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What is the largest regular n-gon that fits in a unit square? Can it be folded
from a square piece of paper using standard moves from origami? Answering the
first question is relatively easy, using simple ideas from geometry. The second
is more interesting; our answer illustrates the difference between origami and
the standard compass-and-straightedge constructions of the Greeks, where, for
instance, the 7-gon cannot be constructed. Not only can we fold a 7-gon, but
we can fold the largest one possible from a given square piece of paper.

Origami (from japanese oru, to fold and kami, paper), is the ancient art of
paperfolding. When we fold a paper in half, we create a line segment and bisect
a length. These simple moves can be combined to reproduce any compass-
and-straightedge construction [1, 14]. Thus, by origami, as with an unmarked
straightedge and compass, we can construct roots of any second-order polyno-
mial from a given unit length.

However, many constructions known to be impossible under the standard
Greek rules, such as trisecting a given angle, become possible with origami. For
instance, using a construction technique due to Lill and first used for origami
by M. P. Beloch [2], we can construct roots of cubic polynomials by folding
[1, 5, 7, 12]. Origami also simplifies certain constructions that are possible, but
cumbersome, with compass and straightedge.

Since origami often begins with a square piece of paper, we propose not only
to fold a regular n-gon, but to fold the one with the largest area that fits in the
square. Such polygons will be called optimal polygons. For instance, the side of
the largest equilateral triangle that fits in a unit square is known to have length√

6 −
√

2 ≈ 1.035 (shown in Figure 4). Wetzel [18] takes this as the starting
point for his article “Fits and Covers,” which gives many answers to similar
problems, but does not address our question.

Our first step is to determine the proper orientation of an optimal polygon
with respect to the square. We do this in complete generality and then consider
how to construct them by folding. We show how to fold the optimal hexagon
and pentagon, which can also be constructed with the standard compass and
straightedge. Moving into the realm of techniques that break the Greek rules,
we trisect an angle and show how to fold the optimal 7-gon and 9-gon, neither
of which can be constructed with straightedge and compass alone. It turns out
that in each case we fold a stellated polygon as an intermediate step.

Are you eager to fold the optimal 11-gon? If so, you will have to invent a
folding technique that permits you to construct roots of a quintic polynomial!



Figure 1: The width of a strip that contains a tilted polygon

Facts about optimal polygons

The goal is to find the largest regular n-gon that can be folded from a square
piece of paper, for n ≥ 3. Of course, the case n = 4 is trivial, with no folding
required. For the general case, let us review some facts about the regular n-gon.

Let R be the radius of the circumscribed circle and r the radius of the
inscribed circle. (Another name for r is the apothem of the polygon.) The
reader may wish to confirm that r = R cos(π/n). The diameter of the n-
gon, denoted L, is the maximum distance between any two of its points. A
contrasting quantity is the altitude, meaning the shortest perpendicular distance
from a vertex to an opposite side. When n is even, these quantities are simple,
the diameter is just 2R and the altitude is 2r. When n is odd, the altitude is
rather easily seen to be R+r, which is 2R cos2(π/(2n)). The diameter can then
be found to be 2R cos(π/(2n)). (Figure 1 will help with this.)

Another useful quantity is the side of a stellated polygon, l. Figure 1 shows
it to be 2R sin(2π/n). The side of the polygon is h = 2R sin(π/n).

Before fitting our n-gon into a square, we first fit it into a strip. It turns
out to be simplest to consider the n-gon to have a fixed radius R and find out
how wide the strip must be to contain it. Depending on the orientation of the
n-gon, the necessary width will fall somewhere between the diameter and the
altitude. Since the altitude is smaller, we might decide that it is best to orient
the polygon with its altitude along one dimension of the square. Unfortunately,
the n-gon is always fatter in the perpendicular direction.

Therefore, let us find the narrowest strip of paper that can contain a given
polygon when it is tilted with respect to the strip at an angle θ. For a fixed
rotation angle θ, the minimum strip width is denoted a(θ). The odd case is
shown in Figure 1.

Aided by Figure 1, which shows the odd case, the reader can verify the
following formula for a(θ), given in terms of the number n of edges (or vertices)
of the polygon, and the radius R of the circumscribed circle:

• if n is odd, a(θ) is (π/n)-periodic, and a(θ) = L cos(θ − π/(2n)) for θ ∈
[0, π/n]. Here, L = 2R cos(π/(2n)) is the diameter of the polygon;

• if n is even, a(θ) is (2π/n)-periodic, and a(θ) = L cos(θ − π/n) for θ ∈
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Figure 3: Strip problem solving procedure

[0, 2π/n]. In this case, L = 2R.

Now that we know the narrowest strip that contains a tilted regular polygon,
we add a second strip of paper, orthogonal to the first one, and require that it
too must contain the polygon. Observe from Figure 2 that the width of this
second strip will be a(θ+ π/2). If the polygon is to fit into a square, each strip
must have width A(θ) = max{a(θ), a(θ + π/2)} as shown in Figure 3. Thus, if
we minimize A(θ), we find the smallest square, which is equivalent to find the
largest regular polygon within a given square. From the previous expressions
for a(θ) (depicted in Figure 3), we derive the following values for the side of the
smallest square:

• θopt = π/(4n) (modulo π/(2n)) if n is odd,

• θopt = π/(2n) (modulo π/n) if n is even.

Note that in each case, a(θopt) = a(θopt + π/2) and so one can conclude
that each side of the square touches at least one vertex of the optimal polygon.
Moreover, using the formulas for these angles θopt, the reader may prove that
each optimal polygon has at least one diagonal of the square as an axis of
symmetry. Figure 4 shows the optimal polygon placements up to the octagon
(n = 8 edges).

We remark that this pattern also gives us the optimal polygons that fit any
rectangular piece of paper, and not only square ones.
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Figure 4: Placement of optimal polygons
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Figure 5: Folding sequence of the optimal hexagon

Folding the optimal hexagon and pentagon

The case of the optimal hexagon (n = 6 edges) involves the angle 2π/6, and
is very easy to construct. Given a square of paper with side 1, we use the
previous formula for θopt to deduce that R = 1/(2cos(π/12)). This gives us
the edge length, h = R =

√
2(
√

3 − 1)/2. The side of the stellated hexagon is
l = 2h cos(π/6) =

√
2(3 −

√
3)/2. Our construction, which first produces the

stellated hexagon, is shown in Figure 5.

• Step 1: Fold corner B onto the central vertical line to create line AE,
which meets diagonal BD at F . Since sin(∠B′AD) = 1/2, this is a simple
technique to get an angle ∠B′AD = π/6. Then, ∠BAE = ∠EAB′ =
∠BAB′/2 = (π/2−∠B′AD)/2 = π/6 again. (We have trisected the angle
∠BAD = π/2; this is easy for this particular angle, but more difficult for
general case, as we will see for the nonagon. Of course, if have only
straightedge and compass we cannot do trisect a general angle at all.)
Notice that ∠EAC = π/4 − ∠BAE = π/12, so, DF = DO + OF =
OA + OA tan(∠EAC) =

√
2(1 + tan(π/12))/2 =

√
2(3 −

√
3)/2. This is

the length l of the desired polygon side. The following steps are needed
to move the crease of length l in a correct position to obtain an edge of
the optimal hexagon.

• Step 2: Turn over the model. Split DF in two by folding, and create the
fold GH. Its length is GH = DF and due to symmetry with respect to
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Figure 7: Folding sequence of the optimal pentagon

the diagonal, GH is an edge of the optimal stellated hexagon.

• Step 3: Unfold. Bring H onto the main diagonal at I, with G as an end
point of the crease.

• Step 4: Fold GI and HI.

• Step 5: Complete the stellated polygon, using symmetries.

Folding a pentagon (n = 5 edges) requires the angle 2π/5, and is more diffi-
cult than folding the hexagon. As early as 1989, Roberto Morassi [13] designed
an origami construction of the optimal pentagon. The technique shown in Fig-
ure 7 has been developed independently and seems much simpler. As before,
the stellated version of the polygon is used. With an initial square of unitary
edge length, we get l = 1/ cos(π/20) in Figure 6.

• Step 1: With D as the middle of the edge, bisect the angle ∠BAD. The
crease is AC, tan(∠DAE) = 1/2 and ∠BAC = ∠CAD = (1/2)∠BAD =
(1/2)(π/2− ∠DAE). We can compute tan(∠BAC) = (

√
5− 1)/2 = BC;

this is the so-called “golden ratio.”
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• Step 2: Fold C on the central horizontal line DG at F , with B as an end
point of the crease. Since cos(π/5) = 1/(

√
5 − 1) and BG = 1/2, we get

BF = BC = (
√

5−1)/2 = 1/(2 cos(π/5)) = BG/ cos(π/5). This allows us
to conclude that cos(∠FBG) = BG/BF = cos(π/5) and ∠FBG = π/5.

• Step 3: Bisect ∠FBG to get ∠HBA = π/10. Unfold.

• Step 4: Bisect ∠ABH (fold behind) to get ∠ABI = π/20 and BI =
1/ cos(π/20). This is the length l of the optimal pentagon edge. As before,
the following steps are needed to move the crease in a correct position.

• Step 5: Bring I on BE at J .

• Step 6: Fold in half BJ to get K. Unfold.

• Step 7: KL = BJ = BI = l is the correct edge.

• Step 8: Complete the polygon.

Folding other optimal polygons

If the optimal square, triangle, and octagon, are the easiest regular polygons
to design (the reader may begin to try to fold them, except for the square...),
the optimal hexagon and pentagon are the next easiest. As soon as a regular
polygon can be constructed by folding, the corresponding optimal polygons can
be also folded with a technique similar to the one used in this paper [4].

In a publication from 1837, P. L. Wantzel [16] demonstrated which regular
polygons are constructible with straight-edge and compass (see also [3]). A
necessary condition concerns the number of edges of these polygons: they must
have n = 2pf1f2...fs edges, with p as an integer, and where the fi are all different
primes of the form 2m+1, where m is also an integer. This result can be further
simplified because a necessary (but not sufficient) condition for these fi to be
primes, is to be Fermat numbers, that is, numbers of the form 22

m

+ 1, m still
being an integer. Up to the author knowledge, the only known Fermat primes
to day are 3, 5, 17, 257 and 65537 [17, 9]. Therefore, one can expect that all
the previously folded polygons (n = 3, n = 22 = 4, n = 5, n = 21 × 3 = 6,
n = 23 = 8) can also be built with straight-edge and compass. This won’t be the
case for heptagon (n = 7 edges) and nonagon (n = 9 edges), for instance. Using
the technique mentioned in the introduction to solve third-order equations by
folding, the previous set of constructible polygons can be extended to the set of
polygons with n = 2m3qg1g2...gs edges, where the gi are all different primes, of
the form 2p3r + 1, m, p, q, and r being integers (see for instance [15, 12, 1]).
Such a construction will be necessary to fold the optimal heptagon and nonagon.

To introduce this new construction, let us recall one of its applications: the
trisection of an arbitrary angle θ [6], known to be impossible with Euclidean
constructions (for a nice discussion on this subject, the reader may refer to
the web page http://www.jimloy.com/geometry/trisect.htm). To trisect
an arbitrary angle, consider the construction of Figure 8: an isoceles triangle
AA′B has γ as half main angle. Build the perpendicular AD to AB to get
∠A′AD = γ. The main idea is then to look at the axis of symmetry ∆ that
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reflects A onto A′, B onto B′, C onto C ′, D onto D′, and to consider the angle
θ = ∠D′A′B = 3γ.

The whole construction can now be reversed to perform the trisection of an
angle θ on Figure 9:

• Step 1: Begin with a fold A′E and the angle ∠D′A′E = θ, and two
horizontal folds that only have to be equally distant (A′C ′ = C ′B′). Fold
the paper to get simultaneously B′ on A′E and A′ on the first horizontal
fold (that intersects the new fold ∆ at I). Unfold.

• Step 2: You get ∠IA′E = ∠D′A′E/3.

The trisection of an angle requires to solve a third-order polynomial equa-
tion, while intersecting circles and lines (basically, the Euclidean constructions)
requires only second-order polynomial equations. Equipped with the operation
of Figure 9, the paperfolder is now able to construct additional polygons.

Since folding a nonagon (n = 9 edges) is a little easier than folding the
heptagon, let us begin with it. Figure 10 describes shortly the corresponding
sequence. Folding it requires precision (and a large square of paper), and proving
that an exact optimal nonagon is obtained is a not so easy task [4]. Both are
left as challenges to the reader. Here are some guidelines:

• Step 1: Precrease diagonal and central lines. Fold π/3 = ∠BAE; D should
lie on the central horizontal line. Unfold.

• Step 2: With the trisection method, fold 2π/9 = ∠BAF (then, ∠FAC =
π/4−2π/9 = π/36). The point G is the intersection of AF and the central
vertical line. Since AH = 1/2, AG = 1/(2 cos(2π/9)).
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• Step 3: Fold the perpendicular to AF (and not to AC!) at G. It intersects
diagonal AC at I (then, AI = AG/ cos(π/36); this is the length of the
edge of one stellated version of the nonagon. The nonagram is usually an
other star polygon, called 9/3 since edges connect vertices every 3 ones.
Here, we have a 9/2 regular star polygon).

• Step 4: Report this distance at JK.

• Step 5: Complete the nonagon (quite challenging, again).

An even more challenging construction is the one of the heptagon (n = 7
edges). This time, the angle 2π/7 is involved, still anattainable with Euclidean
constructions. Therefore, it requires also the previous technique, designed to
solve any third-order polynomial root [12] (let us just mention that 2 cos(2π/7)
is a root of t3 + t2 − 2t − 1 = 0, and the solving technique is the same as in
[11, 8]). Figure 11 describes shortly the corresponding sequence:

• Step 1: Precrease diagonal and central lines. Fold in half and unfold.

• Step 2: Use previous technique, to get a fold HI of slope 2 cos(2π/7) =
AI/AH (G is located at the middle of the previous two horizontal folds).

• Step 3: Fold in half and unfold.

• Step 4: Fold H onto horizontal previous line to obtain ∠JAH ′ = 2π/7
(because AJ/AH ′ = AI/(2AH) = cos(2π/7)).

• Step 5: The intersection of the folded edge and the initial central line is
K. Note that ∠CAK = 2π/7− π/4 = π/28 and AK = AE/ cos(2π/7) =
1/(2 cos(2π/7)). Fold the perpendicular to AK (and not to AC!) at K:
it intersects diagonal AC at L. Unfold (then AL = AK/ cos(π/28); this
is the length of the edge of one stellated version of the heptagon, the 7/2
regular star polygon, or heptagram).
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• Step 6: Report this distance at MN .

• Step 7: Complete the heptagon.

Prospects

Several regular polygons can be folded with Euclidean constructions. Their
optimal versions can be folded also, though practically, they become less and
less easy to obtain. With a special basic fold that is recalled in this paper, and
that is now widely spread through the community of paperfolders, more can
be done. But even with it, not all of the polygons can be folded: for instance,
the first unreachable regular polygon is the hendecagon (n = 11 edges). A
construction, simple enough to enter the standard repertoire, and allowing the
construction of the regular hendecagon, would require the solution of a 5th-order
polynomial equation (the trigonometric functions of 2π/11 are roots of such a
polynomial equation). It is still to come.
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