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Quantum effects of radiation pressure are expected to limit the sensitivity of second-generation
gravitational-wave interferometers. Though ubiquitous, such effects are so weak that they haven’t
been experimentally demonstrated yet. Using a high-finesse optical cavity and a classical intensity
noise, we have demonstrated radiation-pressure induced correlations between two optical beams sent
into the same moving mirror cavity. Our scheme can be extended down to the quantum level and
has applications both in high-sensitivity measurements and in quantum optics.

PACS numbers: 42.50.Wk, 05.40.Jc, 03.65.Ta

Quantum effects of optomechanical coupling, the
radiation-pressure coupling between a moving mirror and
an incident light field, were first studied in the framework
of gravitational-wave detection [1, 2, 3], enforcing quan-
tum limits to the sensitivity of large-scale interferometers
[4, 5, 6]. Overcoming these limits was a major motivation
for the quantum optics experiments performed shortly
after, such as squeezing of the light field [7, 8] or quan-
tum non demolition (QND) measurements [9, 10, 11].
Such pioneering experiments were performed with non-
linear optical media, but optomechanical coupling was
soon proposed as a candidate nonlinear mechanism of its
own [12, 13, 14], based upon correlations between light
intensity and mirror displacement induced by radiation
pressure.

The first experiments fell short of the quantum regime
[15, 16, 17] and even though recent ones demonstrated a
much larger optomechanical coupling [18, 19, 20, 21, 22,
23], they mainly focussed on the possible demonstration
of the quantum ground state of a mechanical resonator
[24, 25]. To observe the optomechanical correlations, two
beams have to be sent upon the moving mirror (see Fig.
1): the intensity fluctuations of the first, intense, signal
beam drive the mirror into motion by radiation pressure,
whereas the resulting position fluctuations are monitored
through the phase of the second, weaker, meter beam.
As the intensity fluctuations of the signal beam are un-
altered by reflection upon the mirror and as far as the
radiation pressure of the meter beam is negligible, the
intensity-phase correlations observable between the two
reflected beams provide a direct measurement of the op-
tomechanical correlations.

To monitor these radiation-pressure effects down to
the quantum level and hence perform a real-time QND
measurement of the signal intensity via the meter phase
[14], one has first to enhance the optomechanical coupling
by using a high-finesse cavity with a moving mirror, as
shown in Fig. 1. The position fluctuations δxrad induced
by the quantum intensity fluctuations of the signal beam
also have to be the dominant noise source, which requires
to lower the thermal fluctuations δxT of the moving mir-
ror. For a harmonic oscillator of mass M , resonance

FIG. 1: Principle of the direct observation of optomechani-
cal correlations. Both an intense signal beam and a weaker
meter beam are sent into a resonant high-finesse cavity with
a moving mirror. Intensity fluctuations of the signal beam
are imprinted by radiation pressure onto the position fluctua-
tions of the moving mirror, and subsequently onto the phase
fluctuations of the meter beam. The two reflected beams
then display intensity-phase correlations, retrieved with both
a photodiode and a homodyne detection.

frequency ΩM/2π, and mechanical quality factor Q, the
corresponding ratio between the radiation pressure and
thermal noise spectra can be written [14]
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where T is the environment temperature, F the cavity
finesse, λ the optical wavelength, and Pin the incident
intensity of the signal beam. The stated values have all
already been achieved independently in various state-of-
the-art optomechanical systems [18, 19, 20, 21, 22, 23, 26,
27], but combining the favourable mechanical behaviour
of NEMS [26] with a very high optical finesse [27] is an
even greater experimental challenge.

In this work, we report the observation of optomechan-
ical correlations measured close to the quantum level. To
reach a ratio (1) as large as possible, we favour the opti-
cal characteristics and use a fused silica moving mirror,
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FIG. 2: Experimental setup. The laser beam is split in two
orthogonally polarized beams, which are both sent into the
moving mirror cavity. A resonant electro-optical modulator
(REOM) is used to lock the laser onto the optical resonance
via a Pound-Drever-Hall technique. The residual birefrin-
gence of the cavity is compensated by the frequency shift of
two acousto-optic modulators (AOM), also used to stabilize
the intensities of both beams after their spatial filtering by
the mode cleaner cavity. A second EOM modulates the inten-
sity of the signal beam to mimic quantum radiation-pressure
noise. Intensity fluctuations of the reflected signal beam are
monitored with a photodiode, as are the phase fluctuations of
the meter beam with a quantum-limited homodyne detection.
For simplicity, most polarizing elements are not shown.

which provides both a very high optical finesse [27] and
mechanical quality factor [28], at the expense of a larger
mass. The optomechanical correlations have then been
measured with a tiny classical intensity modulation of
the signal beam that mimics at a higher level its quan-
tum fluctuations [27, 29].

Our experimental setup is based on a single-ended op-
tical cavity, with a 1-inch fused silica cylindrical input
mirror. The moving mirror, used as end mirror, is a
plano-convex 34-mm diameter and 2.5-mm thick mirror,
which displays gaussian internal vibration modes [28].
We work at frequencies close to a mechanical resonance
with the following optomechanical characteristics, de-
duced from the thermal noise spectrum at room temper-
ature: ΩM/2π = 1.125 MHz, M = 500 mg, Q = 500 000.

The low roughness of the silica substrates allows for
optical coatings with very low losses: we have obtained a
cavity finesse F = 330 000, mainly limited by the 20-ppm
transmission of the input mirror. This is crucial for quan-
tum optics experiments for which loss has to be avoided
to get large correlations between intracavity and reflected
fields. We use a short, 0.33-mm long, cavity in order to
keep a sufficient cavity bandwidth (Ωcav/2π = 700 kHz)
and to prevent laser frequency noise from limiting the dis-
placement sensitivity. The cavity is operated in vacuum
to increase the mechanical quality factors.

The cross-polarized signal and meter beams entering
the cavity are provided by a Ti:Sa laser working at 810
nm. As the cavity is birefringent (with a 5-MHz fre-
quency mismatch between the two optical resonances),

two acousto-optic modulators (AOM in Fig. 2) in-
dependently detune the two beams so that they both
match the cavity resonance. The overall resonance is
controlled by locking the laser frequency via a Pound-
Drever-Hall technique: the incident signal beam is phase-
modulated at 20MHz by a resonant electro-optical mod-
ulator (REOM), and the resulting intensity modulation
of the reflected beam provides the error signal. A mode
cleaner cavity filters potential degradations of the spa-
tial profile of both beams, while their intensities after
the mode cleaner are stabilized by a servo-loop which
drives the amplitude control of the AOMs.

The phase fluctuations δϕout
m (t) of the reflected meter

beam are monitored by a homodyne detection, with a lo-
cal oscillator derived from the incident meter beam and
phase-locked in order to detect the phase quadrature. For
an incident power of 50µW, one gets a shot-noise-limited
displacement sensitivity of 2.7×10−20 m/

√
Hz at frequen-

cies above 200kHz. Intensity fluctuations δIout
s (t) of the

reflected signal beam are monitored by a high-efficiency
photodiode. We have carefully eliminated unwanted op-
tical reflections so that the optical rejection of the double-
beam system is higher than 35 dB: the phase fluctuations
of the meter beam are insulated from the intensity fluc-
tuations of the signal beam in such a way that observable
effects of the signal beam are necessarily induced by in-
tracavity radiation pressure.

In order to mimic the quantum fluctuations of radi-
ation pressure, the signal beam is intensity-modulated
with an electro-optic modulator (EOM) before entering
the cavity to produce a classical intracavity radiation-
pressure noise [27, 29]. The digitized driving noise is cen-
tered at a frequency Ωc close to the mechanical resonance
frequency ΩM, and has a typical bandwidth of a few hun-
dreds of Hz, larger than any bandwidth used in the cor-
relations acquisition process. To generate a gaussian in-
tensity noise of the form δI in

s (t) = A(t) cos (Ωct + ϕ(t))
where A(t) is a random function with a gaussian distri-
bution around 0 and ϕ(t) a randomly-distributed phase,
we decompose the noise into its quadratures [30]:

δI in

s (t) = X in

Is

(t) cos (Ωct) + Y in

Is

(t) sin (Ωct) . (2)

The quadratures are produced from a dual-channel ar-
bitrary waveform generator Tektronix AFG3022B, and
then summed to drive the EOM. The slowly-varying
gaussian noise functions X in

Is

(t) and Y in

Is

(t) are randomly
generated by a computer and loaded into the generator
as amplitude arrays.

The experiment is performed as follows. Both optical
beams are locked onto the resonance of the cavity, with
incident powers P in

s = 150 µW for the signal beam and
P in

m = 500 µW for the meter. The EOM drives a clas-
sical radiation-pressure noise with an amplitude level as
compared to thermal noise of

√

Srad
x /ST

x ≃ 5, and with
a center frequency Ωc/2π = 1.123 MHz, about 600 me-
chanical linewidths below the mechanical resonance. The
experimental signals are independently acquired by two
spectrum analyzers Agilent MXA set in I/Q mode in or-
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FIG. 3: Phase-space trajectories of the intensity noise of the
signal beam (left) and the phase noise of the meter beam

(right), in the case
√

Srad
x /ST

x ≃ 5. The phase noise is cali-
brated as displacements of the moving mirror.

der to directly extract the quadratures Xout

Is

(t), Y out

Is

(t),

Xout
ϕm

(t), and Y out
ϕm

(t) of the reflected signal intensity and
meter phase, respectively. Both analyzers are locked at
the same central frequency Ωc with an analysis bandwith
of 400 Hz, and synchronously triggered with the wave-
form generator. Temporal evolution of the quadratures
are then acquired over a span time of 200 ms, equal to the
scan time of the digitized amplitude-modulation arrays
of the generator.

Fig. 3 presents the observed phase-space trajecto-
ries: clear correlations are evident between the intensity
noise of the signal beam (left) and the meter phase noise
(right). Neglecting optical losses and irrelevant noises
such as the quantum fluctuations of the meter beam, this
can be interpreted from the following input-output rela-
tions for the fluctuations at frequency Ωc [14]:

δIout

s [Ωc] =
1 + iωc

1 − iωc

δI in

s [Ωc], (3)

δϕout

m [Ωc] =
8F

λ(1 − iωc)
δx[Ωc], (4)

where ωc = Ωc/Ωcav, and δx = δxT + δxrad is the mirror
motion, including the thermal noise and the radiation-
pressure noise given by

δxrad[Ωc] =
8F

λ(1 − iωc)
~χ[Ωc]δI

in

s [Ωc], (5)

where χ[Ωc] is the mechanical susceptibility of the mov-
ing mirror. The reflected signal intensity noise repro-
duces the incident one, with a global phase shift depend-
ing on ωc [eq. (3)], whereas the reflected meter phase re-
produces the incident signal intensity δI in

s via the mirror
motion [eqs. (4) and (5)]. It is superimposed to the ther-
mal noise δxT of the mirror which is responsible for the
small differences observed between the two phase-space
evolutions in Fig. 3. Other noises such as the quantum
phase noise of the incident meter beam, which limits the
sensitivity of the displacement measurement, are negligi-
ble in our current setup with a level at least 15 dB below
the thermal noise. Also note that the meter phase in Fig.
3 is calibrated in terms of the equivalent displacements

FIG. 4: Probability distributions in phase space of the signal
intensity fluctuations δIout

s (left) and of the conditional fluc-
tuations δIs|m deduced from the meter measurement (right).
Note the sharper peak, related to the lower conditional vari-
ance, and the factor 5 between the two vertical scales.

of the moving mirror, with a typical level at 10−15 m,
and the curve has been rotated in phase space in order
to compensate for the global phase shifts due to ωc and
to the mechanical response χ[Ωc].

We have obtained similar results with a center fre-
quency Ωc closer or equal to the mechanical resonance
frequency. In that case, the resonance amplifies the
radiation-pressure and thermal displacements by a fac-
tor up to the quality factor Q, but the phase shift of
the mechanical response across the resonance frequency
has to be taken into account to deconvolve the observed
data. We focus in the following on experimental results
obtained at low frequency.

The results can be made more quantitative by comput-
ing the correlation coefficient CIs,ϕm

defined from the two
trajectories in phase-space:

CIs,ϕm
=

∣

∣〈δIout
s δϕout

m

⋆〉
∣

∣

2

〈|δIout
s |2〉 〈|δϕout

m |2〉
, (6)

where the brackets 〈...〉 stand for a temporal average.
We obtain a coefficient CIs,ϕm

≃ 0.96 for the data pre-
sented on Fig. 3, in perfect agreement with the value
(

1 + ST
x /Srad

x

)−1
deduced from Eqs. (3) to (5).

As in usual QND measurements [9], optomechanical
correlations can also be quantified by the knowledge we
have on the signal intensity from the measurement of the
meter phase. The resulting distribution is given by the
conditional fluctuations

δIs|m = δIout

s − 〈δIout
s δϕout

m

⋆〉
〈|δϕout

m |2〉
δϕout

m . (7)

Figure 4 presents the respective probability distributions
in phase space for the uncorrected intensity fluctuations
δIout

s and the conditional ones δIs|m, obtained as nor-
malized histograms of the data of Fig. 3. The shrinking
of the distribution is related to the lower conditional dis-
persion, reduced by a factor ≃ 5, as can be deduced from
Eqs. (3) to (7):

∆Is|m =
√

1 − CIs,ϕm
∆Iout

s ≃ 0.2 ∆Iout

s . (8)
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FIG. 5: Estimated optomechanical correlation coefficient
CIs,ϕm

with respect to the number N of independent 200-ms

runs averaged. Dashed lines delineate the expected 1/
√

N
statistical uncertainty region.

Our experimental setup enables to demonstrate
optomechanical correlations even in the case of
radiation-pressure effects smaller than the thermal noise
(

Srad
x ≪ ST

x

)

. In such a case, as the reflected meter phase
fluctuations δϕout

m are mainly related to random thermal
noise, the correlation coefficient deduced from the tempo-
ral average of a single 200-ms run has little meaning, and
experimental values fluctuate from one run to the other.
Nevertheless, repeating such runs and averaging all these
experimental outcomes eventually yields a steady value.

Fig. 5 presents the estimate of the correlation coeffi-
cient obtained with Srad

x /ST
x ≃ 0.03, as a function of the

number N of runs averaged, up to N = 500. The result-
ing correlation coefficient tends to its small but non-zero

expected value
(

1 + ST
x /Srad

x

)−1 ≃ 0.03, with a statisti-

cal uncertainty at least 10-times smaller (2.5 × 10−3 for
500 averages).

We have thus demonstrated optomechanical correla-
tions between two light beams. Such correlations are
still at the classical level but we note that for our sys-
tem, Srad

x /ST
x ≃ 10−3 for quantum noise and a temper-

ature of 1 K. Averaging the experimental signal once
working at low temperature should enable to retrieve the
corresponding quantum correlations and hence demon-
strate radiation-pressure noise, which is expected to be a
severe limitation of second-generation gravitational-wave
interferometers [6]. With an upgrade of our experimen-
tal setup, one can also envision radiation-pressure in-
duced quantum optics experiments, such as optomechan-
ical squeezing [12] or QND measurements [13, 14].
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