
HAL Id: hal-00321772
https://hal.science/hal-00321772v1

Submitted on 23 Oct 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Description and Implementation of a Style Guide for
UML

Mohammed Hindawi, Lionel Morel, Régis Aubry, Jean-Louis Sourrouille

To cite this version:
Mohammed Hindawi, Lionel Morel, Régis Aubry, Jean-Louis Sourrouille. Description and Imple-
mentation of a Style Guide for UML. Quality in Modeling (co-located with MODELS’08), Sep 2008,
Toulouse, France. pp.31-45. �hal-00321772�

https://hal.science/hal-00321772v1
https://hal.archives-ouvertes.fr

Description and Implementation of a Style Guide for
UML

Mohammed Hindawi, Lionel Morel, Régis Aubry, Jean-Louis Sourrouille

Université de Lyon
INSA Lyon, LIESP, Bât. B. Pascal, 69621 Villeurbanne, France

{Mohammed.Hindawi, Lionel.Morel, Régis.Aubry, Jean-Louis.Sourrouille}@insa-lyon.fr

Abstract. Model quality is still an open issue, and a first step towards quality
could be a style guide. A style guide is a set of rules aiming to help the
developer improving models in many directions such as good practices,
methodology, consistency, modeling or architectural style, conventions
conformance etc. First, this paper attempts to clarify the meaning of notions
being used such as rule or modeling domain semantics. Then, several examples
illustrate a possible classification of rules, and the verification process is
detailed. A style guide is not universal: each project manager should be able to
customize his/her set of rules according to specific needs. In addition to rules
expressed in OCL, we describe a user interface to facilitate the specification of
rules based on quantifiers, along with the translation of these rules into OCL.

1. Introduction

In the emerging context of Model Driven Engineering, software development more
and more focuses on models. On the other hand, the software engineering community
has known for a long time the advantages of early fault detection. Thus to check
models at the beginning of the development cycle appears a promising direction. For
a reader, models have a meaning related to the application domain, but generally, a
model checker only knows the semantics of the modeling domain. As a result,
application domain semantics is a matter for users, while tools may help for modeling
issues. Beyond faults, which are all the more difficult to find that models are
imprecise and abstract, many model properties are of interest for developers.

A style guide is a set of rules aiming to help the developer improving models in
many directions such as good practices, methodology, consistency, modeling or
architectural style, conventions conformance etc. Some rules are hints while others
are warnings, which means that they are potential errors. These rules check “good
properties”, which are kinds of quality criteria. However, the quality of a model is
relative to application requirements, and errors are ignored as long as they do not go
beyond the quality objectives that have been set according to requirements.
Conversely, a style guide checker notifies all the rule violations: the developer defines
his/her own objectives and priorities, often based on error gravity.

Developers could be in charge of rule checking. However, in practice, only
automated checks are suitable not to increase developer burden, but also because

2 Mohammed Hindawi, Lionel Morel, Régis Aubry, Jean-Louis Sourrouille

manual checks are unsure. Consequently, as many rules as possible should be given a
formal description, and only rules expressed in natural language will require manual
checks. There is no universal style guide. Each development team may have its own
needs depending on applications, hence we need an easy way to specify rules. UML
provides OCL as a description language, but non-experts find it difficult to use. This
implies the need for specific tooling to describe and manage a set of rules, and to
control the verification process that should be as flexible and automated as possible.

The rest of the paper is organized as follows: section 2 gives definitions and
attempts to clarify the meaning of used notions; section 3 classifies some rule
descriptions; section 4 shows the verification process, defines the main tool
components, and details the user interface to specify rules including the translation
into OCL. Then we discuss related works and conclude.

2. Context and definitions

This section describes the context of the work and defines some notions used in the
rest of the paper. Moreover, we aim to clarify what it means to apply rules to a model.

2.1. Syntactic vs. Semantic Correctness

In software engineering, a model is a representation, from a given point of view, of a
system expressed in some formalism [4]. The formalism definition includes notions
and their semantics. This semantics induces constraints on the model, for instance the
semantics of inheritance induces that cycles are not allowed along the inheritance
relationship. A model expressed in a formalism is correct when it conforms to all the
constraints of this formalism. The UML specifies constraints in both OCL and natural
language. We call the former syntactic constraints and the latter semantic constraints1
[16][6]. A model that meets syntactic constraints is syntactically correct, and a model
that meets semantic constraints is semantically correct. Syntactic constraints can be
checked automatically while semantic constraints are left to human users, hence it is
not possible to check automatically whether a model is correct or not. In everyday
cases, UML models are at best syntactically correct but their semantic correctness is
unknown. In addition, semantic variation points in the UML specification require
human choices. For instance, the choice of the communication policy of a UML Port
leads to different valid communication sequences: “If several connectors are attached
on one side of a port, then any request arriving at the other side of this port will be
forwarded on all links or only one link...” [17].

In the following, we consider only syntactically correct models. Additional
constraints aim to increase the semantic correctness.

1 Although surprising, this definition has the advantage of being precise: even in programming

language, the difference between syntax and semantics is unclear. Going deeper into this
issue does not help due to the lack of unambiguous difference between semantic and
syntactic constraints expressed both in OCL. Anyway, the reader may think of semantic
constraints as constraints specified in natural language.

Description and Implementation of a Style Guide for UML 3

2.2. Interpretations

A system can be modeled in different ways. A model interpretation is defined as the
meaning of this model in a semantic domain. A model has generally several
interpretations in a semantic domain (Fig. 1), but the set of interpretations of an
incorrect model is empty in any domain. The natural semantic domain of a modeling
language such as UML is the modeling domain. There is no consensus about the
semantics of a universal modeling domain; hence, we assume that there are several
modeling domains, each one with its own semantics, e.g., active objects do not
behave the same according to modeling contexts. As all modeling languages, the
UML does not meet all modeling needs, while on the other hand it allows expressions
that the semantics of modeling domains may forbid, e.g., to send a signal to a set of
objects that cannot catch it. Further, the relationship between the semantics of the
modeling domains and the semantics of UML is an important issue, but it is out of the
scope of this work. The modeling domain is not to mix up with the application
domain. In the modeling domain, a class Dog may inherit from a class Bird, but in the
application domain, this inheritance relationship is surely wrong.

An interpretation is licit in a semantic domain when it has a meaning in that
domain, i.e., it conforms to the semantics of this domain. A UML model can be both
correct and illicit. For instance, a TypedElement without Type is correct in UML, but
when the element is the receiver of a message, it is illicit in most modeling domains.

Refinement. The number of interpretations of a model evolves during the
development. An abstract model has a large number of interpretations due to the lack
of details. Along the development process, models are refined and become more and
more complete and precise; hence, the number of interpretations decreases (Fig. 2a).
For example, an undirected association between two classes A and B has three
potential interpretations: AB is navigable, BA is navigable or AB and BA are both
navigable. Navigability restriction at a further modeling step may reduce these

System

Interpretations in the semantic
domain

Models

Licit interpretations

Interpretations of M1 in the
modeling domain

M1

IM1

Fig. 1. “System – Models” and “Model – Interpretations” relationships

4 Mohammed Hindawi, Lionel Morel, Régis Aubry, Jean-Louis Sourrouille

interpretations to only one. At the end of the refinement process, one interpretation is
selected to generate code. This code is a model whose interpretations form an
equivalence class from the developer point of view, i.e., all the interpretations are
equivalent: the expression a+b+c can be interpreted as either (a+b)+c or a+(b+c).

Checking models. Within a domain, a model is consistent when it conforms to the
semantics of this domain. Hence, a correct UML model that is consistent in a
modeling domain has at least one licit interpretation. There is no formal definition of
the semantics of modeling domains, but many works propose consistency rules to
check that models meet some semantic domain constraints (650 rules in [14]).

Modeling domain constraints that can be expressed in a formal language are easy
to check. The outstanding issue is how to check models to meet semantic constraints?
There is no fundamental difference between semantic constraints from UML and from
the modeling domain. Both are expressed in natural language, both apply to models,
and modeling domain constraints aim to reject models with no licit interpretation. A
first idea is to define consistency rules that are stronger than the actual semantic
constraints, but that we can express in a formal way. These rules reduce the
expressive power of UML (Fig. 2b), i.e., reject potentially correct models and forbid
some interpretations, but it is the price for automating checks. A second idea is to
define rules that will help the developer to make well-formed models. These rules
forbid model expressions leading generally to models with illicit or questionable
interpretations. Finally, human reviews help finding problems that formal rules cannot
detect. At code generation, model analysis will reveal errors but it is too late. The
checking process fails when an error that was visible in a model is discovered at run
time.

2.3. Style guide

A style guide defines a set of rules that any model must conform to. Style guides
reduce the number of acceptable models and force developers to make models owning
the wished properties, which results in smaller sets of licit interpretations (Fig. 2b).

Model n

Model 1

Model 2

Code generation
Precise

(detailed)

Abstract
(not detailed)

Fig. 2. (a) Model evolution and interpretations (b) Reduction of interpretations

Model i

Model k

Rules

Licit interpretations

Style guide
conformance

IMi

Code

Refinement

Interpretations Interpretations

IMk

Description and Implementation of a Style Guide for UML 5

Unlike language constraints that should not be violated, bypassing rules that are
simple hints is allowed. In addition to consistency rules, we consider the following
kinds of rules:
− Language conventions are rules agreed within a group,
− Guidelines aim to help developers making well-formed models,
− Methodologies induce constraints aiming to make better models from given points

of view. They force activities order, model form, deliverables, etc. These rules
depend on the chosen methodology,

− Good practice rules come from experience in specific domains, including modeling
domain, for instance developers know for a long time that low coupling between
elements is better.

Checking model conformance to a style guide is usually a human issue. Due to the
high cost of human reviews, the return on investment seems unsure. To reduce the
human burden, this paper details an approach to describe and implement an
automatically checkable style guide. We define an architecture on top of existing
tools, and a checking process. The description of a style guide goes beyond a paper
because there are too many rules. Moreover, some are common to most users while
others depend on needs that are context specific.

2.4. Style guide and Quality

The style guide defines the boundaries of the set of models owning the wished
properties. Beyond model correctness and consistency, the style guide aims to help
developers designing models with a better quality, for instance using good practices.
From this viewpoint, a style guide is a key element in the quality management
process. Of course, the quality of a model that does not meet all the style guide rules
is not definitely low, hence the link between rule violation and quality is to be
clarified.

Within a multilevel framework for quality assessment such as ISO9126 [8] or [11],
rule violation is at the level of metrics. Metrics are aggregated to form attributes,
which in turn are aggregated to form characteristics. The quality of a model is not
subject to conformance to some individual rules, but rather to some statistical
knowledge embodied as threshold values for attributes and characteristics. These
thresholds come from quality objectives that are set according to specific needs of
applications. From the quality point of view, only deviations from these values will
lead to corrections, otherwise the model has the expected quality. While the style
guide notifies all rule violations, non-quality is detected only when the combination of
a set of metrics reach critical thresholds.

Both style guide and quality assessment detect failures, i.e., non-quality. The
software engineering community usually applies the hidden rule “a model with no
failure is good”, but nobody knows to what extent a model is good. To ease model
comparison, each rule has a gravity level: some violations are just warnings or hints
while others are serious errors. Developers know that no serious rule violation should
remain while some warnings are acceptable.

6 Mohammed Hindawi, Lionel Morel, Régis Aubry, Jean-Louis Sourrouille

Research about software quality in usual programming has reached a high degree
of knowledge and skills for a long time. Software managers definitely know the
impact of software quality. In spite of this high theoretical maturity level, code quality
remains an under-exploited way to improve software. The main lessons learned from
surveys show that quality should be provided at no cost, with a suitable support, and
should not induce delays in the project. Thus we should pay a great attention to the
implementation of the style guide: integration of the verifier within the modeling tool,
very simple checking process, flexible user interface, easy rule description, etc.

3. Rules

3.1. Identifying and classifying rules.

Models are checked along several dimensions corresponding to different software
engineering areas such as methodology, good practices, or modeling. The semantics
of each area induces rules. Since generally this semantics is not described, experts
from these areas are in charge of rule identification. The dimension is our main
structuring property of rules. In addition, each rule owns a set of properties aiming to
explain it, to give further comments, to specify gravity, to link it with model parts or
development process stages, to specify and implement it, to describe correction
actions, etc. These properties are needed at any moment, for instance to classify
violations according to their importance, to organize and manage rule description, to
help the developer dealing with errors. We give below examples of rules classified by
dimension, although rules might often be attached to several dimensions. As
mentioned above, some syntactic rules can be stronger than the actual semantic
constraints to allow writing them in OCL. Rule descriptions are deliberately short and
sometimes imprecise due to available space:
− Methodology rules come from method description, e.g., “The application domain

model is mandatory”, or “Any communication between actors and subsystem goes
through an interface class” (USDP [9]). This latter rule aims to limit changes to a
set of well-identified classes when communication protocols between actors and
subsystem are modified. The UML itself induces methodology rules, e.g., “Each
use case describes at least one scenario to be specified as a sequence diagram”.
Within the development process, methodologies distinguish steps or phases [15]
such as requirement elicitation, elaboration, or detailed design. Whatever the
methodology, these phases are required to identify moments in the life cycle of
artifacts, and as a result to identify levels of abstraction. Each part of a model can
be in a different phase. The phase is used to select the set of rules to be applied to
each part of a model at a given moment. Beyond phases, to make a distinction
between Platform Independent Models and Platform Specific Models allows
detecting model expressions that are forbidden at a given stage of the development,
and helps keeping the wished independency level.

− Common methodology gathers rules that applies whatever the methodology. They
come from skills of experienced developers, e.g.: “A black box sequence diagram
only holds actors and a subsystem (definition)”, “A white box sequence diagram

Description and Implementation of a Style Guide for UML 7

holds objects, ports and components and the only actor that triggers the initial
stimulus (definition)” or even “A black box sequence diagram only holds
communications between actors and a subsystem, not between actors”.

− Consistency rules detect meaningless expressions in the modeling domain, e.g.,
“The initial stimulus in a sequence diagram is triggered by an Actor or a Port, i.e.,
neither a class instance nor a Component”, or a usual one “Navigability: any
message in a sequence diagram is sent to an accessible receiver, either method
parameter or attribute/role in an association”. Based on redundancies in the model,
some rules detect inconsistencies, e.g., “Within a sequence diagram, actor-to-
subsystem interactions should correspond to associations between actors and use
cases of this subsystem”.

− Modeling style rules detect expressions that are generally meaningless in the
modeling domain. Unlike consistency rules, breaking these rules is tolerated, e.g.,
“Within any complete class model, a path through navigable associations should
link the root class to any class (not a database schema)”, or “A sequence diagram is
triggered by only one stimulus which is the first in the chronological order”. The
former rule requires marking the root class in the model. The latter rule reduces
(apparently) the expressive power but ensures some good properties for the model
(no simultaneous waits). Similarly, the rule “Each ConnectableElement (from
metamodel) in the sequence diagram should be either a port or a class instance”
reduces the expressive power forcing components to be connected through ports.

− Completeness rules check missing elements from mandatory or even usual links
between model elements, e.g., “When the subsystem B is an output actor of the
subsystem A, then A should be an input actor in the description of the subsystem
B”, or “Each association actor-to-use case should be implemented in at least one
sequence diagram describing a scenario of this use case”.

− Good practices rules are often hints, e.g., “Cycles along class associations are to
be avoided” which aims to reduce coupling, or “To specify systematically bi-
directional navigability for associations in a final class model (just before code
generation) is likely unnecessary”.

− Conventions rules are group agreements about syntactic forms, e.g., “Any public
name should be capitalized”. Within contexts such as education, to meet
convention rules is often mandatory, e.g., “When the class of an attribute is
represented on the same diagram, drawing the association is mandatory” to avoid
hidden associations. Unlike in [12], conventions are limited to a narrow field since
we have many other dimensions.

− Architecture style rules aim to aid developers to meet software architecture styles
such as low-coupling/high-cohesion or Model-View-Controller, e.g.,“A view
knows its model but the model does not know its views”. Unusual architectures can
be detected, e.g., “A subsystem should not appear on its list of actors”.

− Refinement and trace related rules aim to check consistency along the
development cycle and to enforce links between model elements at different stages,
e.g., “A sequence diagram should be associated with a use case or a less detailed
sequence diagram (traceability)”.

− Specification gap rules deal with non-standard UML. As mentioned before, we
consider only models that conform to the UML syntactic specifications (Fig. 3).
Modeling tools often allow expressions that do not conform to the UML

8 Mohammed Hindawi, Lionel Morel, Régis Aubry, Jean-Louis Sourrouille

specifications. To deal with this issue, a
set of specific rules fulfills the gap
between each tool and standard UML
specifications. This dimension avoids
mixing up style guide additional
constraints with UML syntactic
constraints that tools do not check. To
specify these rules is clearly the work of
a UML expert.

Since rules check a large variety of issues, errors resulting from their violation do
not have the same gravity. We classify the violations into three categories: error,
warning and hint. When a consistency rule is violated, the model has no meaning in
the domain of modeling and the violation is an error to be corrected. A violation that
might result in a further problem is a warning, and the correction is likely to be
preferred. When rules such as methodology are hints for a better modeling process,
their violation reduces the quality but to correct them after model completion is not
always desirable. Although there is a strong link between dimensions and gravity
categories, the gravity is not attached to the dimension: experts and/or project
managers set the suitable value.

Finally, to avoid experts specifying rules again and again, a set of
standard/common built-in rules should be provided by tools implementing the style
guide. Thus, only specification gap rules and customized rules are to be specified.

3.2. Expressing rules

First, rules are expressed in natural language. Next, they have to be formulated in a
formal language, preferably OCL. OCL has a power of expression equivalent to first-
order logic, but as a main drawback, non-experts generally find it difficult to use. To
allow non-experts to formalize rules, we propose a graphical approach on top of OCL

Tool UML
Specification

UML standard
specification

Fig. 3. Standard vs. tool UML specification

Gap to fulfill
with rules

 Model Rules

Configurations

Verification Rule
Translation

Correction/Tag

Update

User
decision

Input
Interface

Description

Mapping
dictionary

Fig. 4. Verification process.

Process

Data
Action

Description and Implementation of a Style Guide for UML 9

that rely on generally well-known notions of first-order logic quantification. The rule
“Each connected element in a white box sequence diagram should be either a port or
an instance of a class” is written:
 ∀x∈WBSeqDiag, IsConnectableElem(x) ⇒ IsPort(x) ∨ ∃y, IsClass(y)∧ x.class=y

where WBSeqDiag is a collection of model elements, IsT(x) is a predicate which is
true when x is an instance of T. The general form of this rule is:
 ∀x∈X, R1(x) ⇒ R2(x) ∨ ∃y, R3(y)

Based on quantifiers, the interface provides a limited set of standard forms that ease
description but whose expressive power is lower that the OCL one.

The main remaining issue is the link between model notions such as object, class
or interaction, and UML metamodel notions. To read and understand the meta-model
is hard and reserved to UML experts. In the implementation section, we propose an
approach based on rewriting rules that makes it easier to use metamodel notions.

4. Verification Process

The verification process lies on the architecture illustrated in Fig. 4. The set of rules to
check depends on the role of the user, the phase in the development process, the kind
of model, temporary choices of the developer, etc. Links between rules, model and
users are expressed through configurations that control the verification process.

To check the style guide and to ensure traceability, we need to annotate the model
with data such as the phase or the root class. On the other hand, the implementation of
the verification process requires marking models. During the development process,
developers regularly check models and occasionally, they are not interested in some
types of errors because they focus on other aspects. Thus, marks on model elements
specify which rules should be checked. To summarize, we need two types of model
tags: adornments to complete the model description, and error-processing tags to
control the verification process. UML taggedValues are suitable for both purposes.

4.1. Architecture and Process

The Fig. 4 gives the main processes and data of the verification process:
• Rules are managed through a user interface described below. Rule properties are

stored in a description file separating common rules and properties from specific
ones. The mapping dictionary maps rule names expressed in natural language to
metamodel notions or OCL expressions (detailed further table 1).

Use
case

Actor1

Fig. 5. Two violations of the same rule

Actor2

Use
case

Actor1 Actor2

a) Warning: No triggering actor b) Error: Two triggering actors

{trigger} {trigger}

10 Mohammed Hindawi, Lionel Morel, Régis Aubry, Jean-Louis Sourrouille

• A configuration links together a model and a set of rules that we call a rule
package. Packages are defined either using rule properties, e.g., phase Elaboration,
dimension Good practices, gravity error, or manually for specific needs. For
instance, a team member may decide to keep watch on a particular set of rules.
Within rule packages, flags signal rules not to check temporarily.

• The verification is directed by configurations and results in messages and actions.
When the checking result is failed, data about the related rule and model elements
are displayed. According to the rule, several choices are offered: to annotate the
model with a tag, to invalidate the rule either in the configuration or in the model,
to automatically correct the model. Let us take an example to show the verification
process for the rule “All initial stimuli (triggers) of a use case come from the same
actor”. When no trigger is specified (Fig. 5a), checking results in a warning,
assuming that the developer does not still complete the model. When two triggers
are specified (Fig. 5b), checking results in an error because two actors trigger the
use case.

In this particular case, the same rule has two diagnosis according to the number of
triggers: 0 is a warning, and greater than 1 an error. More generally, a rule can check
several properties of an element. Diagnoses avoid several descriptions of the same
rule, but each diagnosis holds its own message, gravity, correction, etc.

4.2. Implementation

To check easily the rules and to aid correction, the style guide is embodied in an IDE
tool that supplies all the required services for a quicker implementation (the
implementation is an ongoing work, we choose to implement on top of Eclipse). The
integration into one tool reduces the cost of training and use, and simplifies the
checking process. We need plug-in extensions to check rules, to manage errors, to
manage configurations, and to manage corrections using model transformations, but
the tricky point is rule description. The style guide implementation should provide a
set of common built-in rules that users may select through customized configurations.
The proposed user interface allows specifying the rules. This section focuses on this
interface aiming to hide the trickiest aspects of OCL.

To provide a simplified description of constraints in OCL while keeping the same
expressive power is difficult. Our approach is a compromise: the simpler constraints
are specified through the provided interface, while the remaining ones are to write
directly in OCL. The main form of the user interface (Fig. 6) provides fields to define
rules, which allows to expressing a subset of all the possible OCL expressions. We
illustrate the description interface with the rule: “Each connected element in a white
box sequence diagram should be either a port or an instance of a class”. An equivalent
expression using quasi-natural language could be: “For any element e in a white box
sequence diagram, for any connected element e, either e is a Port or e is an instance of
a class”. The later expression is close to first-order logic and its structure fits well
with our generic input form that reads as follow:
 For any Sequence diagram in Model diagrams such as White box is true
 For any connected element e
 e is a Port or e is an instance of a Class

Description and Implementation of a Style Guide for UML 11

The next step is the translation into OCL. Quantifiers like interface operators are
translated into OCL operations such as forall, select, exists, etc. Notions such as
Sequence diagram or Class are to translate into notions of the UML metamodel.
Splitting the OCL rule into small expressions will ease reading.

Translation of "For any Sequence diagram in Model diagrams such as White box is
true"

First, UML does not supply the notion of diagram: sequence diagrams are Interaction
owned by packages. From Package, the interactions are (Fig. 7):
 self.ownedMember->select(i | i.oclIsKindOf(Interaction))

We extract model packages from the metaclass NamedElement:
NamedElement::allPackages(): Set(Package) ; -- standard operation

 allPackages = NamedElement.allInstances->select(p | p.oclIsKindOf(Package))

Selecting Interactions:
NamedElement:: sdFilter() : Set(Interaction) ;

 sdFilter = allPackages()->iterate(p ; result :Set(Interaction)={} |

result->union(p.ownedMember->select(i | i.oclIsKindOf(Interaction))))

The UML does not provide the user defined notion of White Box sequence diagram,
which means that the developer has to specify the kind of Interaction with a UML
TaggedValue kindOf = {BlackBox, WhiteBox, Final}. The operation

Fig. 6. Rule description interface

b

a c

12 Mohammed Hindawi, Lionel Morel, Régis Aubry, Jean-Louis Sourrouille

GetKindOf('WhiteBox') returns true for a WhiteBox Interaction. The set of White Box
sequence diagrams is:
NamedElement:: sdWBFilter() : Set(Interaction) ;

 sdWBFilter = sdFilter()->select(i | i.GetKindOf(‘WhiteBox’))

Translation of “For any connected element e, e is a Port or e is an instance of a
Class”

From Interaction, the form of the path to access to a ConnectableElement is:
 lifeline[f].represents -- another rule checks whether connectable element exists

From ConnectableElement, either the element is a Port or the Property is typed with a
Class:
 oclIsKindOf(Port) or type.oclIsKindOf(Class)

From Interaction, the complete expression is:
 lifeline->forAll(f |

f.represents.oclIsKindOf(Port) or f.represents.type.oclIsKindOf(Class)))

OCL final constraint:
NamedElement:: Rule() : Boolean ;

 Rule = sdWBFilter()->forAll(i | i.lifeline->forAll(f |
f.represents.oclIsKindOf(Port) or f.represents.type.oclIsKindOf(Class)))

The interface is aided to avoid any syntactic error. The user selects values in lists,
e.g., when Model Diagrams is selected (Fig. 6a), the next filter list supplies only
allowed subsets. When Sequence diagram is selected, the filter only allows BlackBox,
WhiteBox and Final (leaf according to the trace relationship). The translation of the
interface expression into OCL is based on a rewriting principle (Table 1): each
element in the list has a value in the mapping dictionary. We plan to build the
dictionary from an aided interface that lists all the accessible item names in the

NamedElement
name

Type
type

0..1

Class

Namespace

ownedMember

namespace
0..1

*

nestedPackage *

Element

TypedElement

Package

Classifier

InteractionFragment

Interaction

Property

Interface

Fig. 7. Root of the required metamodel (from [17])

lifeline *

represents 0..1

Port

ConnectableElement

Lifeline

Description and Implementation of a Style Guide for UML 13

context. For instance in the metamodel Fig. 7, from Interaction the three only choices
are name, lifeline and namespace. This work is close to the definition of a subset of
UML [].

The right area of the interface (Fig. 6c) deals with additional properties and
corrective actions when the checked element does not conform to the rule. During the
verification process, the user is prompted to choose an action that may eliminate or
temporarily hide errors. At the end of the process, the remaining violations are
displayed: not to disturb the user, checks are only on demand. A command allows
removing the model tags and configuration flags that prevent error messages.

4. Related works

Rules. Style guide rules come from various sources. The UML specification [17] is
the first information source. Some UML books such as [1][2] include
recommendations or style guides that help making “better” models. Methodology
books such as RUP [15] or USDP [9] also provide tips and rules. Modeling
conventions in [12] correspond to several dimensions within our classification. These
modeling conventions proved to be useful to reduce model “defects”, which confirms
that a style guide is an important issue. In addition, papers related to rules or metrics
for UML models are interesting sources [13]. Obviously, a complete style guide
description requires a large space [14].

Implementation. A tool may enforce built-in rules that cannot be changed, which
relieve from the burden of rule description but prevent customization. A template
defines a framework, for instance related to a methodology (e.g., RUP [15]). The user
cannot go out of the frame, but remaining dimensions are not checked. “The
experience shows that templates are helpful, but they do not ensure that the model as
a whole is complete” [7]. To summarize, templates enforce a subset of the required
rules only, therefore a preferable way will be to include this subset into a more

Table 1. Mapping dictionary

Name OCL expression
Model

diagrams
NamedElement:: Rule() : Boolean ;
 R1 = allPackages() - - built-in operation, diagrams are owned by packages

Sequence
diagram

 R2 = R1->iterate(p ; result :Set(Interaction)={} |
result->union(p.ownedMember->select(i | i.oclIsKindOf(Interaction))))

White Box R3 = R2->select(i | i.GetKindOf(‘WhiteBox’))

Connected
element

 Rule = R3.lifeline->forAll(f ; x:ConnectableElement= f.represents | R5)

Is A R5a = x.oclIsKindOf(Port)

Instance Of R5b = x.type.oclIsKindOf(Class)

or R5 = R5a or R5b

14 Mohammed Hindawi, Lionel Morel, Régis Aubry, Jean-Louis Sourrouille

flexible solution.
When rules are written in natural language, the verification of the style guide must

be done manually. The description of rules within books such as [1] comes into this
category. Works aiming at automating the verification process should express rules in
a formal language. The automated verification on demand is the best solution but
proposals are still rare [5][7]. In [7], a checker prototype fully automatically verifies
models from rules described using a specific language. Although rule description is
different, this work is close to our project. We agree with [5] and many others that
find it difficult to write rules in OCL. Instead of defining a new language as in [7], we
provide a user interface to aid specifying rules that are next translated into OCL. This
way we keep a standard language while aiding rule description. In this direction, some
works aim to facilitate OCL writing: VisualOCL [3][10] visualizes OCL expressions
in an alternative notation. It provides additional information, which increases the
usability of OCL. However, to use such tool implies experience in OCL. We try to
overcome this issue by proposing an interface easy to use, at a high abstraction level,
but rather far from OCL, which implies an additional and tricky translation process.

5. Conclusion

This project is under development2 and some issues are still pending. The advance of
our solution lies in the integration of several technical artifacts to form a complete
methodology and tooling. This integration associated with automated checking and
style guide customization is a necessary condition for actual use in companies. Some
particularly relevant elements in our approach include:
− Selective checking of model parts using tags, which avoid re-checking of rules and

messages related to incomplete model parts, therefore lighten the user burden;
− Selective checking according to the current phase in the methodology;
− Customization of the set of active rules in a configuration file according to

developer role and experience, application domain, expected “quality”, etc.
− Aid for correcting models: when a rule is violated, the developer may choose a

predefined action including model change by applying patterns;
− Aid for defining rules: the graphical interface helps project managers in the

definition of rules for their own style guide.

This work is part of a grant aiming to assess model quality. The companies
involved in the project will help us to tune quality assessment from metrics. Model
quality assessment is relative to application quality requirements and developers do
not always know the important quality criteria. A style guide brings the educational
aspect needed to help increasing models’ “good properties”: it detects all rules
violations but also provides hints, warns to avoid potential errors, and may include
company know-how. Finally, a style guide is a quite necessary complement to put
into practice quality assessment.

2 Partly financed by the grant PACTE QUALITE with the Rhône-Alpes regional government.

Description and Implementation of a Style Guide for UML 15

References

1 Ambler, Scott W., “The Elements of UML 2.0 Style”, Cambridge University Press, 2005
2 G. Booch, J. Rumbaugh, I. Jacobson: “The Unified Modeling Language User Guide”

Addison-Wesley, 1998
3 P. Bottoni, M. Koch, F. Parisi-Presicce and G. Taentzer: “A Visualization of OCL using

Collaborations”. UML 2001, LNCS 2185, Springer, pp. 257–271.
4. G. Caplat, J.L. Sourrouille, "MDA: Model Mapping using Formalism Extension", IEEE

Software, Vol. 22(2), pp.44-51, 2005
5 Farkas, T.; Hein, C.; Ritter, T. : ”Automatic Evaluation of Modeling Rules and Design

Guidelines”, proc. of the Workshop “From code centric to Model centric Soft. Eng.”,
http://www.esi.es/modelware/c2m/papers.php

6. D. Harel, B. Rumpe, "Modeling Languages: Syntax, Semantics and All That Stuff", TR
MCS00-16, The Weizmann Institute of Science, 2000.

7 Hnatkowska, B., “Verification of Good Design Style of UML Models”, Proc. Int. Conf.
Information System Implementation and Modeling, 2007, http://sunsite.informatik.rwth-
aachen.de/Publications/CEUR-WS/Vol-252/paper10.pdf

8 ISO, International Organization for Standardization, "ISO 9126-1:2001, Software
engineering – Product quality, Part 1: Quality model" , 2001

9 Jacobson I., Booch G., and Rumbaugh J., The Unified Software Development Process,
Addison-Wesley, 1999.

10 C. Kiesner, G. Taentzer, and J. Winkelmann. Visual OCL: A Visual Notation of the Object
Constraint Language. Technical Report 2002/23, Tech. Univ. of Berlin, 2002

11 L. Kuzniarz, L. Pareto, JL. Sourrouille, M. Staron, "The 3rd Workshop on Quality in
Modeling", Models in software engineering, LNCS 5002, Springer, 2008, pp.271-274

12 C.F.J. Lange, B. DuBois, M.R.V. Chaudron, S. Demeyer: “Experimentally investigating the
effectiveness and effort of modeling conventions for the UML”, CS-Report 06-14, Tech.
Univ. Eindhoven, 2006.

13 Malgouyres, H., Motet, G., “A UML model consistency verification approach based on
meta-modelling formalization”. SAC 2006: 1804-1809

14 H. Malgouyres, J.P. Seuma-Vidal, G. Motet: “UML 2.0 Consistency Rules”, V 1.1 (in
french) http://www.lesia.insa-toulouse.fr/~motet/UML/CoherenceUML_v1_1_100605.pdf

15 Rational Unified Process, IMB Corp. 1987 (2008).
16 Sourrouille, J.-L., Caplat, G.,"A Pragmatic View about Consistency Checking of UML

Model", Work. Consistency Problems in UML-Based Software Dev., 2003, pp.43-50.
17 UML, "OMG Unified Modeling Language", Version 2.1.2, 2007
18 JL Sourrouille, M. Hindawi, L. Morel, R. Aubry, "Specifying consistent subsets of UML",

Educators Symposium @ MODELS'08, 2008 (extended version http://www.if.insa-
lyon.fr/liesp/~sou/Reports/sUML-RR2008_1.pdf)

