N

N
N

HAL

open science

Specifying consistent subsets of UML

Jean-Louis Sourrouille, Mohammed Hindawi, Lionel Morel, Régis Aubry

» To cite this version:

Jean-Louis Sourrouille, Mohammed Hindawi, Lionel Morel, Régis Aubry. Specifying consistent subsets
of UML. Educator symposium (co-located with Models’08), Sep 2008, Toulouse, France. pp.26-38.

hal-00321776

HAL Id: hal-00321776
https://hal.science/hal-00321776
Submitted on 23 Oct 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00321776
https://hal.archives-ouvertes.fr

Specifying consistent subsets of UM L

Jean-Louis Sourrouille, Mohammed Hindawi, Lionelrglp Régis Aubry

INSA Lyon, LIESP, Béat. B. Pascal, 69621 VilleurbanRence
{Jean-Louis.Sourrouille, Mohammed.Hindawi, LionebMI, Régis.Aubry}@insa-lyon.fr

Abstract. While increasing progressively its expressive @owJUML has
become more and more difficult to read and undedstaespecially for
beginners. To teach the whole UML is not possitiierefore teachers only deal
with a subset of UML. We present a framework foffideg precisely a
consistent subset of a language, allowing everybimdylefine his/her own
subset. An extended example shows a way to simpliyL sequence
diagrams. Our approach use standard UML tools; foifethe simplified
language are fully compatible with UML; model mapgpibetween metamodels
is done automatically from specifications basednwarking with stereotypes;
constraints are automatically translated from thepbfied language to UML.

1. Introduction

Since its first version, UML [5] has evolved to iease its expressive power, its
coherence and more generally the quality of itcidegtson, i.e., its metamodel. In
return, especially from UML 2, this metamodel hasdme larger, more complex and
more difficult to read. But who needs to read thdLUimetamodel?

Students that rely on courses, books, and a talahforces the language syntax
do not apparently need to read the metamodel: ga@yenough knowledge from this
material to deal with exercises that teachers giteis, they build their own view of
the structure and semantics of UML. To go furtffer,instance to lead a team using
intensively models, to set model element propeftesode generators, to understand
language extensions, or very simply to find whyreggions are rejected by tools,
they need a reference. Programming languages'eraferlies on a bible (e.qg., [4] for
C++), and their compilers ensure syntactic coressn Quite differently, UML tools
enforce an incomplete non-unique syntax, and tie r@fierence is a metamodel [5]:
to gain enough knowledge to read this metamodealtisavy investment. As a result,
practitioners do not refer to the metamodel andlyawell-know UML. On the other
hand, some tasks require UML experts, for instaspecifying a style guide as
restrictions to the language, which requires add@@} constraints to the metamodel,
or specifying a Domain Specific Language.

There is a gap between UML experts that know theamedel and UML users
that do not. To broaden a better UML knowledge beythe group of UML experts,
we advocate that the metamodel should be made staddable by users according to
their UML level. Since the UML metamodel is too qaex, we propose a framework
to define a simplified UML. This language is intexadfirst for educational purposes:

2 Jean-Louis Sourrouille, Mohammed Hindawgrigl Morel, Régis Aubry

teachers and students could refer to the metamddehg UML courses. This
simplified language should be an accessible yetmott subset of UML, compatible
with the standard. It should allow advanced usessrite profiles and constraints.

The goal of this paper is neither to discuss whatkl be taught about UML nor
to definea simplified UML, but to describe an approach for simplifying thlU
metamodel. Nextthe suitable language will depend on specific neegachers will
typically limit the metamodel to the subset of pas used in their course. While the
objective is the use of a simplified language ineadion, the paper mainly deals with
the technical solution we propose to define sutdnguage. The rest of the paper is
organized as follows: section 2 describes the matitms; section 3 gives the
principles of the proposed approach; section 4 shamvextended example; section 5
deals with implementation issues before the commtus

2. Motivations and Related Works

The UML metamodel [5] was designed for allowing easy description of the
language (abstraction of concepts, systematic argton etc.), but not for easing its
reading. Readers, in particular beginners, encoudifficulties due to various
reasons: they should be familiar with UML to rehd tnetamodel; understanding the
meaning of the notions and verifying what is auithent/ forbidden is a long way from
the leaves of the metamodel to their ancestorsoapdévious definitions; there are a
lot of abstract classes; redefinitions of relati@m names introduce redundancy;
information is split into numerous small pieceshwib synthetic views.

How to teach the UML in this context? Most teachers describe a subset of UML
notions, their semantics and the induced consgainithout referring to the
metamodel. The semantics defines the limits foresgion correctness. These limits
are fuzzy because without a more precise suppart tiatural language, it is not
possible to explain completely what is correct anftht is not. Taught notions have
generally a graphical representation and mostlyrespond to leaves in the
inheritance hierarchy of the metamodel. Links betvenotions are buried in the
metamodel and are more difficult to explain.

When modeling manually, students generally use ugtrosyntax, models are
rather informal and the interpretation is sometirmpossible. Obviously, syntactic
checks are necessary, and manual modeling is teederved for small exercises.
When modeling with a tool, the syntactic correcsnissbetter but it depends on the
tool. The model part used to generate the codenermlly complete since a model
analyzer detects and even corrects errors. Thet#seé model is rarely complete and
consistent, and links between models elements agrer As long as the code
provides expected results, most students do raxttatmportance to models.

However, software development more and more focasawodels. Verifications
from the very beginning of the development willoall finding errors earlier. Hence,
students will have in the future to provide preaisedels with the wished properties,
and enhanced tools will check a kind of style guitie the context of model
engineering, developers have to know UML more gedgj and to understand rules
often requires knowing corresponding language nestié\gain, the UML metamodel

Specifying consistent subsets of UML 3

complexity is a barrier. To define a simplified medel for a subset of UML has
some significant advantages:
— To provide a precise description that will be a&refce for students and teachers,
To delimit the subset that students should know,
To ensure that the taught UML subset is consistent,
To allow defining small language extensions andkimg style rules,
To prepare students to deepening of one’s knowledtee context of MDE,
— To increase the credibility of UML as a language.
The last point might be the most important: as lasga language has no formal
description with a precise meaning, students daussetit as a language but rather as
an alternative to natural language with boxes,sliaed a vague meaning. In our
opinion, the first condition for UML to have theasis of a language is to provide the
usual elements of a language, and first of allranéd description of the syntax that
can be used by students. Of course, a checkeséz@nd condition and we pursue
parallel works about the implementation of a sgiéle.

The main drawback of this proposal is the needfoomplicated tool. To define a
UML subset could also be long, but at the same,timg interesting for a teacher.

How to simplify UML while conforming to UML? Anyway, UML is to be taken as

it is. To tackle this issue we propose two completawy directions:

— Many teachers start their course saying that wildescribe the entire UML. They
choose a subset of notions according to their omitar@: representative notions,
need for a lab work, etc. The first direction tmplify UML is thus to reduce the
language, hence its power of expression, by cargelotions.

- For a given language, there are an infinite nunddgpossible descriptions. The
second direction is to choose a language desarmiptie., a metamodel, that is
equivalent to the original metamodel but has bgtt@perties such as easier to
read. One can suppress abstract classes, reorghaizeerarchy, etc. These two
approaches are complementary since canceling mofémilitates reorganization.

_ { context Classifier inv:
__.--"| Abstractio not self.allParents -
models includes(self) }

< constraints

lies upon

« extends

Formalism Profile

Concrete Primitive | representgy. | Abstract Primitive | € 9ives meaning - —
(Form) (Notion) —
A class is represent Inheritance, clas A cl'ass is a notio D
by a rectangle, inheritangg constraints are such as...
by an arrow, etc. abstract primitives. Inheritance is .

Fig. 1. A basic model of System, Language and Model in UML

4 Jean-Louis Sourrouille, Mohammed Hindawgrigl Morel, Régis Aubry

Related works. Several works confirm that in both industry anddemia, UML
teachers deal with only a subset of UML due to lemgg complexity and an
overwhelming number of notions [3]. These UML subsare selected based on
diagrams and their associated constructs, for niastdJseCase/Class/Activity/
Sequencein [6], UseCase/Class/Sequende [3]. The expressive power is
dramatically reduced when dropping diagrams. A ipessonsequence could be the
lower use of some point of views and finally a rsiswof UML [2]. Even within a
single diagram such as the sequence diagram, thelegity remains high. At least
for teaching, to select purposefully a set of cstesit notions in the whole UML
seems a better compromise still to cover the whaldeling domain.

3. Principle of the Proposed Approach

3.1. Definitions and | ssues

The model in Fig. 1 makes explicit our definitioh formalism [1]. A Modelis a
representation of a system expressed in a gigemalismor language. A metamodel
is a model of a formalism viewed asSgstenm(seedefinition below). TheSemantics
describes the meaning of the notions, i.e.,Abstract Primitivesof the formalism.
This semantics inducdgsonstraintson models. Finally, the classes of a metamodel
are called metaclasses, and a model is a settahves of metaclasses.

Notations. m(s)/f denotes a modeh of the systens in the formalisnf, and to avoid
confusion we writenn(f)/F to denote a metamodel béxpressed if, i.e., a model
mmof the formalisnt, viewed as a system, expressed in the formatsccording
to this notationMyy. = mnm(UML)/UML is the UML metamodel. A transformation of
X intoy is writtenx - y. A model mapping is a transformation(s)/f; - my(s)/f. A
profile M, = m(P)/L is a model of a language fragméhti.e., a metamodel, directly
usable in a modein(s)/(L+P).

Definition. A metamodel is a tupI={fy,ny,sv,cm} Wherefy, is a set of forms, i.e.,
concrete graphical or textual primitiveg; is a set of notions, i.e., abstract primitives;
su is the semantics of the described languages a set of constraints on models.

Issue 1 — Ensuring backward compatibilityDur objective is to define a simplified
versionLs of a languagé by withdrawing notions. From the root language UNHis
process can be repeated. The metamodeli®™M = mm(L)/UML. The languagés is
defined byMs = mmy(Ls)/UML such that the transformationg(s)/Ls — m(s)/L of any
model in Ls be loss-less. Sincls is a subset ofM, this model mapping is
theoretically loss-less. Practically, we have tovite a fully automatable process

Issue 2 — Automatic constraint translatiorReducing the language described by
M = {fy,nm,Sw,Cm} by canceling notions amounts to definifds = {fys,Nvs:Svs:Cmst
such thatnys /7 ny. As a possible consequence of this transformasome forms
may become useless iMs hencefysfy. The transformatiorsy — Sys iS an
adaptation of the english natural text that dessrithe semantics. The last

Specifying consistent subsets of UML 5

transformationcy — cys deals with constraints. An automatic transfornmatieould
be nice but in practice, it depends on the nat@itheo simplifications. Fortunately, a
few constraints will generally be translated.

Issue 3 — Automatic profile transformatioflo translate intd.s a profileP expressed
in L boils down to the abovessue 2. A profile Mps=mg(P)/Ls expressed irLg
requires the transformatiomg(P)/Ls — m(P)/L. This transformation is similar to
issue 1 but differs when a profile explicitly uses nat#o of Mg within OCL
expressions, which complicates automatic transiatio

Issue 4 — Metamodel Equivalenc&@he other approach we consider earlier aims to
change the metamodel without changing the languath@t is defining
M; =mm(L)/UML from My =mmyL)/UML, where M; and M, are two different
metamodels of the same formalidmviewed as a system. A model is composed of
instances of metaclasses, hence modifying the neeteirimplies model changes.
Although this transformatiomy(s)/Ly; — Mo(S)/Lme S€ams to be similar gsuel, it

is different sinceM; is not a subset ofl,. Currently, there is no proof that this
transformation is always possible, therefore amaaly potential metamodel
transformations, only the ones allowing automatiedei transformation will be to
consider. Finally, constraint translation fram, to Ly, is part ofissue3.

3.2. Principle lllustration

This section introduces an example to lighten tet®ns to the previous points. The

basic principle of the solution is as follows: teoal a risky transformatiorigsuesl-

4), it is sufficient to represent a model in orggiyML. This is always possible when

notions of the simplified language belong to the WUMVhen a metamodel has been
exchanged for an equivalent oniss(e 4), models representations and visible
properties should be the same, but expressiong uka metamodel such as OCL
constraints are to be translatads(e 3). Except for profiles to be translated, this
solution ensures full compatibility with UML andalvs using standard tools.

As a second principle, automatic processing is manmgportant than
simplifications: simplifications that cannot be pessed either automatically or
manually with a low effortiésue?) are to be canceled. Not to disturb or burden th
modeler is a necessary condition for users to supghs approach. For a modeler
using the simplified language, apart from the met@eh that describes the simplified
language, the only visible differences are limiaf of language, and possibly
explicit references to the simplified metamodeOi@L constraints.

The example Fig.2 illustrates the simplification process mixing matael
equivalence and withdrawal of notions. Fig. gives the metamodel to be simplified.
Fig. 2c shows a model and tivestanceOfelationship between elements of the model
and their metaclass. Let us assume that we wargniove notiorE and to fix the
multiplicity of d to exactly 1. Due to their association (1 &)andD are indivisible.
SinceB is an abstract class, the simplified metamodey.(Bb) can be reduced to
notionsA andF = BOCOD. We finally suppose that the attribwgeB is to withdraw.

Compared with a model in the full language, a madehe simplified language
(Fig. 2d) does not allow creating instances of the mesa&lgcanceled) nor instances

6 Jean-Louis Sourrouille, Mohammed Hindawgrigl Morel, Régis Aubry

of C unrelated td (multiplicity 1). The Fig.2d shows the relationshipstanceOfor
the simplified metamodel. This relationship cor@ss to what the modeler think,
but model elements are in fact instances of tHexfetamodel (dark lines Figc).

OCL expressions in the simplified language, éd:->siz€), should be translated
into UML (issue3). The comment Figb gives a list of rewriting rules in the context
of A. The translation abd[i].a_D is b[i].d.a_D while bd->siz€) become®->size(). In
the contexf, assuming that instancesfobecome instances € a_Cis unchanged,
buta_D becomesl.a_D. The translation of expressions related to thegmgrCD
is more complicated, for instanded->colleci{x | ...x.a_C...x.a_D ...) becomes after
translatiorb.collec{x | ... xa_C ... xd.a_D...).

From this example, the requirements become cleArgnmating the translation
of OCL expressions will be the most difficult tagksue3). The proposed approach is
as follows: (i) to aid the construction of the slifipd metamodel by a tool supplying
model-to-model transformations and ensuring coesct; (ii) to save during this step
a list of rewriting rules; (iii) as far as possipte do automatically the translation of
UML semantic constraints into the simplified metatab otherwise a manual
translation is required and traces should be kéggué¢ 2); (iv) to translate
automatically OCL constraints expressed in simgdifiUML into UML using
rewriting rules issue 3). When this translation proves to be impossibietoo
intricate, restrictions apply to OCL expressions.

4. Example Using the UML Metamodel

Let us assume that we need a simplified metamoid#dleoUML sequence diagram.
We separate general and detailed notions to eagerépresentation (the translation

M a) Full language b) Simplified language
e A e A T from A:
t 1 E. bd bdfi].a_C = b[il.a_C
a l[aA a_A 1 F.] bdilaD=bfldaD
g‘ 1 ‘ ! acC bd[i] = b[i].d
al ' /la_p_ |’ ocliskindOf(F) =
e 1 . ;= ocllskindOf(B)
\ 1 ’ v
| \ 1 1 \
1 1 \
\‘ .‘ l/ \\\
\ \ ! \\\
o) 3\, d NN
M ‘\\ \ ‘\\ a_C=x
0 ‘\\\ RN
d N AN
e N \\\\\\ _A X
[o
W=,
instanceOf
-->

Fig. 2. Two models from two metamodels

Specifying consistent subsets of UML 7

of a profile aiming to enforce a style guide isagivin the extended version [7]).

4.1. General Notions

There is no metaclass for diagrams in UML. A segeatiagram is represented using
Packags that describénteractiors betweerConnectableElemesitwhoseType may
be aClass Fig. 3a shows the corresponding UML metamodehexkt

Simplified Metamodel. The minimum set of required notions includes thevés
plus Typeto factorize its association. Such a reduction ldidae excessively strong
because the notions BMameSpacandnestedPackagare easy to understand, hence a
better compromise with an equivalent complexitgiien Fig. 3b.

To keep only Class and Interface as Types is a mmggdiriction, adding Component
will be easy. Property, which “represents a setnstances that are owned by a
containing classifier instance”, is not the onlyn@ectableElement but it is enough to
begin. InteractionFragment is needed for the dedadescription of the sequence
diagram below. The word Property has many meanamgtsis confusing, therefore
renaming the class could have been consideredhidmpart of the UML metamodel,
no OCL semantic constraint is to translate intodingplified metamodel (issue 2).

a) UML metamodel

/\
| Most metaclass
ownedMember NamedElement |~ ',:l'he”t(;gm
—[name amedElement
[
0.1 | Namespace || InteractionFragment || TypedElement
namespace
| Package | Interaction | | ConnectableElement | | Classifier |

nestedPackage

| Property | | Interface || Class |

b) Simplified UML metamodel

ownedMember NamedElement
name

*

[I
01 | Namespace | | InteractionFragment | | Property Iﬁ
. ~ A 0.1

namespace
[intertace | [Class |
nestedPackage ’

Fig. 3. UML (a) and simplified UML (b) metamodels

8 Jean-Louis Sourrouille, Mohammed Hindawgrigl Morel, Régis Aubry
Behavior name InteractionFragment Interaction
: <~ name :
!) v
v A
sd ifNamie) ConnectableElement ~ selecto Clast LifeLine
obj1:C1 Message “aobi2[i1:C2| . -C3
i MSg1 (val) o CombinedFragment !

: guard / |
interaction e Ld '
Operator - yalt a return value reply call

RS ' s)
[val<Q] 4val = Msg2() 4
I Interaction .
! Operand;-‘—:"""
' .
! IEA '
! -7 [else] !
' separator of .-’ »Vl;l
' operands . asynchronous .
1 1
! : I v Msg40) !
I ExecutionSpecificatic =
! ! gate
Fig. 4. Sequence diagram main notions.
{ordered} fragment InteractionFragment fragment
* * {ordered} | covered
Zﬁ /covered
| . . . 7
- —— enclosingInteraction —
CombinedFragment Interaction| 5 4 Lifeline
interactionOperator 1 1l I+
lifeline
operand sendEvent
*
- L. message | * | JVo.1 selector/0..1
|Interact|on0perand| Message | MessageEnd | |Va|ueSpecification|
L——T 9.1 messageSort
- T f]\ 0.1
* iVeEvent 0.1
0..1 \/ guard 0.1 receivezven represents
| InteractionConstraint | Connector |Connectab|eE|ement|
start
event
ExecutionSpecification OccurrenceSpecification Event
[Evecutons | | 23 [ven]
BN M [1 1 Gato
fmm—---2-----, finish after before
| Action/Behavior... !
toBefore |« toAfter |
generalOrdering : MessageQ_ccqrrence
—>| GeneralOrdering Specification

Fig. 5. Part of the Interaction Metamodel

Specifying consistent subsets of UML 9

Profile transformation. Translating OCL expressions from the simplifiectaneodel
to UML requires only rewriting pathsséue3). An interesting point in FigB is the
translation of the associati@d from Packageto Interaction that provides directly all
the PackageownedMembershat arenteractions (or inherit from):
Package::sd : Set(Interaction) ;
sd=self.ownedMember->select(i | i.ocllsKindOf(Interaction))
A NamedElemer(self) contains a sequence diagram when:
self.ocllsKindOf(Package) and self.sd->notEmpty()
To search all the packages that contain a sequiagesam:
NamedElement::allSdPackages(): Set(Package) ;

allSdPackages=NamedElement.allinstances->select(p |
p.ocllsKindOf(Package) and p.sd->notEmpty())

4.2. Detailed Description of Interaction Notions

The minimal set of notions suitable for a beginttedescribe objects' interactions is
obviously subjective. The Fig. 4 shows a represietaselection of notions. A
LifeLine representsa ConnectableElementinteractiors are described within
fragments, from whichiCombinedFragmestthat precisénteractionOperatos and
InteractionOperand. OccurrenceSpecificatienordering specify the arrival &vens
that triggerMessage exchanged betwe&vonnectableElemesit

Metamodel. The relevant metamodel is rather voluminous big. | shows a
representative extract in which leaves that aré albistract classes could be made
explicit (Event ValueSpecificationExecutionSpecificatiofior execution within the
lifeline). The use of interactionsnteractionUsé misses as well as relationships with
other classesQonnectorends withConnectableElemesytinteraction inherits from
Behavio), but these notions do not introduce new desonipssues.

How difficult is it for beginners to read this metadel? Beginners know at least
intuitively the design patter@ompositehat could apply to the root of interactions: an
interaction is either a simplateraction (Messageexchange omteractionuse) or an
interaction enclosing an ordered collection ofiatéions. But the UML metamodel is
more complex sincelnteractionFragmenthas numerous descendants such as
InteractionOperandvhose obviousness does not appear immediatelyeaar worst
OccurrenceSpecificatiothat is both an interaction and the end of arrawtgon. The
consistency of this description escapes occasiaaalers. About abstraction level, a
beginner would focus on message exchange whilgiiggndetails in descendants, but
in this description the clasBlessageOccurrenceSpecificatiam central because it
specifies the sender, viaccurrenceSpecificatiofiifeline-ConnectableElementhe
receiver, and the order of events and messages.

Simplified M etamodel (Fig. 6). In the general part, we have only removed abstract
classes and added an association to simplify theamudel. This case is harder
because the original metamodel is complex. To s$fpple can translate associations
into attributes and usissociationClasss. The expressive power of the description of

10 Jean-Louis Sourrouille, Mohammed Hindavioniel Morel, Régis Aubry

the OccurrenceSpecificatioarder goes beyond the needs of a beginner. Thmpeal
solution, which lies on the design patt€Composite is enough to expressveeak
sequencing. The metamodel owns a bi-directional ocason from
InteractionFragmento a descendamtteraction Besides the cyclic dependency with
the descendant, this kind of description prevemesreader from reading at one level
of abstraction since descendants explain their store This association can be
replaced by an associatioenlosingFragmeitsubjected to a constraint. Finally, the
metamodel supplies degrees of freedom that araseful for a beginner, for instance
a Lifeline can be associated with ze@onnectableElementvhich is generally not
desirable since the lifeline is no longer linkedhathe rest of the model.

Trandation of UML Semantic Constraints (issue 2). Since most constraints are
unchanged, the only remaining work is to change dhiginal document. In the
simplified metamodel, very specific constraints d¢snignored when they have no
practical existence, for instance (froivifeline) “The classifier containing the
referenced ConnectableElement must be the samsifidasor an ancestor, of the
classifier that contains the interaction enclositigs lifelin€’. Interaction inherits
from Behavior(that inherits fronClassandClassfrom Classifiel), and aBehavioris
owned by aBehaviorClassifie(that inherits fronClassifiel). Practically, a sequence
diagram is not enclosed into @lassifier because it would require any set of
ConnectableElemestontained by an interaction to have a commonstoce

Most constraints expressed in natural Language swh f the

{ordered} operand |InteractionFragment g, ent

— 1.* 0.1 *| {ordered}
OpConstraint v
guard:InteractionConstraint enclosingFragment lifeline
| covered| « | 1
CombinedFragment W * Lifeline
interactionOperator raction| 1 lifeline | selector:ValueSpecification
sendEvent
message |
[Jo.1 represents \|, ¢
0.1 * Message event
Connector messageSort | MessageEndA Iﬁl| Event| | Property |
T f]\O..l

receiveEvent ‘

ordering

A start

| | 1
01 FragmentOrdering| | EventOccurrence | | ExecutionSpecification |
* * 1 I.,.\\
{ordered} finish :rAczti_o_n;B_e_h_a;/iz)F.:i
fragmentOrdering

Fig. 6. Simplified Interaction Metamodel

Specifying consistent subsets of UML 11

interactionOperator is opt, loop, break, or negetth must be exactly one operand
(from CombinedFragmeitare unchanged. Constraints related to removeibmsot
such as The interaction operators ‘consider’ and ‘ignoreamr only be used for the
CombinelgnoreFragment...(from CombinedFragmetshould be removed. Since
EventOccurrenceeplacesOccurrenceSpecificatigrtexts are to change accordingly
as in ‘The guard must be placed directly prior to (abatve) OccurrenceSpecification
that will become the first OccurrenceSpecificatiaithin this InteractionOperarid
Obviously, constraints still apply when an assagiasuch aselectorturns into an
attribute (fromLifeline): “The selector for a Lifeline must only be specifiethe
referenced Part is multivalued.

(self.selector->isEmpty() implies not self.represents.isMultivalued()) or
(not self.selector->isEmpty() implies self.represents.isMultivalued()) ”

The new metaclasEventOccurrencegather the constraints of the metaclasses
OccurrenceSpecificatiorand MessageOccurrenceSpecificatidhat it replaces (no
constraint in fact). Due to this replacement, théhpfromExecutionSpecificatioto
Lifeline becomestart.lifeline (replacestart.coverejland the constraint becomes:

start.lifeline = finish.lifeline.

Surprisingly, no other constraint applies to the@sgn subset of the metamodel,
which is not exactly a toy example. As a resul, work to translate UML semantics
constraints might not be as high as expected.

5. Implementation

The model of the simplified languadsg results from transformation of the model of
the original languagk. The model mappiniyl = mn{L)/UML - Ms=mmyLs)/UML
requires semantic decisions. On the other handtréimsformation actions should be
kept to allow replay them whdnis changed or to modifl;. A good scenario could
be: the language designer specifies basic transfions, such as abstract class
removing, as well as the corresponding treatmeinésmodel mapping is decomposed
into a sequence of predefined basic transformatidios implement this scenario
requires defining these basic transformations aed treatments, to provide a mean
to specify transformations, and then to executeraatically these transformations.

5.1. Basic Transfor mations

Basic transformations aim to simplify the langudgemodifying its representation or
by restricting the vocabulary, hence its exprespswer, for instance:

- to RemoviReplacea Class,

— to Removen AssociationReplaceit with an Attribute Moveit to another Class,

— to Addan AssociationClass to remove a Class that hatdbwtes only,

— to Replacean Association with an OCL operation (example Bjg.

- to transform a model part using a design pattern,

— to change multiplicities to forbid expressions (gam object should have a Class).

12 Jean-Louis Sourrouille, Mohammed Hindavioniel Morel, Régis Aubry

5.2. Transfor mations

Stereotypes provide a simple way to specify tramsédions by marking model
elements. To define a stereotype for each basisfwsemation is not required because
treatments depend on marked elements: «<Removaterpiieted in a different way by
ClassandAssociation Moreover, marking elements by several stereotppegides a
composition operator. The Fig. 7 shows an exampleasking to transform the UML
metamodel into a simplified one. Each stereotypg speecify properties using tagged
values, for instance «Move» specifies the new tavfjan association (not shown).

Finally, a document explains the model mapping.damh type of element and for
each stereotype, the designer needs to know tbeiatsd transformation rules. L&t
inherits from B and B inherits fromA. To removeB requires copying all the
inheritable elements @& into C and then to seA as the ancestor &. Moreover, all
the properties of typ®, in particular class attributes, should be removiguis, we
have to explain the multiple consequences of easltliransformation.

{ordered} fragment InteractionFragment | fragment

" Zﬁ * {ordered} |covered

«Move» /covered

| . . 7
- - enclosinglinteraction —
CombinedFragment Interaction| 5 4 Lifeline

interactionOperator 1 1I T
lifeline

operand \l/l..* sendEvent «Attributer “MOVE»

*
«AssociationClass» message [Vo.1 selecton/0..1
InteractionOperand Message

L T

| MessageEnd | |Va|ueSpecification

0.1 \L«Attl’ibute» messageSort fI‘O..l 0.1

0..1\/ guard «Move» receiveEvent represents

| InteractionConstraint | «Remove»
ConnectableElement

«Remove» | «Move»
1

| start w1 ;
«Replace» «Ancestor»

event
| ExecutionSpecification | OccurrenceSpecification -’%l Event

o LM J1 1 G
R , finish after before ate

:Action/Behavior... !

«Remove»
MessageOccurrence
«DesignPattern» Specification

«Replace»
GeneralOrdering

toBefore | = toAfter | «

«Move»

generalOrdering *

Fig. 7. Markec metamode for automatic transformatis

Specifying consistent subsets of UML 13

6. Conclusion

Past efforts to increase the expressive power ol @dkH to rationalize its description
(evolution from UML 1. to UML 2.) did not lead tmaeasy to learn language. We
intuitively feel that the more the language becopaserful, the more beginners will
find it difficult to learn it, particularly studest As a complementary observation,
developers do not use the whole UML, no coursesdedth the entire UML, and
beginners start with a small subset of UML. On dtieer hand, we want to keep the
UML as the reference.

From this statement, we propose an approach toaefisimplified UML, fully
compatible with UML, aiming to ease the use of Ukbk beginners but also for non-
expert users. The main issue was to automatedhslations from and to UML, since
beginners should not have to cope with translatidiesavoid risky translations, we
represent the models in UML even when expressegdimplified UML. As an
additional advantage, market tools still apply jastwith original UML. The only
remaining translations are semantic constraintsth|® UML metamodel into
simplified UML, and profiles expressed in simpldi&JML into UML, mainly OCL
constraints. The former are done once by the laggudesigner and may be
exceptionally translated manually. The latter amdcpssed automatically from
rewriting rules saved during the model mapping fldML to simplified UML. From
specifications of transformations based on markivith stereotypes, this model
mapping is done automatically, allowing replay windranges are required in one or
both languages.

We have not still completed the development ofd, o particular the translation
of profiles into UML is not achieved. Several fiduworks could complete and
improve this approach: theoretical issues suclo dmd properties of metamodels of
the same language; technical issues such as aitogeteration during model
mapping of constraints aiming to limit tools to tkamplified language, or even
systematic transformation of metamodel using degajterns or templates.

7. References

1. G. Caplat, J.L. Sourrouille, "MDA: Model Mappingsing Formalism Extension|EEE
Software Vol. 22(2), pp.44-51, 2005
2. Brian Dobing , Jeffrey Parsons, How UML is useédmmunications of the ACM, v.49 n.5,
p.109-113, 2006
3. Erickson, J., Siau, K.: Can UML Be Simplified? &itoner Use of UML in Separate
Domains. In; EMMSAD 2007. pp. 89-98, 2007
. B. Stroustrup: The C++ programming languadeEgition, Addison-Wesley
. UML, "OMG Unified Modeling Language", Version122, 2007
. S. Wrycza, B. Marcinkowski, “A Light Version &fML 2: Survey And Outcomes”, Proc.
Computer Science and IT Education Conference, pp/4392007
7. J-L. Sourrouille, M. Hindawi, L. Morel, R. Aujar An approach to simplify UML — Ext.
Version, http://www.if.insa-lyon.fr/liesp/~sou/RepesUML-RR2008_1-V1.pdf, 2008

o 01 b~

