in [3] and developed, for this
particular case, in [9, 10]. Briefly, this approach enables one to reduce the number
of space fields generated and, therefore, the number of global systems to be solved.
This point will not be developed herein.
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Using the third principle, [10] exemplified the competitivity of the method when com-
pared to a classical partitioning incremental strategy: the ISPP method [11]. Moreover,
the proposed approach is modular as it allows independent descriptions of the solution
fields for each physics, all the coupling being recovered at the local stage. In [10], this
modularity was used to define a multi-time-scale strategy. This strategy enables one to
use different time steps for the solid and fluid parts of the problem. In particular, in order
to perform an iso-quality simulation (i.e. with identical contributions to the global error)
the fluid part requires a smaller time step than the solid.

3 A NONLINEAR BEHAVIOR

Most of the consolidation problems which have been analyzed so far are limited to the
assumption of linear elastic constitutive behavior and constant permeability, but in most
geotechnical situations the behavior of the soil is nonlinear. Following Kondner and his
co-workers [12], the stress-strain curves for both clay and sand in a conventional triaxial
compression test (constant σ3) may be approximated by a hyperbolic equation of the
form:

σ1 − σ3 =
ε1

A + Bε1

(11)

which relates the difference between the major principal stress σ1 and the minor principal
stress σ3 to the major principal strain ε1. A and B are material constants which can be
determined experimentally. Then, Hooke’s law is defined by:

σ = D(ε)ε − bpI (12)

However, Kondner’s model (11) is available only for one-dimensional analysis. This
is the case of the following numerical test. There is also evidence that the intrinsic
permeability is not constant, even in the case of full saturation. It seems reasonable [1]
to assume a dependency of the permeability on the void ratio (or porosity) as well as on
the deformation. We propose to test the LATIN method on a variation of one of the laws
given in [13] for the intrinsic permeability:

K(ε) = K0

n0

1 + n0

(

1 +
1

n0

〈

Tr ε − Tr ε0

−Tr ε0

〉α

+

)

(13)

where 〈·〉+ denotes the positive part, K0 and n0 the initial intrinsic permeability and
porosity, ε0 the strain below which the intrinsic permeability cannot decrease (typically
Tr ε0 = −n0), and α a material constant. Darcy’s law is then defined by:

W = H(ε)Z (14)

Thus, the consolidation problem which is to be simulated is nonlinear. For 3D exten-
sions of the nonlinear model, one can refer, for instance, to [14].
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3.1 Choice of search directions of the LATIN

The search direction E+ at the local stage (6) is transformed into:

(σ̂n+1/2 − σn) + Ln−1/2(ˆ̇εn+1/2 − ε̇n) = 0

(q̂n+1/2 − qn) + r(p̂n+1/2 − pn) = 0

(Ŵ n+1/2 − W n) + Hn−1/2(Ẑn+1/2 − Zn) = 0

(15)

and the conjugated search direction E− at the linear stage (8) into:

(σn+1 − σ̂n+1/2) − Ln+1/2(ε̇n+1 − ˆ̇εn+1/2) = 0

(qn+1 − q̂n+1/2) − r(pn+1 − p̂n+1/2) = 0

(W n+1 − Ŵ n+1/2) − Hn+1/2(Zn+1 − Ẑn+1/2) = 0

(16)

Ln+1/2, r and Hn+1/2 are three parameters of the method. The system (7) to be solved
at the local stage is then re-written as:

Ln−1/2
ˆ̇εn+1/2 + D(ε̂n+1/2)ε̂n+1/2 − bp̂n+1/2I = An

1

Q
ˆ̇pn+1/2 + rp̂n+1/2 + bên+1/2 = αn

(Hn−1/2 + H(ε̂n+1/2))Ẑn+1/2 = β
n

(17)

This nonlinear system (17) is solved using a Newton-type scheme.
Many choices of (Ln+1/2, r,Hn+1/2), all of which ensure the convergence of the LATIN

method, are available [3]. The easiest way is to take a constant search direction. In
dimensional analysis, r can be chosen in the form r = 1

Qth
, where th is an arbitrary

characteristic time, and (Ln+1/2,Hn+1/2):

∀n, Ln+1/2 = tmD(ε̂ = O) and Hn+1/2 = H(ε̂ = O) =
K0

µw

I (18)

where tm is an arbitrary characteristic time. This choice allows one to assemble operators
Ln+1/2 and Hn+1/2 only once at the beginning of the algorithm. In [3], it was shown that
optimal convergence of the method can require the update of the search direction. In the
present case of a multiphysics problem, we consider:

(σn+1 − σ̂n+1/2) − tmD(ε̂n+1/2)(ε̇n+1 − ˆ̇εn+1/2) = 0

(qn+1 − q̂n+1/2) − r(pn+1 − p̂n+1/2) = 0

(W n+1 − Ŵ n+1/2) − H(ε̂n+1/2)(Zn+1 − Ẑn+1/2) = 0

(19)

which is equivalent to:
Ln+1/2(t) = tmD(ε̂n+1/2(t))

Hn+1/2(t) = H(ε̂n+1/2(t))
(20)
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Such a choice requires the assembly and factorization of the operators not only at each
iteration, but also at each time step. A new approximation consists in defining an average
of the operators over the time interval [0, T ]:

Ln+1/2 =
1

T

∫

[0,T ]

tmD(ε̂n+1/2(t))dt

Hn+1/2 =
1

T

∫

[0,T ]

H(ε̂n+1/2(t))dt

(21)

Another option would be to define piecewise constant operators.

3.2 Numerical results

The proposed test case concerns the consolidation of a Berea sandstone soil. The
material characteristics in Table 1 were identified in [15]. The geometry is shown in
Figure 2. The simulation was performed for the one-dimensional case, since the law (11)
is defined only in that case.

Initial porosity n0 = 0.19 Initial Young’s modulus E0 = 14.4 GPa
Poisson’s coeff. ν = 0.2 Biot’s modulus Q = 13.5 GPa
Biot’s coeff. b = 0.78 Initial permeability K0

µw
= 2 10−10 m3.s.kg−1

Table 1: Characteristics of a water-saturated Berea sandstone poroelastic material

The time interval was T = 1 s with t1 = T/2 and the pressures were p1 = 10 MPa
and p0 = 0.1 MPa; the initial condition were p(t = 0) = p0; the height of the structure
was L = 5 m, discretized into 100 elements (quadratic interpolation for displacements
and linear interpolation for pore pressures). The search direction parameters were set to
tm = 9 10−3 tc and th = 8 10−3 tc, where tc = 9.3 s.

Fd

t
0 T

p1

t1

pd

t
0 T

p0

Fd

wd = 0

pd Ud = 0

L

Figure 2: The 1D force-driven test problem

Two simulations were performed to illustrate the behavior of the method when non-
linearity increases. The first test was dedicated to the evaluation of the influence of
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stiffness: in (11), the value of A and σ3 were set to A = 1
E0

and σ3 = 0 while the value of

B increased from 0 (which corresponds to the linear case) to 1 GPa−1. The second test
concerned the evaluation of the influence of permeability: in (13), the value of α was set
to α = 3 while the initial porosity n0 = −Tr ε0 was no longer that of the Berea sandstone,
but was assumed to decrease from 0.9 to 0.01. (The linear case was recovered by taking
n0 → +∞.)

From here on, the error indicator based on the difference between an element s of Ad

and an element ŝ of Γ will be used:

η̂ =
e(ŝ− s)
1
2
e(ŝ + s)

(22)

with

e2(ŝ− s) = ‖et(ŝ− s)‖2
T e2

t (ŝ− s) =
1

2
‖ε̂ − ε‖2

D
+

1

2
‖p̂ − p‖2

Q−1

and

‖ε‖2
D

=

∫

Ω

Tr[εD(ε̂ = O)ε]dΩ ‖p‖2
Q−1 =

∫

Ω

pQ−1pdΩ ‖α‖2
T =

∫

[0,T ]

α2dt

Figure 3(a) and Figure 4(a) show that if constant search directions, such as (18), are
used (as in [9, 10]) the convergence rate is very dependent on the degree of nonlinearity.
One can see in Figure 3(b) and Figure 4(b) that if updated average search directions,
such as (21), are used at each iteration the convergence rate becomes nearly independent
of the degree of nonlinearity. In that case, even if the number of iterations is smaller, the
strategy could become very expensive because it requires the assembly and factorization
of the operators at each iteration. However, one can note that nearly identical results can
be obtained by using updated search directions only during the first iterations (usually 4
or 5). This reduces the computational cost significantly. Let us observe that nonlinearities
do not increase the number of iterations needed to reach a given error.

4 A SPATIAL MULTISCALE APPROACH

In this section, we propose to go further in using the modularity of the approach. We
are interested in taking into account meshes that can be different for each physics. This
will be the case, for instance, if each solver module can provide adaptivity by generating
its own finite element mesh.

Following the approach used in [10] for multi-time-scale strategy, the information ex-
change between the two physics has only to be performed at local stage, the linear stages
remaining unchanged.

In this section, we will test the feasibility of such an approach for a 2D linear poroe-
lasticity case, the extension to nonlinear case does not raise any difficulty.

Contrary to previous works on spatial multiscale approach for LATIN method [6, 7],
no scale is embedded into the other: the two meshes can be completely independent.
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Figure 3: Convergence rates
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Figure 4: Convergence rates

Therefore, a specific procedure must be developed. The last particularity is that the
coupling is performed at local stage and in such a case, the information to be exchanged
between the two meshes is stored at integration points of each mesh. The description of
the following test case will illustrate the situation.

4.1 2D test case

The proposed test case still concerns the consolidation of a Berea sandstone soil but the
simulation was performed in the two-dimensional case. The same material characteristics
as in Table 1 were used and the behavior was assumed to be linear. The geometry is
shown in Figure 5. The time interval was T = 36 s, with t1 = T/10 and the pressures
were p1 = 1.54 GPa and p0 = 380 MPa; the initial condition were p(t = 0) = p0.

Figure 6 shows the two independent meshes that were used to describe the solid and
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Fd  = 0

p( t  = 0) = p

wd = 0

pd

Fd

Fd

t
0 T

p1

t1

pd

t
0 T

p0

0

Figure 5: The 2D force-driven test problem

the fluid fields.

ΩS

ΩF

Figure 6: Solid and fluid meshes

4.2 Principles of information transfert

If we consider the constitutive relations (3,4,5), the solid fields being defined on mesh
ΩS and the fluid fields on mesh ΩF , one needs two dual information transfer operators
PFS and PSF projecting fields from ΩS to ΩF and conversely, in order to re-state the local
stage (7) as:

Lˆ̇εn+1/2 + Dε̂n+1/2 = An + b(PSF p̂n+1/2)I (23)

1

Q
ˆ̇pn+1/2 + rp̂n+1/2 = αn − b(PFS ên+1/2) (24)

2HẐn+1/2 = β
n

(25)

This new local stage can then be solved, as for the multi-time-scale method, with a
fixed point between (23) and (24). Practically, only 3 or 4 iterations are required.

11
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Let us first consider a space field eS(M) defined on ΩS. Following the framework used
for different time scales, the projection eF (M) = PFSeS(M) is defined as a generalized
average extraction on the basis generated by fonctions ϕi

F (cf. Figure 7):

∀i,

∫

ΩF

ϕi
F · eFdΩF =

∫

ΩS

ϕi
F · eSdΩS (26)

Several choices are possible for basis functions and will be discussed in the next sections.

ΩSΩF

eSϕ
F
i

Figure 7: A generalized average extraction

4.3 Case of C
0 nodal fields

If eS and eF are nodal fields (continuous on the whole meshes ΩS and ΩF ), one can use
diffuse approximation weighting functions [16], finite element shape functions, etc. As a
first step, we propose herein to use this last choice. For continuous fields over the meshes,
if NS, NF store the finite element shape functions of each meshes and ES, EF the nodal
values of the fields:

eS = NSES

eF = NFEF

(27)

then one gets:
∫

ΩF

NT
F NFEF dΩF =

∫

ΩS

NT
F NSESdΩS (28)

or MFFEF = MT
SF ES where MFF is the classical cross product of shape functions on ΩF

and MSF =
∫

ΩS

NT
S NF dΩS is computed with a specific technique, for instance the one in

[17]. In this case, EF = M−1
FF MT

SFES and one recovers Mortar projection method with
classical shape functions [18]. The main drawback is the costly use of M−1

FF (global matrix
on the whole mesh).

4.4 Suited method for multiphysics problems

For the case we are interested into, the various fields are evaluated at integration points
of ΩS for the volumic strain eS and of ΩF for the pore pressure pF and do not possess C0

regularity.

12
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A suited projection consists in using as test functions the restriction of each finite
element shape functions for a given element. They are non longer continuous throughout
the elements, the projection will not give continuous functions (which is not mandatory
in our case), but will localize the computations on each element (cf. Figure 8).

ΩS

eS

ΩF

Figure 8: A generalized average extraction for non continuous fields

The procedure to get eF = PFSeS is therefore the following:

• the values of eS at integration points of an element of ΩS are extrapolated to the
nodes of the same element (for instance using shape functions of ΩS);

• the resulting elementary field is projected onto an element of ΩF using local elemen-
tary matrices M−1

FF and MT
SF ;

• the contributions are summed on the elements independently;

• the resulting field is interpolated at integration points of ΩF (using shape functions
of ΩF ) element per element, to get eF .

Main properties are:

• the reciprocal projection from ΩF to ΩS is defined with duality, conserving the
energy:

∫

ΩF

eF pFdΩF =

∫

ΩS

eSpSdΩS (29)

for any field eS. One gets the transposed of operator PFS, with respect to the
previous energy symmetric form (29), as the projection PSF ;

13
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• the fomulation is symmetric, i.e. one gets the above defined PSF operator with
similar operations as for PFS, using M−1

SS and MSF elementary matrices;

• both projections PSF and PFS satisfy to the patch-test (i.e. perfect projection of
any field that can be represented on both meshes ΩS and ΩF ).

4.5 Numerical results

Figure 9 compares the evolution of the maximum pore pressure over the time interval
[0, T ] when the multi-space-scale and the mono-space-scale (cf. [9]) on a refined mesh to
get a reference solution. One can see that the results are very similar.

Time (s)

Maximum pore pressure (GPa)

0. 5. 10. 15. 20. 25. 30. 35. 40.
0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Multi-space-scale

Mono-space-scale

Figure 9: Comparison of the maximum pore pressure

The solution at convergence of the multi-space-scale strategy verifies the following
equations:

σ = Dε − b(PSF p)I, q =
1

Q
ṗ + b(PFSe) and W = HZ (30)

as well as the admissibility conditions (9,10). These equations lead to the kinematic
formulation of the 2-field problem with the displacement field U ∈ U [0,T ] and the pressure
field p ∈ P [0,T ] as unknowns: ∀t ∈ [0, T ], ∀U? ∈ U0, ∀p? ∈ P0,

∫

ΩS

Tr[ε(U)Dε(U?)]dΩS −

∫

ΩS

b(PSF p) Tr ε(U ?)dΩS =

∫

∂2ΩS

F d · U
?dSS

∫

ΩF

grad p · H grad p?dΩF +

∫

ΩF

ṗ
1

Q
p?dΩF +

∫

ΩF

bp?(PFSe)dΩF =

∫

∂4ΩF

wdp
?dSF

(31)
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Using the previous space discretizations, this leads to the coupled global system of
equations at each time step:

KU − ASFp = fd

Hp + Sṗ + AFSU̇ = gd

(32)

K, H and S are the stiffness, permeability and compressibility matrices; fd are the
generalized forces corresponding to F d and gd is the generalized flux corresponding to wd.
When using identical time discretization for fluid and solid, let us notice that the coupling
terms ASF and AFS verify:

ASF = AT
FS (33)

In the case where identical meshes ΩS and ΩF , one recovers the classical monolithic
formulation recalled in [9]. By derivating the first group of equations with respect to time,
one gets:

[

K −ASF

−AFS −S

] [

U̇
ṗ

]

+

[

0 0
0 −H

] [

U
p

]

=

[

ḟd

−gd

]

(34)

The direct resolution of this system would be very expensive as ASF and AFS are dense
matrices.

5 CONCLUSIONS

In this paper, we described a partitioned strategy based on the LATIN approach which
enables one to take into account some of the classical nonlinearities of consolidation prob-
lems. The numerical tests showed that if updated search directions are used during the
first iterations, the convergence rate is nearly independent of the level of nonlinearity.
Thus, these nonlinear phenomena do not result in a significant increase in the computa-
tional costs.

The modularity of the method was also improved to deal with independent meshes for
each physics. The next step will be to mix time and space multiscale features for the
physics to be as independent as possible.
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