
HAL Id: hal-00321763
https://hal.science/hal-00321763

Submitted on 22 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

A 2-level and mixed domain decomposition approach for
structural analysis

David Dureisseix, Pierre Ladevèze

To cite this version:
David Dureisseix, Pierre Ladevèze. A 2-level and mixed domain decomposition approach for struc-
tural analysis. Contemporary mathematics, 1998, 218, pp.238-245. �10.1090/conm/218/03014�. �hal-
00321763�

https://hal.science/hal-00321763
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


A 2-level and mixed domain decomposition approach for

structural analysis

David Dureisseix1 and Pierre Ladevèze1
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1 Introduction

When using domain decomposition methods without overlapping, one can focus on displacements, such
as primal approaches, [11]. . . , or on efforts, such as dual approaches, [6]. Since the latin approach used
herein allows interfaces to play a major role, both displacements and efforts are the unknowns; it is a
“mixed” approach. A general drawback with domain decomposition methods is the decrease in conver-
gence as increases the number of substructures. Using a global mechanism to propagate information
among all substructures can eliminate this drawback.

We are proposing herein to take into account the introduction of two scales when decomposing the
structure into substructures and interfaces. As a first step, the implemented version is concerned with
linear elasticity. The large scale problem is then used to build a global exchange of information and
therefore to improve performance. Moreover, comparisons with other decomposition methods, and in
particular with several variants of the feti method, are proposed.

2 Formulation of the problem

The studied structure is seen as the assembly of two mechanical entities: sub-structures ΩE , E ∈ E, and
interfaces LEE′

. Each possess its own variables and equations. The principles of this one-level approach
have been described in [9], its feasibility has been shown in [10], and [2] proposes some significant
examples.

Since we are dealing herein with linear elasticity, only the final configuration is of interest.

2.1 Substructure behaviour

Each substructure ΩE is submitted to the action of its environment (neighbouring interfaces): an effort
FE and a displacement field WE on its boundary ∂ΩE . Eventually, f

d
is a prescribed body force

(Figure 1).
For each E ∈ E, (WE ;FE) has to satisfy:

• kinematic equations:
∃UE ∈ UE , εE = ε(UE) and UE

|∂ΩE = WE (1)

where UE is the set of displacement fields defined on ΩE which possess a finite energy, and εE is
the associated strain.
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Figure 1: Substructure and interface

• equilibrium equations: a stress field σE balances f
d

and FE , i.e.:

∀U? ∈ UE ,

∫
ΩE

Tr[σEε(U?)]dΩ =

∫
ΩE

f
d
· U?dΩ +

∫
∂ΩE

FE · U?dS (2)

• constitutive relation: herein, the behaviour is linear and elastic (K denotes Hooke’s tensor) and

σE = KεE (3)

s denotes the set of unknowns (WE , FE , UE , σE) for E ∈ E, that characterises the state of all
substructures.

2.2 Interface behaviour

The state of the liaison between two substructures ΩE and ΩE′
is defined by values on its surface of both

the displacements and efforts (WE ;FE) and (WE′
;FE′

) (see Figure 1). For a perfect liaison, they must
satisfy:

FE + FE′
= 0 and WE = WE′

(4)

Of course, other kinds of liaison can be expressed, such as the prescribed effort liaison, the pre-
scribed displacement liaison, and the unilateral contact liaison with or without friction, as described in
[9], [2]. Here, we are only dealing with perfect interfaces that continuously transfer both efforts and
displacements.

2.3 Description of the one-level algorithm

According to the framework of LArge Time INcrement (latin) methods, equations are split into two
groups in order to separate difficulties, [10]:

• Γ is the set of unknowns s satisfying each interface behaviour (4), and

• Ad is the set satisfying each substructure behaviour (1), (2), (3).

The solution sex searched is then the intersection of Ad and Γ. A two-stage algorithm successively
builds an element of Ad and an element of Γ. Each stage involves a search direction; these are the
parameters of the method:

• the local stage uses the search direction E+: (F̂ − F )− k(Ŵ −W ) = 0

Finding ŝ ∈ Γ in such a way that ŝ− sn belongs to the search direction E+ is a local problem on
the interfaces. For instance, with perfect interfaces, the solution is explicitly written: Ŵ = Ŵ ′ =
1
2 [(W +W ′)−k−1(F +F ′)] and F̂ = −F̂ ′ = 1

2 [(F −F ′)−k(W −W ′)]. It can easily be parallelised.

• the linear stage uses the search direction E−: (F − F̂ ) + k(W − Ŵ ) = 0

Finding sn+1 ∈ Ad in such a way that sn+1 − ŝ belongs to E− is a global problem on each sub-
structure. When using the search direction, (2) is an elasticity-like problem on each substructure,
with Robin boundary conditions. It can be solved concurrently once the substructures have been
distributed among the available processors, along with their neighbouring interfaces.

Finally, a convergence check can be built with ‖ŝ− sn‖. More details for this one-level approach can be
found in [10]. In the case of linear elasticity, this algorithm is similar to the one proposed in [8], [12], [7],
i.e. it is one version of Uzawa algorithm.
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Figure 2: Model problem and example of decomposition into 16 substructures and interfaces
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Figure 3: Convergence rate versus number of substructures

3 A 2-level extension

Let us first consider the model problem of a slendered bidimensional structure submitted to a parabolic
bending loading (see Figure 2). The reference (U ;σ)ref here is the direct finite element solution without
decomposition. It allows us to define the convergence rate in energy norm:

τ = − log
en+1

en
where e2

n =

1

2

∫
Ω

Tr[(σn − σref)K
−1(σn − σref)]dΩ

1

2

∫
Ω

Tr[σrefK
−1σref]dΩ

Figure 3 presents the averaged convergence rate (up to convergence: en ≤ 0.1%) versus the number
of substructures. It illustrates a well-known behaviour of domain decomposition methods: slowing the
convergence rate when increasing the number of subdomains, [1]. To remedy such a drawback, we select
herein to express the solution on two different scales:

(UE ;σE) = (UE
1 ;σE

1 ) + (UE
2 ;σE

2 ) (5)

1 and 2 denote unknowns related to large scale (effective quantities) and related to corrections on the
fine scale respectively. The large scale problem is kept global in order to build the global information
exchange mechanism, while the fine scale is managed with the previous substructuring technique.

Each level can arise from a different model for the structure; here, they are related to 2 different meshes
with embedded elements. Let Ω1 and Ω2 denote these meshes. The principles of such a technique are
described in [4]. As in the multigrid terminology, information transfer between levels is performed with a
prolongation operator, P, and a restriction operator, R = PT . (Ū , σ̄) is the effective part of the solution,

i.e. the part defined on the mesh Ω1 (then, UE
1 = PEŪ and σ̄ =

∑
E∈E

REσE
1 ). With embedded grids, the

prolongation is straightforward and performed with a classical hierarchical finite element projection, as
hierarchical bases are used for splitting UE into U1 and UE

2 . With such a splitting, the global equilibrium
equations become:

∀U?
1 ∈ U1, ∀U?

2 ∈ UE
2 ,

∑
E∈E

∫
ΩE

Tr[σ(ε(U?
1) + ε(U?

2))dΩ =

=
∑
E∈E

∫
ΩE

(
f
d
· U?

1 + f
d
· U?

2

)
dΩ +

∑
E∈E

∫
∂ΩE

FE
2 · U

?
2dS (6)
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with σ = σ1 + σ2 = Kε(U1) + Kε(U2), and the search direction on fine scale FE
2 = F̂E

2 + kŴE
2 − kW

E
2 ,

with WE
2 = UE

2 |∂ΩE , it leads to:

• on the fine scale 2, for each substructure ΩE
2 , the stress field σE

2 also has to balance −σE
1 =

−Kε(U1|ΩE ) = −Kε(PEŪ):

∀U?
2 ∈ UE

2 ,

∫
ΩE

Tr[ε(U2)Kε(U?
2)]dΩ +

∫
∂ΩE

U2 · kU
?
2dS =

=

∫
ΩE

f
d
· U?

2dΩ +

∫
∂ΩE

(F̂E
2 + kŴE

2 ) · U?
2dS −

∫
ΩE

Tr[ε(U1)Kε(U?
2)]dΩ (7)

The discretised displacement-oriented formulation of the problem (7) is:

([KE ] + [kE ])[UE
2 ] = [fEd ] + [f̂E ]− [B2σ

E
1 ] (8)

[KE ] and [kE ] denote rigidity matrices (constant along iterations), arising from material and search

direction respectively, [f̂E ] is a load due to F̂E
2 +kŴE

2 , and B2 is the operator giving the generalised
forces that balance a given stress field on mesh ΩE

2 . We can notice that the problem to solve is
global on the substructure and is elasticity-like in nature.

• on the large scale 1,

∀U?
1 ∈ U1, ∫

Ω

Tr[ε(U1)Kε(U?
1)]dΩ =

∫
Ω

f
d
· U?

1dΩ−
∑
E∈E

∫
ΩE

Tr[ε(U2)Kε(U?
1)]dΩ (9)

with U?
1 = PŪ , the last term is: −

∑
E∈E

∫
ΩE

Tr[REε(U2)Kε(Ū
?
)]dΩ. As the stress field σ̄ must

balance −σ̄2 = −
∑
E∈E

REKε(UE
2 ), the scales are not separated. The discretised displacement-

oriented formulation of the problem (9), with σ̄d arising from external loads, is:

[K1][Ū ] = [B1σ̄d]− [B1σ̄2] (10)

The solution is searched successively from the two levels within each latin iteration on the substruc-
tured fine scale, in a fixed point method, as described in [4]. The linear stage is then performed on
both scales, while local stage is still the same as for the one-level approach but only deals with fine scale
quantities: (ŴE

2 ; F̂E
2 ). Table 1 describes the algorithm. It has been implemented in the industrial-type

code castem 2000 developed at the cea in Saclay, [13].
For the previous example, the convergence rate has been illustrated in Figure 3. The quasi-independence

of the convergence rate with respect to the number of substructures shows the numerical scalability of
the 2-level latin method. One can notice that for this example, the new optimum value for the search
direction is now related to the interface length (L0 has then be chosen as equal to 0.25 times the length of
one substructure). It is no longer characterised by the behaviour of the whole structure [2], but becomes
a substructuring characteristic, see [4].

4 Comparisons

Several domain decomposition algorithms currently use a global mechanism, like the feti method, [6].
It produces at each iteration a solution that satisfies equilibrium through the interfaces, and that has to
accommodate global equilibrium on each subdomain. This leads to the resolution of a global problem
on all subdomains to find their rigid body movement, related to the large-scale problem.

The proposed example at this time is a tridimensional beam with a parabolic bending loading at one
extremity. 32 substructures and a mesh with 20-node cubic elements are considered for this problem (one
substructure has 3 675 d.o.f. and requires 12.8 Mb of storage for the factorised rigidity, while the direct
problem has 95 043 d.o.f. and requires 1 252 Mb). For the large scale, the influence of the discretisation
with 8-node cubic elements is studied, as also shown in Figure 4.
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Table 1: 2-level algorithm

Large scale — 1 processor Fine scale — n processors

Initialisation
initialisation of [B1σ̄2] = 0
receiving [B1σ̄d]|ΩE ←−
assembling the contributions
factorisation of [K1]
forward-backward on (10)
sending Ū −→

Loop over iterations

receiving [B1σ̄2]|ΩE ←−
assembling the contributions
forward-backward on (10)
sending Ū −→

Initialisation
computing contributions [B1σ̄d]|ΩE

←− sending [B1σ̄d]|ΩE

initialisation of ŝ = 0
factorisation of [KE ] + [kE ]

−→ receiving Ū
computing coupling term [B2σ

E
1 ]

forward-backward on (8)

Loop over iterations
computing coupling term [B1σ̄2]|ΩE

←− sending [B1σ̄2]|ΩE

local stage,
convergence check ←→

−→ receiving Ū
computing coupling term [B2σ

E
1 ]

forward-backward on (8)

a

b

c

d
Substructure
External interface
Internal interface

Figure 4: Meshes of the large-scale problem (a,b,c,d) and of the substructured problem (assembly of
substructures and interfaces)
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Figure 5: Comparison of methods – error versus iterations
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Figure 6: Comparison of costs

Figure 5 shows error en versus iterations, for the feti method without preconditioning, then with
lumped preconditioning, and finally with optimal Dirichlet preconditioning. These three computations
have been performed by F.-X. Roux with the paragon machine at onera-Châtillon, France. The
previous single-level latin algorithm as well as the 2-level extension for the different large-scale discreti-
sations are also reported. These computations have been performed on the cray-t3d computer at idris
in Orsay. Both of these parallel computers have been used with 32 processors. Since time comparisons
between two approaches depends on the processor, the intercommunication network, the compilers, disk
usage, etc., we retain only the major tendencies by weighting the previous results; after analysing the
costly parts of simulations, we identified cpu costs of initialisations for the feti approach and the latin
single-level to 1, in terms of cpu equivalent time (accumulated on the 32 processors). Afterwards, the
feti iteration and the 2-level latin iteration for the case (a) are identified in terms of cost. Figure 6
then shows the evolution of error versus this cpu equivalent time.

The cost for a direct finite element approach is 18 in terms of cpu equivalent time. When using the
multi-frontal scheme, [3], [5], the condensed Schur complement problem has 19 875 d.o.f. and requires
329 Mb of storage. The costs are 3 for local condensations and forward-backward substitutions (which
can be performed concurrently) and 2.6 for the resolution of the condensed problem (sequentially). Total
cost of the analysis is then 5.6 in cpu equivalent time. The cost of a local condensation is higher than a
simple factorisation due to the higher fill-in of the local rigidity matrix (in order to treat the boundary
d.o.f. at the end).

One can initially note that when increasing the large-scale problem size of the 2-level latin algorithm,
the error indicator starts out lower at the first iteration because the large-scale first solution is used to
initiate the algorithm. Another effect is the increase in the convergence rate (Figure 5), but since iteration
costs are also increasing, the two effects cancel each other for the proposed example, (Figure 6).

6



5 Conclusions

The originality in both the use of the large time increment method and a substructuring approach is
the major role played by interfaces, which are considered as structures in their own right. This leads to
a “pure parallel” algorithm that can be improved when using a 2-level scheme. The consequence is the
generation of a global problem to solve on the whole structure at each iteration. The resulting algorithm
is then numerically scalable.

The ultimate goal is the extension to non-linear structural analysis with a large number of d.o.f. One
approach which is currently under development deals with a 2-level version more suited to homogenisation
techniques, completely merged with non-incremental latin methods.

Acknowledgements The authors wish to thank F.-X. Roux from onera-Châtillon, for having per-
formed the computations with feti approaches on the paragon, as well as idris at Orsay, for accessing
the cray-t3d.
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