
HAL Id: hal-00321776
https://hal.science/hal-00321776

Submitted on 23 Oct 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Specifying consistent subsets of UML
Jean-Louis Sourrouille, Mohammed Hindawi, Lionel Morel, Régis Aubry

To cite this version:
Jean-Louis Sourrouille, Mohammed Hindawi, Lionel Morel, Régis Aubry. Specifying consistent subsets
of UML. Educator symposium (co-located with Models’08), Sep 2008, Toulouse, France. pp.26-38.
�hal-00321776�

https://hal.science/hal-00321776
https://hal.archives-ouvertes.fr

Specifying consistent subsets of UML

Jean-Louis Sourrouille, Mohammed Hindawi, Lionel Morel, Régis Aubry

INSA Lyon, LIESP, Bât. B. Pascal, 69621 Villeurbanne, France
{Jean-Louis.Sourrouille, Mohammed.Hindawi, Lionel.Morel, Régis.Aubry}@insa-lyon.fr

Abstract. While increasing progressively its expressive power, UML has
become more and more difficult to read and understand, especially for
beginners. To teach the whole UML is not possible, therefore teachers only deal
with a subset of UML. We present a framework for defining precisely a
consistent subset of a language, allowing everybody to define his/her own
subset. An extended example shows a way to simplify UML sequence
diagrams. Our approach use standard UML tools; models in the simplified
language are fully compatible with UML; model mapping between metamodels
is done automatically from specifications based on marking with stereotypes;
constraints are automatically translated from the simplified language to UML.

1. Introduction

Since its first version, UML [5] has evolved to increase its expressive power, its
coherence and more generally the quality of its description, i.e., its metamodel. In
return, especially from UML 2, this metamodel has become larger, more complex and
more difficult to read. But who needs to read the UML metamodel?

Students that rely on courses, books, and a tool that enforces the language syntax
do not apparently need to read the metamodel: they gain enough knowledge from this
material to deal with exercises that teachers give. Thus, they build their own view of
the structure and semantics of UML. To go further, for instance to lead a team using
intensively models, to set model element properties for code generators, to understand
language extensions, or very simply to find why expressions are rejected by tools,
they need a reference. Programming languages’ reference lies on a bible (e.g., [4] for
C++), and their compilers ensure syntactic correctness. Quite differently, UML tools
enforce an incomplete non-unique syntax, and the only reference is a metamodel [5]:
to gain enough knowledge to read this metamodel is a heavy investment. As a result,
practitioners do not refer to the metamodel and rarely well-know UML. On the other
hand, some tasks require UML experts, for instance specifying a style guide as
restrictions to the language, which requires adding OCL constraints to the metamodel,
or specifying a Domain Specific Language.

There is a gap between UML experts that know the metamodel and UML users
that do not. To broaden a better UML knowledge beyond the group of UML experts,
we advocate that the metamodel should be made understandable by users according to
their UML level. Since the UML metamodel is too complex, we propose a framework
to define a simplified UML. This language is intended first for educational purposes:

2 Jean-Louis Sourrouille, Mohammed Hindawi, Lionel Morel, Régis Aubry

teachers and students could refer to the metamodel during UML courses. This
simplified language should be an accessible yet coherent subset of UML, compatible
with the standard. It should allow advanced users to write profiles and constraints.

The goal of this paper is neither to discuss what should be taught about UML nor
to define a simplified UML, but to describe an approach for simplifying the UML
metamodel. Next, the suitable language will depend on specific needs: teachers will
typically limit the metamodel to the subset of notions used in their course. While the
objective is the use of a simplified language in education, the paper mainly deals with
the technical solution we propose to define such a language. The rest of the paper is
organized as follows: section 2 describes the motivations; section 3 gives the
principles of the proposed approach; section 4 shows an extended example; section 5
deals with implementation issues before the conclusion.

2. Motivations and Related Works

The UML metamodel [5] was designed for allowing an easy description of the
language (abstraction of concepts, systematic organization etc.), but not for easing its
reading. Readers, in particular beginners, encounter difficulties due to various
reasons: they should be familiar with UML to read the metamodel; understanding the
meaning of the notions and verifying what is authorized/ forbidden is a long way from
the leaves of the metamodel to their ancestors and/or previous definitions; there are a
lot of abstract classes; redefinitions of relations and names introduce redundancy;
information is split into numerous small pieces with no synthetic views.

How to teach the UML in this context? Most teachers describe a subset of UML
notions, their semantics and the induced constraints without referring to the
metamodel. The semantics defines the limits for expression correctness. These limits
are fuzzy because without a more precise support than natural language, it is not
possible to explain completely what is correct and what is not. Taught notions have
generally a graphical representation and mostly correspond to leaves in the
inheritance hierarchy of the metamodel. Links between notions are buried in the
metamodel and are more difficult to explain.

When modeling manually, students generally use a rough syntax, models are
rather informal and the interpretation is sometimes impossible. Obviously, syntactic
checks are necessary, and manual modeling is to be reserved for small exercises.
When modeling with a tool, the syntactic correctness is better but it depends on the
tool. The model part used to generate the code is generally complete since a model
analyzer detects and even corrects errors. The rest of the model is rarely complete and
consistent, and links between models elements are vague. As long as the code
provides expected results, most students do not attach importance to models.

However, software development more and more focuses on models. Verifications
from the very beginning of the development will allow finding errors earlier. Hence,
students will have in the future to provide precise models with the wished properties,
and enhanced tools will check a kind of style guide. In the context of model
engineering, developers have to know UML more precisely, and to understand rules
often requires knowing corresponding language notions. Again, the UML metamodel

Specifying consistent subsets of UML 3

complexity is a barrier. To define a simplified metamodel for a subset of UML has
some significant advantages:
− To provide a precise description that will be a reference for students and teachers,
− To delimit the subset that students should know,
− To ensure that the taught UML subset is consistent,
− To allow defining small language extensions and checking style rules,
− To prepare students to deepening of one’s knowledge in the context of MDE,
− To increase the credibility of UML as a language.
The last point might be the most important: as long as a language has no formal
description with a precise meaning, students do not use it as a language but rather as
an alternative to natural language with boxes, lines and a vague meaning. In our
opinion, the first condition for UML to have the status of a language is to provide the
usual elements of a language, and first of all a formal description of the syntax that
can be used by students. Of course, a checker is a second condition and we pursue
parallel works about the implementation of a style guide.

The main drawback of this proposal is the need for a complicated tool. To define a
UML subset could also be long, but at the same time, it is interesting for a teacher.

How to simplify UML while conforming to UML? Anyway, UML is to be taken as
it is. To tackle this issue we propose two complementary directions:
− Many teachers start their course saying that will not describe the entire UML. They

choose a subset of notions according to their own criteria: representative notions,
need for a lab work, etc. The first direction to simplify UML is thus to reduce the
language, hence its power of expression, by canceling notions.

− For a given language, there are an infinite number of possible descriptions. The
second direction is to choose a language description, i.e., a metamodel, that is
equivalent to the original metamodel but has better properties such as easier to
read. One can suppress abstract classes, reorganize the hierarchy, etc. These two
approaches are complementary since canceling notions facilitates reorganization.

{ context Classifier inv:
 not self.allParents→

includes(self) }

A class is represented
by a rectangle, inheritance
by an arrow, etc.

System

Abstract Primitive
(Notion)

gives meaning to

models

lies upon

Semantics
represents induces

Constraint

 constraints

Formalism Profile

Abstraction

A class is a notion
such as...
Inheritance is ...

Concrete Primitive
(Form)

Inheritance, class,
constraints are
abstract primitives.

extends

Fig. 1. A basic model of System, Language and Model in UML.

lies upon

Model

4 Jean-Louis Sourrouille, Mohammed Hindawi, Lionel Morel, Régis Aubry

Related works. Several works confirm that in both industry and academia, UML
teachers deal with only a subset of UML due to language complexity and an
overwhelming number of notions [3]. These UML subsets are selected based on
diagrams and their associated constructs, for instance UseCase/Class/Activity/
Sequence in [6], UseCase/Class/Sequence in [3]. The expressive power is
dramatically reduced when dropping diagrams. A possible consequence could be the
lower use of some point of views and finally a misuse of UML [2]. Even within a
single diagram such as the sequence diagram, the complexity remains high. At least
for teaching, to select purposefully a set of consistent notions in the whole UML
seems a better compromise still to cover the whole modeling domain.

3. Principle of the Proposed Approach

3.1. Definitions and Issues

The model in Fig. 1 makes explicit our definition of formalism [1]. A Model is a
representation of a system expressed in a given Formalism or language. A metamodel
is a model of a formalism viewed as a System (see definition below). The Semantics
describes the meaning of the notions, i.e., the Abstract Primitives of the formalism.
This semantics induces Constraints on models. Finally, the classes of a metamodel
are called metaclasses, and a model is a set of instances of metaclasses.

Notations. m(s)/f denotes a model m of the system s in the formalism f, and to avoid
confusion we write mm(f)/F to denote a metamodel of f expressed in F, i.e., a model
mm of the formalism f, viewed as a system, expressed in the formalism F. According
to this notation, MUML = mm(UML)/UML is the UML metamodel. A transformation of
x into y is written x → y. A model mapping is a transformation m1(s)/f1 → m2(s)/f2. A
profile Mp = m(P)/L is a model of a language fragment P, i.e., a metamodel, directly
usable in a model: m(s)/(L+P).

Definition. A metamodel is a tuple M={ fM,nM,sM,cM} where fM is a set of forms, i.e.,
concrete graphical or textual primitives; nM is a set of notions, i.e., abstract primitives;
sM is the semantics of the described language; cM is a set of constraints on models.

Issue 1 – Ensuring backward compatibility. Our objective is to define a simplified
version LS of a language L by withdrawing notions. From the root language UML, this
process can be repeated. The metamodel of L is M = mm(L)/UML. The language LS is
defined by MS = mmS(LS)/UML such that the transformation mS(s)/LS → m(s)/L of any
model in LS be loss-less. Since MS is a subset of M, this model mapping is
theoretically loss-less. Practically, we have to provide a fully automatable process.

Issue 2 – Automatic constraint translation. Reducing the language described by
M = {fM,nM,sM,cM} by canceling notions amounts to defining MS = {fMs,nMs,sMs,cMs}
such that nMs ⊆ nM. As a possible consequence of this transformation, some forms
may become useless in MS, hence fMs ⊆ fM. The transformation sM → sMs is an
adaptation of the english natural text that describes the semantics. The last

Specifying consistent subsets of UML 5

transformation cM → cMs deals with constraints. An automatic transformation would
be nice but in practice, it depends on the nature of the simplifications. Fortunately, a
few constraints will generally be translated.

Issue 3 – Automatic profile transformation. To translate into LS a profile P expressed
in L boils down to the above issue 2. A profile MPs = mS(P)/LS expressed in LS
requires the transformation mS(P)/LS → m(P)/L. This transformation is similar to
issue 1 but differs when a profile explicitly uses notions of MS within OCL
expressions, which complicates automatic translation.

Issue 4 – Metamodel Equivalence. The other approach we consider earlier aims to
change the metamodel without changing the language, that is defining
M1 = mm1(L)/UML from M0 = mm0(L)/UML, where M1 and M0 are two different
metamodels of the same formalism L viewed as a system. A model is composed of
instances of metaclasses, hence modifying the metamodel implies model changes.
Although this transformation m1(s)/LM1 → m0(s)/LM0 seams to be similar to issue 1, it
is different since M1 is not a subset of M0. Currently, there is no proof that this
transformation is always possible, therefore among all potential metamodel
transformations, only the ones allowing automatic model transformation will be to
consider. Finally, constraint translation from LM1 to LM0 is part of issue 3.

3.2. Principle Illustration

This section introduces an example to lighten the solutions to the previous points. The
basic principle of the solution is as follows: to avoid a risky transformation (issues 1-
4), it is sufficient to represent a model in original UML. This is always possible when
notions of the simplified language belong to the UML. When a metamodel has been
exchanged for an equivalent one (issue 4), models representations and visible
properties should be the same, but expressions using the metamodel such as OCL
constraints are to be translated (issue 3). Except for profiles to be translated, this
solution ensures full compatibility with UML and allows using standard tools.

As a second principle, automatic processing is more important than
simplifications: simplifications that cannot be processed either automatically or
manually with a low effort (issue 2) are to be canceled. Not to disturb or burden the
modeler is a necessary condition for users to support this approach. For a modeler
using the simplified language, apart from the metamodel that describes the simplified
language, the only visible differences are limitations of language, and possibly
explicit references to the simplified metamodel in OCL constraints.

The example Fig. 2 illustrates the simplification process mixing metamodel
equivalence and withdrawal of notions. Fig. 2a gives the metamodel to be simplified.
Fig. 2c shows a model and the instanceOf relationship between elements of the model
and their metaclass. Let us assume that we want to remove notion E and to fix the
multiplicity of d to exactly 1. Due to their association (1,1), C and D are indivisible.
Since B is an abstract class, the simplified metamodel (Fig. 2b) can be reduced to
notions A and F = B∪C∪D. We finally suppose that the attribute a_B is to withdraw.

Compared with a model in the full language, a model in the simplified language
(Fig. 2d) does not allow creating instances of the metaclass E (canceled) nor instances

6 Jean-Louis Sourrouille, Mohammed Hindawi, Lionel Morel, Régis Aubry

of C unrelated to D (multiplicity 1). The Fig. 2d shows the relationship instanceOf for
the simplified metamodel. This relationship corresponds to what the modeler think,
but model elements are in fact instances of the full metamodel (dark lines Fig. 2c).

OCL expressions in the simplified language, e.g., bd->size(), should be translated
into UML (issue 3). The comment Fig. 2b gives a list of rewriting rules in the context
of A. The translation of bd[i].a_D is b[i].d.a_D while bd->size() becomes b->size(). In
the context F, assuming that instances of F become instances of C, a_C is unchanged,
but a_D becomes d.a_D. The translation of expressions related to the merging C∪D
is more complicated, for instance: bd->collect(x | ... x.a_C ... x.a_D ...) becomes after
translation b.collect(x | ... x.a_C ... x.d.a_D ...).

From this example, the requirements become clearer. Automating the translation
of OCL expressions will be the most difficult task (issue 3). The proposed approach is
as follows: (i) to aid the construction of the simplified metamodel by a tool supplying
model-to-model transformations and ensuring consistency; (ii) to save during this step
a list of rewriting rules; (iii) as far as possible, to do automatically the translation of
UML semantic constraints into the simplified metamodel, otherwise a manual
translation is required and traces should be kept (issue 2); (iv) to translate
automatically OCL constraints expressed in simplified UML into UML using
rewriting rules (issue 3). When this translation proves to be impossible or too
intricate, restrictions apply to OCL expressions.

4. Example Using the UML Metamodel

Let us assume that we need a simplified metamodel of the UML sequence diagram.
We separate general and detailed notions to ease their representation (the translation

b B
a_B

d

0..1
D

a_D

bd

* F
a_C
a_D

a) Full language b) Simplified language

C
a_C

E
e

*
A

a_A

1 *

a
instanceOf

c) d) a_C=’x’

x

1

A
a_A

1

from A:
bd[i].a_C ≡ b[i].a_C
bd[i].a_D ≡ b[i].d.a_D
bd[i] ≡ b[i].d

oclIsKindOf(F) ≡
oclIsKindOf(B)

a

x

a_C=’x’

a_D='open' a_D='open'

Fig. 2. Two models from two metamodels

M
e
t
a
m
o
d
e
l

M
o
d
e
l

Specifying consistent subsets of UML 7

of a profile aiming to enforce a style guide is given in the extended version [7]).

4.1. General Notions

There is no metaclass for diagrams in UML. A sequence diagram is represented using
Packages that describe Interactions between ConnectableElements whose Type may
be a Class. Fig. 3a shows the corresponding UML metamodel extract.

Simplified Metamodel. The minimum set of required notions includes the leaves
plus Type to factorize its association. Such a reduction would be excessively strong
because the notions of NameSpace and nestedPackage are easy to understand, hence a
better compromise with an equivalent complexity is given Fig. 3b.
To keep only Class and Interface as Types is a minor restriction, adding Component
will be easy. Property, which “represents a set of instances that are owned by a
containing classifier instance”, is not the only ConnectableElement but it is enough to
begin. InteractionFragment is needed for the detailed description of the sequence
diagram below. The word Property has many meanings and is confusing, therefore
renaming the class could have been considered. In this part of the UML metamodel,
no OCL semantic constraint is to translate into the simplified metamodel (issue 2).

NamedElement
name

Type
type

0..1

Class

Namespace

ownedMember

namespace
0..1

*

nestedPackage *

Element

TypedElement

Package ConnectableElement Classifier

InteractionFragment

Interaction

Property

Most metaclasses
inherit from
NamedElement

Interface

a) UML metamodel

NamedElement
name

*
*

Interaction
sd

Namespace

ownedMember

namespace

0..1

nestedPackage

*

Package

Type type

0..1

Class Interface

Property InteractionFragment

Fig. 3. UML (a) and simplified UML (b) metamodels

b) Simplified UML metamodel

8 Jean-Louis Sourrouille, Mohammed Hindawi, Lionel Morel, Régis Aubry

sd ifName

Msg1 (val)

alt

obj1:C1 obj2 [i] :C2 :C3

InteractionFragment
name

[else]

val = Msg2()

Interaction Behavior name

ConnectableElement Class LifeLine

Message

OccurrenceSpecification

CombinedFragment

interaction
Operator

selector

Interaction
Operand

guard

ExecutionSpecification

call

asynchronous

reply
[val<0]

separator of
operands

Msg3()

Msg4()

gate

return value

Fig. 4. Sequence diagram main notions.

Interaction

lifeline

ConnectableElement

represents

*

0..1

* message

fragment

* {ordered}

CombinedFragment
interactionOperator

operand

fragment {ordered}

1..*

GeneralOrdering

before after

toBefore toAfter

Event
1

InteractionConstraint

guard 0..1

*

0..1
MessageEnd

sendEvent

receiveEvent

InteractionOperand ValueSpecification

selector

InteractionFragment

MessageOccurrence
Specification

0..1
Message

messageSort

Lifeline

ExecutionSpecification

start

finish

1

1

event

Gate
1 1

* *
generalOrdering

*

Action/Behavior...

/covered

OccurrenceSpecification

covered

1 * enclosingInteraction

1 1
0..1

0..1

0..1

Fig. 5. Part of the Interaction Metamodel

Connector

0..1
*

Specifying consistent subsets of UML 9

Profile transformation. Translating OCL expressions from the simplified metamodel
to UML requires only rewriting paths (issue 3). An interesting point in Fig. 3 is the
translation of the association sd from Package to Interaction that provides directly all
the Package ownedMembers that are Interactions (or inherit from):
Package::sd : Set(Interaction) ;
 sd=self.ownedMember->select(i | i.oclIsKindOf(Interaction))
A NamedElement (self) contains a sequence diagram when:
 self.oclIsKindOf(Package) and self.sd->notEmpty()

To search all the packages that contain a sequence diagram:
NamedElement::allSdPackages(): Set(Package) ;

 allSdPackages=NamedElement.allInstances->select(p |

 p.oclIsKindOf(Package) and p.sd->notEmpty())

4.2. Detailed Description of Interaction Notions

The minimal set of notions suitable for a beginner to describe objects' interactions is
obviously subjective. The Fig. 4 shows a representative selection of notions. A
LifeLine represents a ConnectableElement. Interactions are described within
fragments, from which CombinedFragments that precise interactionOperators and
InteractionOperands. OccurrenceSpecifications ordering specify the arrival of Events
that trigger Messages exchanged between ConnectableElements.

Metamodel. The relevant metamodel is rather voluminous but Fig. 5 shows a
representative extract in which leaves that are still abstract classes could be made
explicit (Event, ValueSpecification, ExecutionSpecification for execution within the
lifeline). The use of interactions (InteractionUse) misses as well as relationships with
other classes (Connector ends with ConnectableElements, Interaction inherits from
Behavior), but these notions do not introduce new description issues.
How difficult is it for beginners to read this metamodel? Beginners know at least
intuitively the design pattern Composite that could apply to the root of interactions: an
interaction is either a simple Interaction (Message exchange or Interaction use) or an
interaction enclosing an ordered collection of interactions. But the UML metamodel is
more complex since InteractionFragment has numerous descendants such as
InteractionOperand whose obviousness does not appear immediately, and even worst
OccurrenceSpecification that is both an interaction and the end of an interaction. The
consistency of this description escapes occasional readers. About abstraction level, a
beginner would focus on message exchange while ignoring details in descendants, but
in this description the class MessageOccurrenceSpecification is central because it
specifies the sender, via OccurrenceSpecification−Lifeline−ConnectableElement, the
receiver, and the order of events and messages.

Simplified Metamodel (Fig. 6). In the general part, we have only removed abstract
classes and added an association to simplify the metamodel. This case is harder
because the original metamodel is complex. To simplify, we can translate associations
into attributes and use AssociationClasses. The expressive power of the description of

10 Jean-Louis Sourrouille, Mohammed Hindawi, Lionel Morel, Régis Aubry

the OccurrenceSpecification order goes beyond the needs of a beginner. The proposed
solution, which lies on the design pattern Composite, is enough to express a weak
sequencing. The metamodel owns a bi-directional association from
InteractionFragment to a descendant Interaction. Besides the cyclic dependency with
the descendant, this kind of description prevents the reader from reading at one level
of abstraction since descendants explain their ancestors. This association can be
replaced by an association (enclosingFragment) subjected to a constraint. Finally, the
metamodel supplies degrees of freedom that are not useful for a beginner, for instance
a Lifeline can be associated with zero ConnectableElement, which is generally not
desirable since the lifeline is no longer linked with the rest of the model.

Translation of UML Semantic Constraints (issue 2). Since most constraints are
unchanged, the only remaining work is to change the original document. In the
simplified metamodel, very specific constraints can be ignored when they have no
practical existence, for instance (from Lifeline) “The classifier containing the
referenced ConnectableElement must be the same classifier, or an ancestor, of the
classifier that contains the interaction enclosing this lifeline”. Interaction inherits
from Behavior (that inherits from Class and Class from Classifier), and a Behavior is
owned by a BehaviorClassifier (that inherits from Classifier). Practically, a sequence
diagram is not enclosed into a Classifier because it would require any set of
ConnectableElements contained by an interaction to have a common ancestor.

Most constraints expressed in natural Language such as “If the

Interaction
lifeline

Property

represents

*

1
* message

enclosingFragment

* {ordered}

operand {ordered}

Event
1

1..*

0..1

MessageEnd

sendEvent

receiveEvent

InteractionFragment

Message
messageSort

Lifeline
selector:ValueSpecification

event

covered 1 *

1 1

0..1

0..1

fragment

0..1

lifeline

EventOccurrence ExecutionSpecification

start

finish

1

1

Gate

*

Action/Behavior... {ordered}

*

fragmentOrdering

Ordering
*

0..1

ordering

FragmentOrdering

OpConstraint
guard:InteractionConstraint

CombinedFragment
interactionOperator

Fig. 6. Simplified Interaction Metamodel

Connector
0..1 *

Specifying consistent subsets of UML 11

interactionOperator is opt, loop, break, or neg, there must be exactly one operand”
(from CombinedFragment) are unchanged. Constraints related to removed notions
such as “The interaction operators ‘consider’ and ‘ignore’ can only be used for the
CombineIgnoreFragment...” (from CombinedFragment) should be removed. Since
EventOccurrence replaces OccurrenceSpecification, texts are to change accordingly
as in “The guard must be placed directly prior to (above) the OccurrenceSpecification
that will become the first OccurrenceSpecification within this InteractionOperand”.
Obviously, constraints still apply when an association such as selector turns into an
attribute (from Lifeline): “The selector for a Lifeline must only be specified if the
referenced Part is multivalued.
(self.selector->isEmpty() implies not self.represents.isMultivalued()) or

(not self.selector->isEmpty() implies self.represents.isMultivalued()) ”

The new metaclass EventOccurrence gather the constraints of the metaclasses
OccurrenceSpecification and MessageOccurrenceSpecification that it replaces (no
constraint in fact). Due to this replacement, the path from ExecutionSpecification to
Lifeline becomes start.lifeline (replaces start.covered) and the constraint becomes:
 start.lifeline = finish.lifeline.

Surprisingly, no other constraint applies to the chosen subset of the metamodel,
which is not exactly a toy example. As a result, the work to translate UML semantics
constraints might not be as high as expected.

5. Implementation

The model of the simplified language LS results from transformation of the model of
the original language L. The model mapping M = mm(L)/UML → Ms = mms(LS)/UML
requires semantic decisions. On the other hand, the transformation actions should be
kept to allow replay them when L is changed or to modify Ls. A good scenario could
be: the language designer specifies basic transformations, such as abstract class
removing, as well as the corresponding treatments; the model mapping is decomposed
into a sequence of predefined basic transformations. To implement this scenario
requires defining these basic transformations and their treatments, to provide a mean
to specify transformations, and then to execute automatically these transformations.

5.1. Basic Transformations

Basic transformations aim to simplify the language by modifying its representation or
by restricting the vocabulary, hence its expressive power, for instance:
− to Remove/Replace a Class,
− to Remove an Association, Replace it with an Attribute, Move it to another Class,
− to Add an AssociationClass to remove a Class that holds attributes only,
− to Replace an Association with an OCL operation (example Fig. 3),
− to transform a model part using a design pattern,
− to change multiplicities to forbid expressions (e.g., an object should have a Class).

12 Jean-Louis Sourrouille, Mohammed Hindawi, Lionel Morel, Régis Aubry

5.2. Transformations

Stereotypes provide a simple way to specify transformations by marking model
elements. To define a stereotype for each basic transformation is not required because
treatments depend on marked elements: «Remove» is interpreted in a different way by
Class and Association. Moreover, marking elements by several stereotypes provides a
composition operator. The Fig. 7 shows an example of marking to transform the UML
metamodel into a simplified one. Each stereotype may specify properties using tagged
values, for instance «Move» specifies the new target of an association (not shown).

Finally, a document explains the model mapping. For each type of element and for
each stereotype, the designer needs to know the associated transformation rules. Let C
inherits from B and B inherits from A. To remove B requires copying all the
inheritable elements of B into C and then to set A as the ancestor of C. Moreover, all
the properties of type B, in particular class attributes, should be removed. Thus, we
have to explain the multiple consequences of each basic transformation.

Interaction

lifeline

«Remove»
ConnectableElement

represents

*

0..1

* message

fragment

* {ordered}

CombinedFragment
interactionOperator

operand

fragment {ordered}

1..*

«DesignPattern»
«Replace»

GeneralOrdering

before after

toBefore toAfter

Event
1

InteractionConstraint

guard 0..1

*

0..1
MessageEnd

sendEvent

receiveEvent

«AssociationClass»
InteractionOperand ValueSpecification

selector

InteractionFragment

«Remove»
MessageOccurrence

Specification

0..1
Message

messageSort

Lifeline

ExecutionSpecification

start

finish

1

1

event

Gate
1 1

* *

generalOrdering *

Action/Behavior...

/covered

«Replace» «Ancestor»
OccurrenceSpecification

covered

1 * enclosingInteraction

1 1
0..1

0..1

0..1

«Attribute»

«Move»

«Attribute»

«Move» «Remove»

«Move»

«Move»

«Move»

Fig. 7. Marked metamodel for automatic transformation

Specifying consistent subsets of UML 13

6. Conclusion

Past efforts to increase the expressive power of UML and to rationalize its description
(evolution from UML 1. to UML 2.) did not lead to an easy to learn language. We
intuitively feel that the more the language becomes powerful, the more beginners will
find it difficult to learn it, particularly students. As a complementary observation,
developers do not use the whole UML, no course deals with the entire UML, and
beginners start with a small subset of UML. On the other hand, we want to keep the
UML as the reference.

From this statement, we propose an approach to define a simplified UML, fully
compatible with UML, aiming to ease the use of UML for beginners but also for non-
expert users. The main issue was to automate the translations from and to UML, since
beginners should not have to cope with translations. To avoid risky translations, we
represent the models in UML even when expressed in simplified UML. As an
additional advantage, market tools still apply just as with original UML. The only
remaining translations are semantic constraints of the UML metamodel into
simplified UML, and profiles expressed in simplified UML into UML, mainly OCL
constraints. The former are done once by the language designer and may be
exceptionally translated manually. The latter are processed automatically from
rewriting rules saved during the model mapping from UML to simplified UML. From
specifications of transformations based on marking with stereotypes, this model
mapping is done automatically, allowing replay when changes are required in one or
both languages.

We have not still completed the development of a tool, in particular the translation
of profiles into UML is not achieved. Several future works could complete and
improve this approach: theoretical issues such as to find properties of metamodels of
the same language; technical issues such as automatic generation during model
mapping of constraints aiming to limit tools to the simplified language, or even
systematic transformation of metamodel using design patterns or templates.

7. References

1. G. Caplat, J.L. Sourrouille, "MDA: Model Mapping using Formalism Extension", IEEE
Software, Vol. 22(2), pp.44-51, 2005

2. Brian Dobing , Jeffrey Parsons, How UML is used, Communications of the ACM, v.49 n.5,
p.109-113, 2006

3. Erickson, J., Siau, K.: Can UML Be Simplified? Practitioner Use of UML in Separate
Domains. In: EMMSAD 2007. pp. 89–98, 2007

4. B. Stroustrup: The C++ programming language, 3rd Edition, Addison-Wesley
5. UML, "OMG Unified Modeling Language", Version 2.1.2, 2007
6. S. Wrycza, B. Marcinkowski, “A Light Version of UML 2: Survey And Outcomes”, Proc.

Computer Science and IT Education Conference, pp.739-749, 2007
7. J-L. Sourrouille, M. Hindawi, L. Morel, R. Aubry: An approach to simplify UML – Ext.

Version, http://www.if.insa-lyon.fr/liesp/~sou/Reports/sUML-RR2008_1-V1.pdf, 2008

