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Abstract. The multi-level approach proposed herein has two main features. Firstly, it
is a mixed domain decomposition method. It introduces a decomposition of the structure
into substructures and interfaces; the unknowns of the problem are both the displacement
and the efforts on the interfaces. The LArge Time INcrement ( latin) method is then
used to build an iterative algorithm designed to solve the problem concurrently. In order
to attain the maximum efficiency expected when increasing the number of substructures,
a global mechanism, suitable for propagating information among all the substructures, is
required.

The second feature lies in a homogenisation technique for building this mechanism.
This is related to the homogenisation between a macro level (in order to represent the
long wave length effects) and a micro level, as derived from the previous substructuring.
The design of the homogenised operator, along with the information exchange mechanism
between the two levels, leads to a new multi-level approach. This naturally takes place
within the latin framework, which has formerly been designed for non-linear problems of
evolution. An improved performance for this new approach is then to be expected.
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1 INTRODUCTION

The most powerful computers are now based on a parallel architecture11. In order to
use them efficiently, specific algorithms have been designed, such as domain decomposi-
tion methods, which are well-suited to multiprocessor computers, with either shared or
distributed memory.

The underlying approach used in this work proceeds with a decomposition of the struc-
ture into substructures and interfaces, in a mixed fashion: the unknowns of the problem
are both the displacement and the efforts on the interfaces. The LArge Time INcrement
(latin) method is then used to build an iterative algorithm in order to solve the problem
concurrently8, 2. When increasing the number of subdomains, the maximum efficiency ex-
pected from domain decomposition methods is not attained. Using a global mechanism to
propagate information among all of the substructures can overcome this drawback1. Such
a mechanism has now been implemented in several domain decomposition-like algorithms,
such as the feti method4 or the Balancing Domain Decomposition method10.

An initial extension to the latin approach, which takes into account two scales arising
from the substructuring has been applied in order to improve performance. Its feasibility
has been shown for linear elasticity and perfect interfaces3; its performance is similar
to those obtained from different versions of the feti method. The resulting algorithm
is numerically scalable, i.e. the number of iterations needed to reach convergence is
independent of the number of substructures. At each iteration, the algorithm leads to
solving a large-scale problem on the whole structure in order to propagate information.

The approach proposed herein is related to the homogenisation techniques between
a macro level and a micro level, which have also been derived from the substructuring.
Once the macro level has been chosen (in order to represent the large wave effects), the
homogenised operator is defined, along with the information exchange mechanism between
the two levels. The macro level problem is then chosen to be the global information
exchange mechanism. This approach does not require any specific treatment for boundary-
located areas, and deals with structures that are not required to be a periodic medium.

In Section 2, we specify the notations for the reference problem and its substructuring.
Then, two scales are defined for both the kinematic and static quantities in Section 3. The
latin method is used to build an iterative algorithm in Section 4, and Section 5 presents
an example of parallel computation with a first version of such a multi-level approach.

2 PROBLEM TO BE SOLVED

The reference problem is related to the quasi-static behaviour of a structure denoted by
Ω, over a time interval [0, T ], for small perturbations and isothermic evolutions. Loadings
are a prescribed displacement Ud on one part of the boundary ∂1Ω, a prescribed traction
force F d on a complementary part of the boundary ∂2Ω, and an eventual body force f

d
onto Ω, see Figure 1.

In order to simplify the presentation, the reference problem is written for the special
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Figure 1. Reference problem

case of linear elasticity (the non-linear case is treated with a full Large Time INcrement
approach7). Time is no longer taken into account because only the final configuration is
of interest herein.

The displacement field at each point M of Ω is U(M); the associated space is U (U0

will denote the related virtual field space). ε is the strain field and the current state of
the structure is given at each point by the stress field σ.

The reference problem is to find s = (U ; σ) which satisfies:

• kinematic equations:

ε = ε(U), U |∂1Ω = Ud, U ∈ U (1)

• equilibrium equations:

∀U ? ∈ U0,

∫
Ω

Tr[σε(U ?)]dΩ =

∫
Ω

f
d
· U?dΩ +

∫
∂2Ω

F d · U ?dS (2)

• constitutive relation (K is Hooke’s tensor):

σ = Kε (3)

In order to obtain an accurate solution to the previous problem when several structural
effects occur — like high-stress gradient areas — or when a precise model of the material’s
behaviour is needed, one expects to use a large number of degree of freedom in a finite
element approach. This problem will be called the fine-scale problem. A direct solution
to the fine-scale problem can be very costly. One way to solve it efficiently is to use a
substructuring approach, thereby allowing us to perform the treatment on multi-processor
computers11.

The originality of the substructuring approach used herein is to decompose the former
structure into substructures and interfaces, with each of them being a mechanical entity
in its own right: each possesses its own behaviour and equation6. Such a substructuring
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Figure 2. Substructure and interface

leads to introducing additional quantities; the state of the liaison ΓEE′
between substruc-

tures ΩE and ΩE′
is defined by efforts and displacements on the interface (F E; W E) and

(FE′
; WE′

). They represent the action of ΓEE′
on ΩE and ΩE′

, respectively, such as shown
in Figure 2.

As the size of the reference problem increases, domain decomposition methods become
more efficient than direct methods. Meanwhile, efficiency is not as high as expected as the
number of substructures increases; in particular, numerical scalability is not attained. An
additional effort has to be made in order to improve the performance of such algorithms.
Classically a global problem has to be used for the whole structure1. For instance, the
feti method4, which is a dual Schur complement problem solved with a projected conju-
gate gradient, must balance the efforts field on its boundary globally for each subdomain.
At each iteration, it has to solve a global problem for which the unknowns are the rigid
body movements of the subdomains. When using a primal Schur complement method9,
the Balancing Domain Decomposition method10 uses a similar feature during the precon-
ditioning step, during which a Neumann problem is solved for each subdomain at each
iteration.

In the case of the latin method, an initial multi-level extension of the algorithm has
been performed3. It uses a coarse discretisation of the whole problem at the large scale to
propagate globally the information among all the substructures. We are proposing herein
another large scale problem generated from a homogenisation-like approach7 which is
expected to be more efficient.

3 USING TWO SCALES

The solution is considered to possess two parts, each related to the micro scale m and
to the macro scale M . Such an approach uses homogenisation techniques similar to those
which can be developed with multigrid approaches5. The state of the structure is then
described with two parts, each defined on one scale.

In order to simplify the notations, further substructure-related quantities will no longer
be denoted by a superscript E.

4
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3.1 Kinematic splitting

The displacement field is U = Um + UM . UM is regular on the whole structure
except on the eventual discontinuity surfaces (unilateral contact, for instance): UM ∈ UM .
This is the large variation length displacement. Um is not required to be continuous
throughout the interfaces between substructures: Um ∈ Um

E . This is the micro correction
displacement.

Both of these are subjected an orthogonality-like condition (the macro displacement is
an averaged displacement):

∀Um ∈ Um
E , ∀UM ∈ UM ,

∫
Ω

Um · UMdΩ =
∑
E

∫
ΩE

Um · UMdΩ = 0 (4)

The strain field is then:

ε(U) = ε(Um) + ε(UM) = εm + εM (5)

From a kinematic point of view, the displacement on the interfaces is split into two
scales: W = Wm + W M , with Wm ∈ Wm

E , and W M ∈ WM
E .

3.2 Dual static splitting

Both stress and efforts can be derived from previous representations, with an energy
splitting, which is a key point of the proposed approach:

(F , W ) = (F , Wm) + (F , WM) = (F m, W m) + (F M , WM) (6)

(., .) is the symmetric form:

(F, W ) =
∑
E

∫
∂ΩE

F E ·W EdΩ (7)

and: ∫
Ω

Tr[σε]dΩ =

∫
Ω

(Tr[σεm] + Tr[σεM ])dΩ =

∫
Ω

(Tr[σmεm] + Tr[σMεM ])dΩ (8)

The last relations allow us to define the micro and macro dual unknowns: σM and F M

are the macro stress and efforts, and σm and F m are the micro correction stress and
correction efforts.

4 A LATIN APPROACH

Within the linear elasticity case, the latin framework is transformed since time no
longer plays a role. The usual duality is now related to energy, i.e. it occurs between dis-
placements and efforts, and no longer between celerity and efforts, as with the dissipation
duality for non-linearities or for dynamic problems.

The problem now consists of finding s = (U, W ; σ, F ) which satisfies:

5



David Dureisseix and Pierre Ladevèze

• an initial group of equations (Γ) with possibly non-linear, but local-in-space, equa-
tions:

– for each substructure ΩE , Hooke’s law (3),

– for each interface ΓEE′
, the corresponding behaviour:

equilibrium (F + F ′, W ?) = 0 with W ? = W m? + WM?; this equilibrium can
then be rewritten in the micro-macro form:

∀Wm? ∈ Wm
E,0, (F m + F ′m, Wm?) = 0 (9)

∀W M? ∈ WM
E,0, (FM + F ′M , WM?) = 0 (10)

and for a perfect liaison, displacement continuity: W m = W ′m and WM = W ′M

• a second group (Ad) with possibly global, but linear equations, in which the splitting
into the two levels had been previously performed:

– kinematic admissibility:

εm = ε(Um), Um
|∂ΩE = W m, Um ∈ Um

E , W m ∈ Wm
E (11)

εM = ε(UM), UM
|∂ΩE = W M , UM ∈ UM , W M ∈ WM

E (12)

– static admissibility:

∀Um? ∈ Um
E,0,∫
ΩE

Tr[σmε(Um?)]dΩ =

∫
ΩE

f
d
· Um?dΩ +

∫
∂ΩE

F m ·W m?dS (13)

∀UM? ∈ UM
0 ,

∑
E

∫
ΩE

Tr[σMε(UM?)]dΩ =

=
∑
E

∫
ΩE

f
d
· UM?dΩ +

∑
E

∫
∂ΩE

F M ·WM?dS (14)

A two-stage iterative algorithm can now be built6, see Figure 3. Its main feature is to
successively produce an element of Γ and an element of Ad at each iteration. Each stage
involves a search direction, E+ and E−. These are the parameters of the method.

4.1 Local stage

Once s is known, the problem is then to find ŝ ∈ Γ such that ŝ− s belongs to a search
direction E+, i.e. for linear elasticity:

(σ̂ − σ) + K(ε̂− ε) = 0 (15)
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Figure 3. latin iterative scheme

for each substructure, and:

∀Wm? ∈ Wm
E , (F̂m − F m, Wm?)− (km(Ŵ m −W m), W m?) = 0

∀W M? ∈ WM
E , (F̂M − F M , WM?)− (kM(Ŵ M −W M), WM?) = 0

(16)

for each interface. Of course, ŝ also has to satisfy Hooke’s law for each substructure and
the behaviour of each interface.

It can can be noticed that micro and macro quantities are not separated in the search
direction (15) in order to ensure coupling between the two scales. For the boundary fields,
the search direction (16) is expressed separately on each level. One characteristic of the
parameter km, when using a multi-level approach, is its relationship with an interface
characteristic3 and no longer with the structure characteristic, as that was the case for
the formerly mono-level approach8.

Since the search direction E+ is local and linear, the resulting local stage problem is
also local in terms of space variable. It can be easily parallelised once the interfaces have
been mapped onto the available processors.

4.2 Linear stage

Once ŝ is known, the problem is then to find s ∈ Ad, in such a way that s− ŝ belongs
to the search direction E−, i.e. for each substructure:

(σ − σ̂)−K(ε− ε̂) = 0 (17)

and for each interface:

∀Wm? ∈ Wm
E , (F m − F̂ m, Wm?) + (km(W m − Ŵ m), Wm?) = 0

∀WM? ∈ WM
E , (F M − F̂M , W M?) + (kM(W M − ŴM), WM?) = 0

(18)

As previously noted, K does not separate micro and macro quantities in (17), although
km and kM do in (18).

Since s ∈ Ad, it is said to be admissible. It is subjected to both kinematic (11 and
12) and static (13 and 14) admissibilities. Such a problem is linear and global per each
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substructure only. It can also be parallelised when the substructures also get distributed
among the processors.

We are now going to describe more precisely the kind of problems to be solved during
the linear stage. Taking into account the properties that ŝ has to satisfy, the search
direction (17) leads to σ = Kε, i.e.:

∀ε? = εm? + εM?,

∫
ΩE

Tr[σε?]dΩ =

∫
ΩE

Tr[εKε?]dΩ (19)

4.2.1 Micro scale problem

Let’s look more closely at the micro scale problem, in which all macro quantities are
supposed to be known. One must find sm = (Um, Wm; σm, Fm) which satisfies for each
substructure the kinematic and static admissibilities (11) and (13), as well as the search
direction (17). The later then leads to:∫

ΩE

Tr[σmεm?]dΩ =

∫
ΩE

Tr[(Kεm + KεM)εm?]dΩ (20)

Using the static admissibility and the search direction, the resulting displacement-
oriented formulation consists of finding on each substructure Um and W m such that:

εm = ε(Um), Um
|∂ΩE = Wm, Um ∈ Um

E , W m ∈ Wm
E (21)

and:

∀Um? ∈ Um
E,0,

∫
ΩE

Tr[ε(Um)Kε(Um?)] +

∫
∂ΩE

Um · kmUm?dS =

=

∫
ΩE

f
d
· Um?dΩ +

∫
∂ΩE

(F̂ m + kmŴ m) · Um?dS −
∫

ΩE

Tr[εMKε(Um?)]dΩ (22)

In order to express the macro scale problem in the next section, the structure of the
micro scale problem must be detailed. Since the problem is linear, the solution can be
expressed as:

Um = Ûd + Ũ (23)

Ũ is the part of the solution for when εM is the only loading term on the right hand side

of (22). Let ˜̃U ∈ UM be such that:

∀UM? ∈ UM ,

∫
ΩE

Tr[ε( ˜̃U)Kε(UM?)]dΩ =

∫
ΩE

Tr[ε(Ũ)Kε(UM?)]dΩ (24)

Since Ũ ∈ Um
E and ˜̃U ∈ UM , the later is energetically equivalent to the response in the

micro scale to a macro scale loading. Finally, ˜̃U is derived from UM using Ũ . It can be
formally written as:

Kε( ˜̃U) = LKε(UM) (25)

8
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4.2.2 Macro scale problem

This problem is similarly treated with the search direction (19) which then leads to:

∫
ΩE

Tr[σMεM?]dΩ =

∫
ΩE

Tr[(KεM + Kεm)εM?]dΩ (26)

Using expression (25) in the macro scale equilibrium, the displacement-oriented formu-
lation now consists of finding UM and W M such that:

εM = ε(UM), UM
|∂ΩE = W M , UM ∈ UM , W M ∈ WM

E (27)

and:

∀UM? ∈ UM
0 ,

∑
E

∫
ΩE

Tr[ε(UM)(1 + L)Kε(UM?)]dΩ =

=
∑
E

∫
ΩE

f
d
· UM?dΩ +

∑
E

∫
∂ΩE

FM · UM?dS −
∑

E

∫
ΩE

Tr[ε(Ûd)Kε(UM?)]dΩ (28)

Regularity constraints for UM lead to a global problem on the whole structure for the
macro scale. The solution UM now allows us to solve the micro scale problem (22).

(1 + L)Kε(UM) is the homogenised stress and (1 + L)K is the homogenised Hooke’s
tensor.

5 EXAMPLE

The reported results have been obtained with a first version of the micro-macro approach3.
In particular, the macro scale operator of the macro-scale problem (28) is different from
the previous one.

With this version and for the examples presented herein, the finite element meshes of
the two scales are embedded. Information transfer between grids is then performed with
a hierarchical finite element projection14. Moreover, the orthogonality condition (4) is
replaced by the hierarchical splitting of finite element shape functions13. When using the
homogenised operator (1 + L)K, performances are expected to be improved.

Nevertheless, the general layout of both multi-level approaches is similar and has been
described in Table 1. The approaches have been implemented in the industrial-type code
castem 200012 developed at the cea in Saclay. All of the computations have been
performed on an sgi Origin 2000 with 32 processors and 8Gb central shared memory.

5.1 Convergence rate

In order to check the performance of the proposed approach, let us first consider the
model problem of a slendered bidimensional structure submitted to a parabolic bending

9
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Macro scale Micro scale
dedicated to 1 processor dedicated to n processors

Initialisation

receiving loading contributions ←−
assembling them
factorisation of macro scale problem
forward-backward: global problem
sending UM −→

Loop over iterations

receiving coupling terms ←−
assembling them
forward-backward: global problem
sending UM −→

←−

−→

←−

−→

Initialisation
compute loading contribution
sending it
initialisation of ŝ
factorisation of micro scale problem

receiving UM

compute coupling term
forward-backward to get Um

Loop over iterations
compute coupling term
sending it
local stage,

convergence check ←→
receiving UM

compute coupling term
forward-backward to get Um

Table 1. Micro-macro algorithm

loading (see Figure 4). The reference (U ; σ)ref here is the direct finite element solution
without decomposition. It allows us to define the convergence rate in the energy norm:

τ = − log
en+1

en
where: e2

n =

1

2

∫
Ω

Tr[(σn − σref)K
−1(σn − σref)]dΩ

1

2

∫
Ω

Tr[σrefK
−1σref]dΩ

(29)

Fd Ud

Figure 4. Model problem and example of decomposition into 16 substructures and interfaces

Since only perfect interfaces are used in this example, UM denotes regular fields on the
whole structure Ω. The interface loading in the global macro scale equilibrium (28) is

10
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then:

∑
E

∫
∂ΩE

F M · UM?dS =
∑
ΓEE′

∫
ΓEE′

(FM + F ′M) · UM?dS = 0 (30)

Table 2 shows the various characteristics of the solved problems.

substructuring (total) direct computation
nb nb memory requirement nb nb memory requirement
sstr dof factorised matrix dof elements factorised matrix

4 33 800 25Mb 33 410 8 192 33Mb
16 135 200 99Mb 132 354 32 768 255Mb
64 540 800 398Mb 526 850 131 072 2 000Mb?

? estimated

Table 2: Characteristics of the involved problems (micro scale is meshed with 6-node triangles, macro
scale with 3-node triangles)

Figure 5 presents the averaged convergence rate (up to a high level of convergence:
en ≤ 0.01%) versus the number of substructures. It illustrates a well-known behavioural
characteristic of domain decomposition methods: slowing the convergence rate when in-
creasing the number of subdomains1.

1
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Figure 5. Convergence rate versus number of substructures

The evolution in the stress and displacement fields along iterations are compared in
Figure 6 for the mono-level and micro-macro approaches, at iterations 1, 2 and 15. For
the later approach, both the micro and macro scale parts of the solution are shown in
Figure 7.
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Figure 6: Comparison of solutions at iterations 1,2 and 15 for: a) on the left: the mono-level approach;
b) on the right: the micro-macro approach.

            

Figure 7: a) on the left: the micro scale solution (with a 10-magnification for displacement); b) on the
right: the macro scale solution.

Finally, it should be pointed out that for the mono-level approach, the search direction
is k = E/L0, where E is Young’s modulus and L0 has an optimum value of twice the
length of the structure8. When using the multi-level or micro-macro approach, the value
of km = E/L0 has been set equal to 0.25 times the length of an interface. It is no longer
characterised by the global behaviour of the structure.

With a global macro scale problem, the algorithm also becomes numerically scalable:
the convergence rate is quasi-independent of the number of substructures.

12
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6 CONCLUSION

The proposed technique belongs to the field of structural analysis with homogenisation.
It combines a micro and macro representations of the problem into the latin framework.

The second feature herein is to build a mechanical and parallel approach that is related
to domain decomposition methods, in order to use parallel architecture computers for
problems with a large number of degrees of freedom. It deals with a mixed substructuring
method as the unknowns are both the displacement and the efforts into the interfaces.

As the macro scale problem is kept global onto the whole structure, it leads to an
information exchange mechanism for all the substructures. The resulting algorithms are
numerically scalable, and the convergence rate is improved.
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