N
N

N

HAL

open science

Description and Implementation of a Style Guide for
UML

Mohammed Hindawi, Lionel Morel, Régis Aubry, Jean-Louis Sourrouille

» To cite this version:

Mohammed Hindawi, Lionel Morel, Régis Aubry, Jean-Louis Sourrouille.
mentation of a Style Guide for UML. Quality in Modeling (co-located with MODELS’08), Sep 2008,

Toulouse, France. pp.31-45. hal-00321772

HAL Id: hal-00321772
https://hal.science/hal-00321772v1
Submitted on 23 Oct 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Description and Imple-

https://hal.science/hal-00321772v1
https://hal.archives-ouvertes.fr

Description and I mplementation of a Style Guide for
UML

Mohammed Hindawi, Lionel Morel, Régis Aubry, Jeapuis Sourrouille

Université de Lyon
INSA Lyon, LIESP, Béat. B. Pascal, 69621 VilleurbanRence
{Mohammed.Hindawi, Lionel.Morel, Régis.Aubry, Jeaatlis.Sourrouille}@insa-lyon.fr

Abstract. Model quality is still an open issue, and a fetp towards quality
could be a style guide. A style guide is a set Wés aiming to help the
developer improving models in many directions swah good practices,
methodology, consistency, modeling or architectusdyle, conventions
conformance etc. First, this paper attempts toifgléhe meaning of notions
being used such as rule or modeling domain sensarftfeen, several examples
illustrate a possible classification of rules, atm® verification process is
detailed. A style guide is not universal: each @cojmanager should be able to
customize his/her set of rules according to speciéeds. In addition to rules
expressed in OCL, we describe a user interfacecititéde the specification of
rules based on quantifiers, along with the trarmtadf these rules into OCL.

1. Introduction

In the emerging context of Model Driven Engineerisgftware development more
and more focuses on models. On the other handdtieare engineering community
has known for a long time the advantages of ealyjt fdetection. Thus to check
models at the beginning of the development cycfgeaps a promising direction. For
a reader, models have a meaning related to theécapiph domain, but generally, a
model checker only knows the semantics of the niogefiomain. As a result,
application domain semantics is a matter for usehde tools may help for modeling
issues. Beyond faults, which are all the more diffi to find that models are
imprecise and abstract, many model properties fargerest for developers.

A style guide is a set of rules aiming to help tleveloper improving models in
many directions such as good practices, methodplogpsistency, modeling or
architectural style, conventions conformance etimé& rules are hints while others
are warnings, which means that they are potentiar® These rules check “good
properties”, which are kinds of quality criteriaowever, the quality of a model is
relative to application requirements, and erroesignored as long as they do not go
beyond the quality objectives that have been seatording to requirements.
Conversely, a style guide checker notifies allrile violations: the developer defines
his/her own objectives and priorities, often bagearror gravity.

Developers could be in charge of rule checking. Elav, in practice, only
automated checks are suitable not to increase aj@elburden, but also because

2 Mohammed Hindawi, Lionel Morel, Régis Aubdgan-Louis Sourrouille

manual checks are unsure. Consequently, as maey aslpossible should be given a
formal description, and only rules expressed inur@tlanguage will require manual
checks. There is no universal style guide. Eacleldgment team may have its own
needs depending on applications, hence we needsgnveay to specify rules. UML
provides OCL as a description language, but noretggind it difficult to use. This
implies the need for specific tooling to descritvel ananage a set of rules, and to
control the verification process that should béesdble and automated as possible.

The rest of the paper is organized as follows:igec? gives definitions and
attempts to clarify the meaning of used notionsitisa 3 classifies some rule
descriptions; section 4 shows the verification pss; defines the main tool
components, and details the user interface to §pades including the translation
into OCL. Then we discuss related works and corelud

2. Context and definitions

This section describes the context of the work defines some notions used in the
rest of the paper. Moreover, we aim to clarify wihateans to apply rules to a model.

2.1. Syntactic vs. Semantic Correctness

In software engineering, a model is a represemtafiom a given point of view, of a
system expressed in some formalism [4]. The fosnaldefinition includes notions
and their semantics. This semantics induces cantstran the model, for instance the
semantics of inheritance induces that cycles atealiowed along the inheritance
relationship. A model expressed in a formalismdsrect when it conforms to all the
constraints of this formalism. The UML specifiesistraints in both OCL and natural
language. We call the formeyntacticconstraints and the latteemanticconstraints
[16][6]. A model that meets syntactic constrairstsyintactically correctand a model
that meets semantic constraintss@mnantically correctSyntactic constraints can be
checked automatically while semantic constrainésleft to human users, hence it is
not possible to check automatically whether a masleorrect or not. In everyday
cases, UML models are at best syntactically corfetttheir semantic correctness is
unknown. In addition, semantic variation pointstire UML specification require
human choices. For instance, the choice of the aamwation policy of a UMLPort
leads to different valid communication sequencésséveral connectors are attached
on one side of a port, then any request arrivinthatother side of this port will be
forwarded on all linksr only one link...” [17].

In the following, we consider only syntactically roect models. Additional
constraints aim to increase the semantic corregtnes

1 Although surprising, this definition has the adtzme of being precise: even in programming
language, the difference between syntax and secsaistiunclear. Going deeper into this
issue does not help due to the lack of unambigutifisrence between semantic and
syntactic constraints expressed both in OCL. Anyvihg, reader may think of semantic
constraints as constraints specified in naturajuage.

Description and Implementation of a Style GuideddiL 3

2.2. Interpretations

A system can be modeled in different ways. A madirpretationis defined as the
meaning of this model in a semantic domain. A mobat generally several
interpretations in a semantic domain (Fig. 1), the set of interpretations of an
incorrect model is empty in any domain. The natsexhantic domain of a modeling
language such as UML is thmodeling domainThere is no consensus about the
semantics of a universal modeling domain; henceassime that there are several
modeling domains, each one with its own semantg,, active objects do not
behave the same according to modeling contextsalAsnodeling languages, the
UML does not meet all modeling needs, while ondtieer hand it allows expressions
that the semantics of modeling domains may foreid,, to send a signal to a set of
objects that cannot catch it. Further, the relatigm between the semantics of the
modeling domains and the semantics of UML is anoirtgnt issue, but it is out of the
scope of this work. The modeling domain is not tx mp with the application
domain. In the modeling domain, a cl&@¥sg may inherit from a clasBird, but in the
application domain, this inheritance relationslsigurely wrong.

An interpretation islicit in a semantic domain when it has a meaning in that
domain, i.e., it conforms to the semantics of tlesnain. A UML model can be both
correct and illicit. For instance, ypedElementvithout Typeis correct in UML, but
when the element is the receiver of a messaggillicit in most modeling domains.

Refinement. The number of interpretations of a model evolvesindu the
development. An abstract model has a large numbieterpretations due to the lack
of details. Along the development process, modedsrefined and become more and
more complete and precise; hence, the number efpirdtations decreases (Fig. 2a).
For example, an undirected association between dlassesA and B has three
potential interpretationsAB is navigable BA is navigable orAB and BA are both
navigable. Navigability restriction at a further daling step may reduce these

Models Interpretations in the semantic
domain

System

Interpretations of M; in the
modeling domain

Licit interpretations

Fig. 1. “System- Modes” and “Model — Interpretatios” relatiorships

4 Mohammed Hindawi, Lionel Morel, Régis Aubdgan-Louis Sourrouille

interpretations to only one. At the end of thenefhent process, one interpretation is
selected to generate code. This code is a modekevhaterpretations form an
equivalence class from the developer point of viee, all the interpretations are
equivalent: the expressi@th+c can be interpreted as eithar-)+c or a+(b+c).

Checking models. Within a domain, a model isonsistentwhen it conforms to the
semantics of this domain. Hence, a correct UML rhdtiat is consistent in a
modeling domain has at least one licit interpretatilhere is no formal definition of
the semantics of modeling domains, but many womkp@se consistency rules to
check that models meet some semantic domain cartst(&50 rules in [14]).

Modeling domain constraints that can be expressexdformal language are easy
to check. The outstanding issue is how to checkatsomh meet semantic constraints?
There is no fundamental difference between semaatistraints from UML and from
the modeling domain. Both are expressed in natargjuage, both apply to models,
and modeling domain constraints aim to reject meaéth no licit interpretation. A
first idea is to defineconsistency ruleshat are stronger than the actual semantic
constraints, but that we can express in a formay.wehese rules reduce the
expressive power of UML (Figb), i.e., reject potentially correct models andofdr
some interpretations, but it is the price for audtimg checks. A second idea is to
define rules that will help the developer to makellsformed models. These rules
forbid model expressions leadirgenerally to models with illicit or questionable
interpretations. Finally, human reviews help firglproblems that formal rules cannot
detect. At code generation, model analysis willegdverrors but it is too late. The
checking process fails when an error that was leisiba model is discovered at run
time.

2.3. Style guide
A style guide defines a set of rules that any madekt conform to. Style guides

reduce the number of acceptable models and foraglaf®ers to make models owning
the wished properties, which results in smalles sdtlicit interpretations (Figz2b).

Abstract Interpretations Interpretations
(not detailed)

Model 1
: Refinement
v O
Model 2 v
: Model k
v

3

Code generation Style guide
conformance

Precise
(detailed)

Licit interpretations

Fig. 2. (a) Model evolution and interpretations) Reduction of interpretations

Description and Implementation of a Style GuideddiL 5

Unlike language constraints that should not beatéa, bypassing rules that are
simple hints is allowed. In addition to consistgmales, we consider the following
kinds of rules:

— Language conventions are rules agreed within apgrou

— Guidelines aim to help developers making well-fodmeodels,

- Methodologies induce constraints aiming to makeebehodels from given points
of view. They force activities order, model formeligerables, etc. These rules
depend on the chosen methodology,

— Good practice rules come from experience in spedifimains, including modeling
domain, for instance developers know for a longetithat low coupling between
elements is better.

Checking model conformance to a style guide is lisashuman issue. Due to the
high cost of human reviews, the return on investns@ems unsure. To reduce the
human burden, this paper details an approach teribesand implement an
automatically checkable style guide. We define echitecture on top of existing
tools, and a checking process. The description stf/le guide goes beyond a paper
because there are too many rules. Moreover, sommeanmon to most users while
others depend on needs that are context specific.

2.4. Style guide and Quality

The style guide defines the boundaries of the $etnadels owning the wished
properties. Beyond model correctness and consigtéhe style guide aims to help
developers designing models with a better quadlity jnstance using good practices.
From this viewpoint, a style guide is a key elemantthe quality management
process. Of course, the quality of a model thasdu# meet all the style guide rules
is not definitely low, hence the link between rul®lation and quality is to be
clarified.

Within a multilevel framework for quality assessrsuach as 1SO9126 [8] or [11],
rule violation is at the level of metrics. Metriese aggregated to form attributes,
which in turn are aggregated to form charactesstiche quality of a model is not
subject to conformance to some individual rulest tather to some statistical
knowledge embodied as threshold values for ate#wnd characteristics. These
thresholds come from quality objectives that areameording to specific needs of
applications. From the quality point of view, ordgviations from these values will
lead to corrections, otherwise the model has tipeeted quality. While the style
guide notifies all rule violations, non-qualitydstected only when the combination of
a set of metrics reach critical thresholds.

Both style guide and quality assessment detectrés| i.e., non-quality. The
software engineering community usually applies lidden rule “a model with no
failure is good”, but nobody knows to what extentnadel is good. To ease model
comparison, each rule has a gravity level: som&atioms are just warnings or hints
while others are serious errors. Developers knaw b serious rule violation should
remain while some warnings are acceptable.

6 Mohammed Hindawi, Lionel Morel, Régis Aubdgan-Louis Sourrouille

Research about software quality in usual progrargrhias reached a high degree
of knowledge and skills for a long time. Softwar@amagers definitely know the
impact of software quality. In spite of this hidtebretical maturity level, code quality
remains an under-exploited way to improve softwate main lessons learned from
surveys show that quality should be provided atost, with a suitable support, and
should not induce delays in the project. Thus waukhpay a great attention to the
implementation of the style guide: integrationtué werifier within the modeling tool,
very simple checking process, flexible user integfaeasy rule description, etc.

3. Rules

3.1. Identifying and classifying rules.

Models are checked along sevediensionscorresponding to different software
engineering areas such as methodology, good peactis modeling. The semantics
of each area induces rules. Since generally thisaséics is not described, experts
from these areas are in charge of rule identificatiThe dimension is our main
structuring property of rules. In addition, eaclerawns a set of properties aiming to
explain it, to give further comments, to specifpgty, to link it with model parts or
development process stages, to specify and impleriteio describe correction
actions, etc. These properties are needed at amgento for instance to classify
violations according to their importance, to organand manage rule description, to
help the developer dealing with errors. We giveoheéxamples of rules classified by
dimension, although rules might often be attachedséveral dimensions. As
mentioned above, some syntactic rules can be &rotigan the actual semantic
constraints to allow writing them in OCL. Rule degtions are deliberately short and
sometimes imprecise due to available space:

— Methodology rules come from method description, e.g., “Theligppon domain
model is mandatory”, or “Any communication betwestors and subsystem goes
through an interface class” (USDP [9]). This lattele aims to limit changes to a
set of well-identified classes when communicatisat@cols between actors and
subsystem are modified. The UML itself induces radtiogy rules, e.g., “Each
use case describes at least one scenario to biéiespas a sequence diagram”.
Within the development process, methodologies rdjsiish steps ophases[15]
such as requirement elicitation, elaboration, otaitkd design. Whatever the
methodology, these phases are required to identdynents in the life cycle of
artifacts, and as a result to identify levels o$tediction. Each part of a model can
be in a different phase. The phase is used totshleset of rules to be applied to
each part of a model at a given moment. Beyond gshas make a distinction
between Platform Independent Models and Platfornecp Models allows
detecting model expressions that are forbiddengiten stage of the development,
and helps keeping the wished independency level.

— Common methodology gathers rules that applies whatever the methodolblygy
come from skills of experienced developers, e.§.bfack box sequence diagram
only holds actors and a subsystem (definition)”, White box sequence diagram

Description and Implementation of a Style GuideddiL 7

holds objects, ports and components and the ortlyr dbat triggers the initial
stimulus (definition)” or even “A black box sequendaiagram only holds
communications between actors and a subsystenbetwten actors”.

Consistency rules detect meaningless expressions in the magdelomain, e.g.,
“The initial stimulus in a sequence diagram isgded by arictor or aPort, i.e.,
neither a class instance norGomponerit or a usual one “Navigability: any
message in a sequence diagram is sent to an didees=steiver, either method
parameter or attribute/role in an association”.dglasn redundancies in the model,
some rules detect inconsistencies, e.g., “Withiseguence diagram, actor-to-
subsystem interactions should correspond to agsmtsabetween actors and use
cases of this subsystem”.

Modeling style rules detect expressions that aenerally meaningless in the
modeling domain. Unlike consistency rules, breakimese rules is tolerated, e.g.,
“Within any complete class model, a path throughigeble associations should
link the root class to any class (not a databalsersa)”, or “A sequence diagram is
triggered by only one stimulus which is the finstthe chronological order”. The
former rule requires marking threot class in the model. The latter rule reduces
(apparently) the expressive power but ensures gmod properties for the model
(no simultaneous waits). Similarly, the rule “Ea€lonnectableElemengfrom
metamodel) in the sequence diagram should be eithmort or a class instance”
reduces the expressive power forcing componeriie mnnected through ports.
Completeness rules check missing elements from mandatory onexsual links
between model elements, e.g., “When the subsy&dman output actor of the
subsystenA, thenA should be an input actor in the description of $hbsystem
B”, or “Each association actor-to-use case shouldnfdemented in at least one
sequence diagram describing a scenario of thisase'.

Good practices rules are often hints, e.g., “Cycles along classoeiations are to
be avoided” which aims to reduce coupling, or “Tmeafy systematically bi-
directional navigability for associations in a firdass model (just before code
generation) is likely unnecessary”.

Conventions rules are group agreements about syntactic foengs, “Any public
name should be capitalized”. Within contexts such education, to meet
convention rules is often mandatory, e.g., “Whee thass of an attribute is
represented on the same diagram, drawing the asi@wcis mandatory” to avoid
hidden associations. Unlike in [12], conventions lamited to a narrow field since
we have many other dimensions.

Architecture style rules aim to aid developers to meet software srchire styles
such as low-coupling/high-cohesion or Model-Viewr@Goller, e.g.,"A view
knows its model but the model does not know itsvegie Unusual architectures can
be detected, e.g., “A subsystem should not appeés dist of actors”.

Refinement and trace related rules aim to check consistency along the
development cycle and to enforce links between ineldenents at different stages,
e.g., “A sequence diagram should be associated avitke case or a less detailed
sequence diagram (traceability)”.

Specification gap rules deal with non-standard UML. As mentionedobef we
consider only models that conform to the UML sytitaspecifications (Fig. 3).
Modeling tools often allow expressions that do manform to the UML

8 Mohammed Hindawi, Lionel Morel, Régis Aubdgan-Louis Sourrouille

specifications. To deal with this issue, a
set of specific rules fulfills the gap

between each tool and standard UML Gap to fulill
specifications. This dimension avoids with rules
mixing up style guide additional

constraints with UML syntactic UML standard Tool UML
constraints that tools do not check. Tgspecification Specification
specify these rules is clearly the work of o

a UML expert. Fig. 3. Standard vs. tool UML specification

Since rules check a large variety of issues, emesalting from their violation do
not have the same gravity. We classify the viol&ionto three categoriesrror,
warning andhint. When a consistency rule is violated, the modsl i@ meaning in
the domain of modeling and the violation is an etoobe corrected. A violation that
might result in a further problem is a warning, ahe correction is likely to be
preferred. When rules such as methodology are fimta better modeling process,
their violation reduces the quality but to corrdem after model completion is not
always desirable. Although there is a strong lirdkween dimensions and gravity
categories, the gravity is not attached to the dsimn: experts and/or project
managers set the suitable value.

Finally, to avoid experts specifying rules againdamgain, a set of
standard/common built-in rules should be providgddpls implementing the style
guide. Thus, only specification gap rules and austed rules are to be specified.

3.2. Expressing rules
First, rules are expressed in natural languaget,Nlegy have to be formulated in a
formal language, preferably OCOCL has a power of expression equivalent to first-

order logic, but as a main drawback, non-expertegdly find it difficult to use. To
allow non-experts to formalize rules, we propoggaphical approach on top of OCL

Model H

: T
\ . Configurations
\ Mapping o~
N | dictionary | ./
NI - f Update
v v

Rule
Translation

Verification

Correction/Tag
* Action

User
decision

Fig. 4. Verification proces

Description and Implementation of a Style GuideddiL 9

that rely on generally well-known notions of figtder logic quantification. The rule
“Each connected element in a white box sequenagatia should be either a port or
an instance of a class” is written:

OxOWBSegDiag, IsConnectableElem(x) = IsPort(x) O Oy, IsClass(y)d x.class=y

where WBSeqDiags a collection of model elementsT(x) is a predicate which is
true wherx is an instance of. The general form of this rule is:

OxOX, R1(x) = R2(x) OOy, Ra(y)

Based on quantifiers, the interface provides atéichiset of standard forms that ease
description but whose expressive power is lowetrttha OCL one.

The main remaining issue is the link between manions such as object, class
or interaction, and UML metamodel notions. To read understand the meta-model
is hard and reserved to UML experts. In the impletaigon section, we propose an
approach based on rewriting rules that makes ieettsuse metamodel notions.

4. Verification Process

The verification process lies on the architectlitstrated in Fig. 4. The set of rules to
check depends on the role of the user, the phatbeidevelopment process, the kind
of model, temporary choices of the developer, kiicks between rules, model and
users are expressed throuwginfigurationsthat control the verification process.

To check the style guide and to ensure traceabilieyneed to annotate the model
with data such as the phase or the root classh©ather hand, the implementation of
the verification process requires marking modelariiy the development process,
developers regularly check models and occasiontdigy are not interested in some
types of errors because they focus on other aspEets, marks on model elements
specify which rules should be checked. To summarizeneed two types of model
tags: adornments to complete the model descriptow, error-processing tags to
control the verification process. UMhggedValuegre suitable for both purposes.

4.1. Architecture and Process

The Fig. 4 gives the main processes and data afdtification process:

* Rules are managed through a user interface describenvb&ule properties are
stored in a description file separating commongwdad properties from specific
ones. The mapping dictionary maps rule names espdes natural language to
metamodel notions or OCL expressions (detailedhéurtable 1).

O O
Actorl Actor2 Actorl Actor2
a) Warning: No triggering actor b) Error: Two triggering actors

Fig. 5. Two violationsof the same ru

10 Mohammed Hindawi, Lionel Morel, Régis Aubdgan-Louis Sourrouille

« A configuration links together a model and a set of rules thatcai a rule
package. Packages are defined either using rufgepies, e.g., phadeélaboration
dimensionGood practices gravity error, or manually for specific needs. For
instance, a team member may decide to keep watch particular set of rules.
Within rule packages, flags signal rules not toohtemporarily.

» Theverification is directed by configurations and results in mgssaand actions.
When the checking result failed, data about the related rule and model elements
are displayed. According to the rule, several cb®iare offered: to annotate the
model with a tag, to invalidate the rule eithethe configuration or in the model,
to automatically correct the model. Let us takeeaample to show the verification
process for the rule “All initial stimuli (trigger®f a use case come from the same
actor”. When no trigger is specified (Figa), checking results in a warning,
assuming that the developer does not still completemodel. When two triggers
are specified (Figsb), checking results in an error because two adtagger the
use case.

In this particular case, the same rule has dwegnosisaccording to the number of
triggers: 0 is a warning, and greater than 1 aoreMore generally, a rule can check
several properties of an element. Diagnoses awiéral descriptions of the same
rule, but each diagnosis holds its own messageitgraorrection, etc.

4.2. Implementation

To check easily the rules and to aid correctioa,dtyle guide is embodied in an IDE
tool that supplies all the required services forqaicker implementation (the
implementation is an ongoing work, we choose tolémgnt on top of Eclipse). The
integration into one tool reduces the cost of trajnand use, and simplifies the
checking process. We need plug-in extensions teckcheles, to manage errors, to
manage configurations, and to manage correctioimg usodel transformations, but
the tricky point is rule description. The style dgliimplementation should provide a
set of common built-in rules that users may selectugh customized configurations.
The proposed user interface allows specifying thest This section focuses on this
interface aiming to hide the trickiest aspects 6fLO

To provide a simplified description of constraimsOCL while keeping the same
expressive power is difficult. Our approach is anpoomise: the simpler constraints
are specified through the provided interface, wkfile remaining ones are to write
directly in OCL. The main form of the user intera(g-ig.6) provides fields to define
rules, which allows to expressing a subset oftal possible OCL expressions. We
illustrate the description interface with the rulEach connected element in a white
box sequence diagram should be either a port orséance of a class”. An equivalent
expression using quasi-natural language could Ber any elemeng in a white box
sequence diagram, for any connected elemegithere is aPort or e is an instance of
a class”. The later expression is close to firsteorlogic and its structure fits well
with our generic input form that reads as follow:

For anySequence diagrain Model diagramsuch as White boxs true

For any connected element
eis aPortor eis an instance of @lass

Description and Implementation of a Style GuideddiL 11

The next step is the translation into OCL. Quaatsilike interface operators are
translated into OCL operations such fasall, select, existsetc. Notions such as
Sequence diagraror Class are to translate into notions of the UML metamodel
Splitting the OCL rule into small expressions witise reading.

Trandation of "For anySequence diagranm Model diagramssuch as White boxis
true"

First, UML does not supply the notion of diagramgsence diagrams alteraction

owned by packages. Frdfackage the interactions are (Fi@):
self.ownedMember->select(i | i.ocllsKindOf(Interaction))

We extract model packages from the metadmsedElement

NamedElement::allPackages(): Set(Package) ; -- standard operation

allPackages = NamedElement.allinstances->select(p | p.oclisKindOf(Package))

Selectinginteractiors:
NamedElement:: sdFilter() : Set(Interaction) ;
sdFilter = allPackages()->iterate(p ; result :Set(Interaction)={} |
result->union(p.ownedMember->select(i | i.oclisKindOf(Interaction))))

The UML does not provide the user defined notioWdfite Boxsequence diagram,
which means that the developer has to specify theé &f Interaction with a UML

TaggedValue kindOf = {BlackBox, WhiteBox, Final}. h& operation
One element rule
Dimension [Modeling style v/ Failed
: : Error v
\ Sequence Diagram v| Add Gravity of
the violation | Error

Model Diagram 2

Warrning
Sequence Diagram - WB ... Al Hint 3
Message

There is a lifeline in sequence o
For all v \ ConnectedElement v| diagram which is connected
~ neither to a port nor to a class
For all instance,
There is . b
Thereis not .
Proposed Action

Element Filters ® Manually by user
Filter |Instance Of v| Value |Class v O Predefined Action
Class A
Add Interface o,
IsA Port 2
OR +| Instance Of Class
OR ~
AND o v

Rule : Each connected element in a white box sequence diagram should be either a port or an instance of a class

Fig. 6. Rule description interface

12 Mohammed Hindawi, Lionel Morel, Régis Aubdgan-Louis Sourrouille

GetKindOf('WhiteBox') returngrue for a WhiteBoxinteraction The set oiVhite Box
sequence diagrams is:
NamedElement:: sdWBFilter() : Set(Interaction) ;

sdWBFilter = sdFilter()->select(i | i.GetKindOf(‘WhiteBox’))

Trandation of “For any connected elemesf e is aPort or e is an instance of a

Class”

FromInteraction the form of the path to access t€@@nnectableElemeid:
lifeline[f].represents -- another rule checks whether connectable element exists

FromConnectableElemeneither the element isRort or thePropertyis typed with a
Class
oclisKindOf(Port) or type.ocllsKindOf(Class)
FromInteraction the complete expression is:
lifeline->forAll(f |
f.represents.oclisKindOf(Port) or f.represents.type.ocllsKindOf(Class)))

OCL final constraint:
NamedElement:: Rule() : Boolean ;

Rule = sdWBFilter()->forAll(i | i.lifeline->forAll(f |
f.represents.oclisKindOf(Port) or f.represents.type.ocllsKindOf(Class)))

The interface is aided to avoid any syntactic erftre user selects values in lists,
e.g., whenModel Diagramsis selected (Fig6a), the next filter list supplies only
allowed subsets. WheBequence diagrais selected, the filter only allov&lackBox
WhiteBoxandFinal (leaf according to the trace relationship). Thenstation of the
interface expression into OCL is based on a remgitprinciple (Table 1): each
element in the list has a value in the mappingiahietry. We plan to build the
dictionary from an aided interface that lists diktaccessible item names in the

/\

ownedMember NamedElement

name
| | |

0.1 | Namespace || InteractionFragment || TypedElement

namespace

| Package |Interaction| | ConnectableElement |

represents, 0.1 &

lifeline
/\

Lifeline &
| Port| | Interface | | Class |

Fig. 7. Root of the required metamodel (frod7])

nestedPackage *

*

Description and Implementation of a Style GuideddiL 13

context. For instance in the metamodel Figrom Interactionthe three only choices
are name lifeline andnamespaceThis work is close to the definition of a subsét
UML .

The right area of the interface (Figc) deals with additional properties and
corrective actions when the checked element doesamform to the rule. During the
verification process, the user is prompted to chams action that may eliminate or
temporarily hide errors. At the end of the proceb®& remaining violations are
displayed: not to disturb the user, checks are onlydemand. A command allows
removing the model tags and configuration flag$ finevent error messages.

4. Related works

Rules. Style guide rules come from various sources. ThelWdecification [17] is
the first information source. Some UML books sucls §1][2] include
recommendations or style guides that help makingtt&” models. Methodology
books such as RUP [15] or USDP [9] also provides tgnd rules. Modeling
conventions in [12] correspond to several dimersiithin our classification. These
modeling conventions proved to be useful to reduodel “defects”, which confirms
that a style guide is an important issue. In addjtpapers related to rules or metrics
for UML models are interesting sources [13]. Obgigu a complete style guide
description requires a large space [14].

Implementation. A tool may enforce built-in rules that cannot beawbed, which
relieve from the burden of rule description butvem customizationA template
defines a framework, for instance related to a owtlogy (e.g., RUP [15]). The user
cannot go out of the frame, but remaining dimersi@me not checked. “The
experience shows that templates are helpful, layt tfo not ensure that the model as
a whole is complete” [7]. To summarize, templataforce a subset of the required
rules only, therefore a preferable way will be twlide this subset into a more

Table 1. Mapping dictionary

Name OCL expression

Model |NamedElement: Rule() : Boolean ;
diagrams R1 = allPackages() - - built-in operation, diagrams are owned by packages
Sequence| R2 = R1->iterate(p ; result :Set(Interaction)={} |

diagram result->union(p.ownedMember->select(i | i.ocllsKindOf(Interaction))))
White Box | R3 = R2->select(i | i.GetKindOf(‘WhiteBox'))
Connected Rule = R3.lifeline->forAll(f ; x:ConnectableElement= f.represents | R5)
element
IsA R5a = x.ocllsKindOf(Port)

Instance Of R5b = x.type.oclisKindOf(Class)
or R5 = R5a or R5b

14 Mohammed Hindawi, Lionel Morel, Régis Aubdgan-Louis Sourrouille

flexible solution.

When rules are written in natural language, théfigation of the style guide must
be done manually. The description of rules withaoks such as [1] comes into this
category. Works aiming at automating the verificatprocess should express rules in
a formal language. The automated verification omaied is the best solution but
proposals are still rare [5][7]. In [7], a checlgptotype fully automatically verifies
models from rules described using a specific laggu#lthough rule description is
different, this work is close to our project. Weregy with [5] and many others that
find it difficult to write rules in OCL. Instead afefining a new language as in [7], we
provide a user interface to aid specifying rulest tre next translated into OCL. This
way we keep a standard language while aiding regedption. In this direction, some
works aim to facilitate OCL writing: VisualOCL [3]P] visualizes OCL expressions
in an alternative notation. It provides additiomaformation, which increases the
usability of OCL. However, to use such tool implegperience in OCL. We try to
overcome this issue by proposing an interface &asige, at a high abstraction level,
but rather far from OCL, which implies an additibaad tricky translation process.

5. Conclusion

This project is under developmémind some issues are still pending. The advance of

our solution lies in the integration of severalhieical artifacts to form a complete

methodology and tooling. This integration assodatéth automated checking and

style guide customization is a necessary condftwractual use in companies. Some

particularly relevant elements in our approachudet

— Selective checking of model parts using tags, whiabid re-checking of rules and
messages related to incomplete model parts, therbhiten the user burden;

— Selective checking according to the current phashd methodology;

— Customization of the set of active rules in a ogunfation file according to
developer role and experience, application don&ipected “quality”, etc.

— Aid for correcting models: when a rule is violatélde developer may choose a
predefined action including model change by apgpatterns;

- Aid for defining rules: the graphical interface pelproject managers in the
definition of rules for their own style guide.

This work is part of a grant aiming to assess magl@lity. The companies
involved in the project will help us to tune qugliissessment from metrics. Model
quality assessment is relative to application quakquirements and developers do
not always know the important quality criteria. #yle guide brings the educational
aspect needed to help increasing models’ “good eutims”: it detects all rules
violations but also provides hints, warns to avpatential errors, and may include
company know-how. Finally, a style guide is a quigcessary complement to put
into practice quality assessment.

2 Partly financed by the grant PACTE QUALITE withetRhone-Alpes regional government.

Description and Implementation of a Style GuideddiL 15

References

1 Ambler, Scott W., “The Elements of UML 2.0 Styl€ambridge University Press, 2005

2 G. Booch, J. Rumbaugh, I. Jacobson: “The Unifiedd&iog Language User Guide”
Addison-Wesley, 1998

3 P. Bottoni, M. Koch, F. Parisi-Presicce and G.nfaer: “A Visualization of OCL using
Collaborations”. UML 2001, LNCS 2185, Springer, pp72271.

4. G. Caplat, J.L. Sourrouille, "MDA: Model Mappingsing Formalism Extension'|EEE
Software Vol. 22(2), pp.44-51, 2005

5 Farkas, T.; Hein, C.; Ritter, T. : "Automatic Evation of Modeling Rules and Design
Guidelines”, proc. of the Workshop “From code cento Model centric Soft. Eng.”,
http://www.esi.es/modelware/c2m/papers.php

6. D. Harel, B. Rumpe, "Modeling Languages: Syntaemn&ntics and All That Stuff', TR
MCSO00-16, The Weizmann Institute of Science, 2000.

7 Hnatkowska, B., “Verification of Good Design Styd¢ UML Models”, Proc. Int. Conf.
Information System Implementation and Modeling, 200ttp://sunsite.informatik.rwth-
aachen.de/Publications/CEUR-WS/Vol-252/paper10.pdf

8 ISO, International Organization for Standardamat "ISO 9126-1:2001, Software
engineering — Product quality, Part 1: Quality mbd2001

9 Jacobson I., Booch G., and RumbaughThe Unified Software Development Progess
Addison-Wesley, 1999.

10 C. Kiesner, G. Taentzer, and J. Winkelmann. Vi@GL: A Visual Notation of the Object
Constraint Language. Technical Report 2002/23, Teoiv. of Berlin, 2002

11 L. Kuzniarz, L. Pareto, JL. Sourrouille, M. Star "The 3rd Workshop on Quality in
Modeling", Models in software engineering, LNCS 508@ringer, 2008, pp.271-274

12 C.F.J. Lange, B. DuBois, M.R.V. Chaudron, S. Demé¥eperimentally investigating the
effectiveness and effort of modeling conventionstfe UML”, CS-Report 06-14, Tech.
Univ. Eindhoven, 2006.

13 Malgouyres, H., Motet, G., “A UML model consisty verification approach based on
meta-modelling formalization”. SAC 2006: 1804-1809

14 H. Malgouyres, J.P. Seuma-Vidal, G. Motet: “UNLO Consistency Rules”, V 1.1 (in
french) http://www.lesia.insa-toulouse.fr/~motet/UMoherenceUML_v1_1 100605.pdf

15 Rational Unified Process, IMB Corp. 1987 (2008).

16 Sourrouille, J.-L., Caplat, G.,"A Pragmatic Viebout Consistency Checking of UML
Model", Work. Consistency Problems in UML-Based SaftsvDev., 2003, pp.43-50.

17 UML, "OMG Unified Modeling Language”, Version122, 2007

18 JL Sourrouille, M. Hindawi, L. Morel, R. AubrySpecifying consistent subsets of UML",
Educators Symposium @ MODELS'08, 2008 (extendedsiaver http://www.if.insa-
lyon.fr/liesp/~sou/Reports/sUML-RR2008_1.pdf)

