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Liquids in contact with solids are submitted to intermolecular forces making

liquids heterogeneous and stress tensors are not any more spherical as in homo-

geneous bulks. The aim of this article is to show that a square-gradient func-

tional representing liquid-vapor interface free energy corrected with a liquid

density functional at solid surfaces is a well adapted model to study structures

of very thin nanofilms near solid walls. This result makes it possible to study

the motions of liquids in nanolayers and to generalize the approximation of

lubrication in long wave hypothesis.

Keywords: Nanolayers, disjoining pressure, thin flows, approximation of lubri-

cation.

1. Introduction

At the end of the nineteenth century, the fluid inhomogeneity in liquid-

vapor interfaces was taken into account by considering a volume energy de-

pending on space density derivative.1 This van der Waals square-gradient

functional is unable to model repulsive force contributions and misses

the dominant damped oscillatory packing structure of liquid interlayers

near a substrate wall.2 Furthermore, the decay lengths are correct only

close to the liquid-vapor critical point where the damped oscillatory struc-

ture is subdominant.3 In mean field theory, weighted density-functional

has been used to explicitly demonstrate the dominance of this structural

contribution in van der Waals thin films and to take into account long-

wavelength capillary-wave fluctuations as in papers that renormalize the

square-gradient functional to include capillary wave fluctuations.4 In con-

trast, fluctuations strongly damp oscillatory structure and it is mainly for

this reason that van der Waals’ original prediction of a hyperbolic tangent is

so close to simulations and experiments.5 The recent development of exper-
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imental technics allows us to observe physical phenomena at length scales

of a few nanometers.6 To get an analytic expression in density-functional

theory for liquid film of a few nanometer thickness near a solid wall, we

add a liquid density-functional at the solid surface to the square-gradient

functional representing closely liquid-vapor interface free energy. This kind

of functional is well-known in the literature.7 It was used by Cahn in a phe-

nomenological form, in a well-known paper studying wetting near a critical

point.8 An asymptotic expression is obtained in9 with an approximation

of hard sphere molecules and London potentials for liquid-liquid and solid-

liquid interactions: we took into account the power-law behavior which is

dominant in a thin liquid film in contact with a solid.

For fluids submitted to this density-functional, we recall the equation of

motion and boundary conditions. We point out the definition of disjoining

pressure and analyze the consequences of the model. Finally, we study the

motions in liquid nanolayers; these motions are always object of many de-

bates. Within lubrication and long wave approximations, a relation between

disjoining pressure, viscosity of liquid, nanolayer thickness variations along

the layer and tangential velocity of the liquid is deduced.

2. The density-functional

The free energy density-functional of an inhomogeneous fluid in a domain

O of boundary ∂O is taken in the form

F =

∫ ∫ ∫

O

ε dv +

∫ ∫

∂O

ϕ ds. (1)

The first integral is associated with square-gradient approximation when

we introduce a specific free energy of the fluid at a given temperature θ,

ε = ε(ρ, β) as a function of density ρ and β = (grad ρ)2. Specific free energy

ε characterizes together fluid properties of compressibility and molecular

capillarity of liquid-vapor interfaces. In accordance with gas kinetic theory,

λ = 2ρ ε′β(ρ, β) is assumed to be constant at given temperature10 and

ρ ε = ρα(ρ) +
λ

2
(grad ρ)2, (2)

where term (λ/2) (grad ρ)2 is added to the volume free energy ρα(ρ) of a

compressible fluid. Specific free energy α enables to connect continuously

liquid and vapor bulks and pressure P (ρ) = ρ2α′
ρ(ρ) is similar to van der

Waals one. Near a solid wall, London potentials of liquid-liquid and liquid-
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solid interactions are






ϕll = −
cll
r6

, when r > σl and ϕll = ∞ when r ≤ σl ,

ϕls = −
cls
r6

, when r > δ and ϕls = ∞ when r ≤ δ ,

where cll and cls are two positive constants associated with Hamaker con-

stants, σl and σs denote fluid and solid molecular diameters, δ = 1
2 ( σl+

σs) is the minimal distance between centers of fluid and solid molecules.11

Forces between liquid and solid have short range and can be described

simply by adding a special energy at the surface. This is not the entire

interfacial energy: another contribution comes from the distortions in the

density profile near the wall.9,12 For a plane solid wall (at a molecular scale),

this surface free energy is

φ(ρ) = −γ1ρ+
1

2
γ2 ρ

2. (3)

Here ρ denotes the fluid density value at the wall; constants γ1, γ2 are

positive and given by relations γ1 =
πcls

12δ2mlms

ρsol, γ2 =
πcll

12δ2m2
l

, where

ml and ms denote respectively masses of fluid and solid molecules, ρsol is

the solid density.9 Moreover, we have λ =
2πcll

3σl m2
l

.

We consider a horizontal plane liquid interlayer contiguous to its vapor

bulk and in contact with a plane solid wall (S); the z-axis is perpendicular

to the solid surface. The liquid film thickness is denoted by h. Conditions

in vapor bulk yield gradρ = 0 and ∆ρ = 0. Another way to take into

account the vapor bulk contiguous to the liquid interlayer is to compute

a density-functional of the complete liquid-vapor interlayer by adding a

supplementary surface energy ψ on a geometrical surface (Σ) at z = h to

volume energy (2) in liquid interlayer (L) and surface energy (3) on solid

wall (S).13 This assumption corresponds to a liquid interlayer included

between z = 0 and z = h, a liquid-vapor interface of a few Angström

thickness assimilated to surface z = h and a vapor layer included between

z = h and z = ∞. Due to small vapor density, let us denote by ψ the

surface free energy of a liquid in contact with a vacuum,

ψ(ρ) =
γ4

2
ρ2 (4)

where γ4 ≃ γ2 and ρ is the liquid density in a convenient point inside the

liquid-vapor interface.13 Density-functional (1) of the liquid-vapor layer gets

the final form

F =

∫ ∫ ∫

(L)

ε dv +

∫ ∫

(S)

φ ds+

∫ ∫

(Σ)

ψ ds
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3. Equation of motion and boundary conditions

In case of equilibrium, functional F is minimal and yields the equation of

equilibrium and boundary conditions. In case of motions we simply add the

inertial forces ρΓ and the dissipative stresses to the results.14–16

3.1. Equation of motion

The equation of motion is14,15

ρ Γ = div (σ + σv) − ρ grad Ω , (5)

where Γ is the acceleration, Ω the body force potential and σ the stress

tensor generalization

σ = − p1− λ grad ρ ⊗ grad ρ,

with p = ρ2ε′ρ − ρ div (λ grad ρ). The viscous stress tensor is σv =

κ1( tr D)1 + 2 κ2 D where D denotes the velocity strain tensor; κ1 and

κ2 are the coefficients of viscosity.

For a horizontal layer, in an orthogonal system of coordinates such that the

third coordinate is the vertical direction, the stress tensor σ of the thin film

takes the form :

σ =





a1, 0, 0

0, a2, 0

0, 0, a3



 , with















a1 = a2 = −P +
λ

2

(

dρ

dz

)2

+ λρ
d2ρ

dz2

a3 = −P −
λ

2

(

dρ

dz

)2

+ λρ
d2ρ

dz2

Let us consider a thin film of liquid at equilibrium (gravity forces are ne-

glected but the variable of position is the ascendant vertical). The equation

of equilibrium is :

div σ = 0 (6)

Eq. (6) yields a constant value for the eigenvalue a3,

P +
λ

2

(

dρ

dz

)2

− λρ
d2ρ

dz2
= Pvb

.

where Pvb
denotes pressure P (ρvb

) in the vapor bulk of density ρvb
bounding

the liquid layer. Eigenvalues a1, a2 are not constant but depend on the

distance z to the solid wall.17 At equilibrium, Eq. (5) yields:14

grad [ µ (ρ) − λ∆ρ ] = 0, (7)

where µ is the chemical potential at temperature θ defined to an unknown

additive constant. The chemical potential is a function of P (and θ) but it
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can be also expressed as a function of ρ (and θ). We choose as reference

chemical potential µo = µo(ρ) null for bulks of densities ρl and ρv of phase

equilibrium. Due to Maxwell rule, the volume free energy associated with

µo is go(ρ)−Po where Po = P (ρl) = P (ρv) is the bulk pressure and go(ρ) =
∫ ρ

ρv

µo(ρ) dρ is null for liquid and vapor bulks of phase equilibrium. The

pressure P is

P (ρ) = ρ µo(ρ) − go(ρ) + Po. (8)

Thanks to Eq. (7), we obtain in the fluid and not only in the fluid interlayer,

µo(ρ) − λ∆ρ = µo(ρb),

where µo(ρb) is the chemical potential value of a liquid mother bulk of

density ρb such that µo(ρb) = µo(ρvb
), where ρvb

is the density of the vapor

mother bulk bounding the layer. We must emphasis that P (ρb) and P (ρvb
)

are unequal as for drop or bubble bulk pressures. Density ρb is not a fluid

density in the interlayer but density in the liquid bulk from which the

interface layer can extend (this is the reason why Derjaguin used the term

mother liquid ,17 page 32 ). In the interlayer

λ
d2ρ

dz2
= µb(ρ), with µb(ρ) = µo(ρ) − µo(ρb) (9)

3.2. Boundary conditions

Condition at the solid wall (S) is associated with Eq. (3)15 :

λ

(

dρ

dn

)

|S

+ φ′(ρ)|S = 0, (10)

where n is the external normal direction to the fluid; Eq. (10) yields

λ

(

dρ

dz

)

|z=0

= −γ1 + γ2 ρ|z=0
.

Condition at the liquid-vapor interface (Σ) is associated with Eq. (4):

λ

(

dρ

dz

)

|z=h

= −γ4 ρ|z=h
. (11)

Eq. (11) defines the film thickness by introducing a reference point inside

the liquid-vapor interface bordering the liquid interlayer with a convenient

density at z = h.13

We must also add the classical surface conditions on the stress vector asso-

ciated with the total stress tensor σ + σv to these conditions on density.



September 13, 2008 Wascom2007.hyper10750

6

4. The disjoining pressure for horizontal liquid films

We consider fluids and solids at a given temperature θ. The hydrostatic

pressure in a thin liquid interlayer included between a solid wall and a vapor

bulk differs from the pressure in the contiguous liquid phase. At equilibrium,

the additional pressure interlayer is called the disjoining pressure.17 The

measure of a disjoining pressure is either the additional pressure on the

surface or the drop in the pressure within the mother bulks that produce

the interlayer. The disjoining pressure is equal to the difference between the

pressure Pvb
on the interfacial surface (pressure of the vapor mother bulk

of density ρvb
) and the pressure Pb in the liquid mother bulk (density ρb)

from which the interlayer extends :

Π(h) = Pvb
− Pb.

If gb(ρ) = go(ρ)−go(ρb)−µo(ρb)(ρ−ρb) denotes the primitive of µb(ρ) null

for ρb, we get from Eq. (8)

Π(ρb) = −gb(ρvb
), (12)

and an integration of Eq. (9) yields

λ

2

(

dρ

dz

)2

= gb(ρ) + Π(ρb). (13)

The reference chemical potential linearized near ρl (respectively ρv) is

µo(ρ) =
c2l
ρl

(ρ−ρl) (respectively µo(ρ) =
c2v
ρv

(ρ−ρv) ) where cl (respectively

cv) is the isothermal sound velocity in liquid bulk ρl (respectively vapor bulk

ρv) at temperature θ.18 In the liquid and vapor parts of the liquid-vapor

film, Eq. (9) yields

λ
d2ρ

dz2
=
c2l
ρl

(ρ− ρb) (liquid) and λ
d2ρ

dz2
=
c2v
ρv

(ρ− ρvb
) (vapor).

The values of µo(ρ) are equal for the mother densities ρvb
and ρb,

c2l
ρl

(ρb − ρl) = µo(ρb) = µo(ρvb
) =

c2v
ρv

(ρvb
− ρv), and consequently,

ρvb
= ρv

(

1 +
c2l
c2v

(ρb − ρl)

ρl

)

.

In liquid and vapor parts of the liquid-vapor interlayer we have,

go(ρ) =
c2l
2ρl

(ρ− ρl)
2 (liquid) and go(ρ) =

c2v
2ρv

(ρ− ρv)
2 (vapor).
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From definition of gb(ρ) and Eq. (12) we deduce the disjoining pressure

Π(ρb) =
c2l
2ρl

(ρl − ρb)

[

ρl + ρb − ρv

(

2 +
c2l
c2v

(ρb − ρl)

ρl

)]

. (14)

Due to ρv

(

2 +
c2l
c2v

(ρb − ρl)

ρl

)

≪ ρl + ρb, we get Π(ρb) ≈
c2l
2ρl

(ρ2
l − ρ2

b).

Now, we consider a film of thickness h; the density profile in the liquid part

of the liquid-vapor film is solution of system :










λ
d2ρ

dz2
=
c2l
ρl

(ρ− ρb) (S1)

with λ
dρ

dz |z=0

= −γ1 + γ2 ρ|z=0
and λ

dρ

dz |z=h

= −γ4 ρ|z=h
.

Quantity τ is defined such that τ = cl/
√

λρl , where 1/τ is a reference

length and γ3 = λτ . Solution of system (S1) is

ρ = ρb + ρ1 e
−τz + ρ2 e

τz (15)

where boundary conditions at z = 0 and h yield the values of ρ1 and ρ2 :
{

(γ2 + γ3)ρ1 + (γ2 − γ3)ρ2 = γ1 − γ2ρb (S2)

−e−hτ (γ3 − γ4)ρ1 + ehτ (γ3 + γ4)ρ2 = −γ4ρb.

The liquid density profile is a consequence of Eq. (15) when z ∈ [0, h].

Taking Eq. (15) into account in Eq. (13) and gb(ρ) = (c2l /2 ρl)(ρ − ρb)
2 in

linearized form for the liquid part of the interlayer, we get

Π(ρb) = −
2 c2l
ρl

ρ1 ρ2. (16)

By identification of expressions (14), (16) and using (S2), we get a relation

between h and ρb. We denote finally the disjoining pressure by Π(h).

Due to the fact that ρb ≃ ρl,
17 the disjoining pressure reduces to

Π(h) =
2 c2l
ρl

[

(γ1 − γ2ρl)(γ3 + γ4)e
hτ + (γ2 − γ3)γ4ρl

]

×

[

(γ2 + γ3)γ4ρl − (γ1 − γ2ρl)(γ3 − γ4)e
−hτ

]

[(γ2 + γ3)(γ3 + γ4)ehτ + (γ3 − γ4)(γ2 − γ3)e−hτ ]
2 .

Let us notice an important property of mixture of van der Waals fluid and

perfect gas where the total pressure is the sum of partial pressures of com-

ponents:18 at equilibrium, the partial pressure of the perfect gas is constant

through the liquid-vapor-gas interlayer -where the perfect gas is dissolved

in the liquid. The disjoining pressure of the mixture is the same than for

a single van der Waals fluid and calculations and results are identical to

those previously obtained.
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5. Motions along a liquid nanolayer

When the liquid layer thickness is small with respect to transverse dimen-

sions of the wall, it is possible to simplify the Navier-Stokes equation which

governs the flow of a classical viscous fluid in the approximation of lubrica-

tion.19 When h ≪ L, where L is the wall transversal characteristic size, i)

the velocity component along the wall is large with respect to the normal

velocity component which can be neglected ; ii) the velocity vector varies

mainly along the direction orthogonal to the wall and it is possible to neglect

velocity derivatives with respect to coordinates along the wall compared to

the normal derivative ; iii) the pressure is constant in the direction normal

to the wall. It is possible to neglect the inertial term when Re≪ L/h (Re

is the Reynolds number of the flow). Equation of Navier-Stokes is not valid

in a liquid nanolayer because the fluid is strongly inhomogeneous and the

elastic stress tensor is not scalar. However, it is possible to adapt the ap-

proximation of lubrication for viscous flows in a liquid nanolayer. We are in

the case of long wave approximation: ǫ = h/L≪ 1. We denote the velocity

by V = (u, v, w) where (u, v) are the tangential components. In the approxi-

mation of lubrication we have : e = sup (|w/u| , |w/v|) ≪ 1. The main parts

of terms associated with second derivatives of liquid velocity components

correspond to ∂2u/∂z2 and ∂2v/∂z2. The density is constant along each

stream line (
�

ρ = 0 ⇐⇒ divV = 0) and iso-density surfaces contain the tra-

jectories. Then, ∂u/∂x, ∂v/∂y and ∂w/∂z have the same order of magnitude

and ǫ ∼ e. As in Rocard model, we assume that the kinematic viscosity co-

efficient ν = κ2/ρ depends only on the temperature.10 In motion equation,

the viscosity term is (1/ρ) div σv = 2ν [ div D + D grad {Ln (2 κ2)} ] ;

D grad{Ln (2 κ2)} is negligible with respect to div D. In both lubrication

and long wave approximations the liquid nanolayer motion verifies

Γ + grad[µo(ρ) − λ∆ρ ] = ν∆V with ∆V ≃

[

∂2u

∂z2
,
∂2v

∂z2
, 0

]

(17)

In approximation of lubrication, the inertial term is neglected and Eq. (17)

separates into tangential and normal components to the solid wall. As in

equilibrium, the normal component of Eq. (17) is

∂

∂z
[ µo(ρ) − λ∆ρ ] = 0 ⇒ µo(ρ) − λ∆ρ = µo(ρb).

To each value ρb (different of liquid bulk density value ρl of the plane

interface at equilibrium) is associated a liquid nanolayer thickness h. We

can write µo(ρ) − λ∆ρ = η(h), where η is such that η(h) = µo(ρb). For
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one-dimensional motions colinear to the solid wall (direction io and velocity

u io), the tangential component of Eq. (17) yields :

grad µo(ρb) = ν
∂2u

∂z2
io ⇐⇒

∂µo

∂ρb

∂ρb

∂x
= ν

∂2u

∂z2
. (18)

A liquid can slip on a solid wall only at a molecular level.20 The sizes of

solid walls are several orders of magnitude higher than slipping distances

which are negligible and kinematic condition at solid walls is the adherence

condition (z = 0 ⇒ u = 0). From the continuity of fluid tangential stresses

through a liquid-vapor interface of molecular size and assuming that vapor

viscosity stresses are negligible, we obtain (z = h, ⇒
∂u

∂z
= 0). Conse-

quently Eq. (18) implies ν u =
∂µo

∂ρb

∂ρb

∂x

(

1

2
z2 − h z

)

. The mean spatial

velocity u of the liquid in the nanolayer is u = 1
h

∫ h

o
u dz; previous com-

putations yield ν u = −
h2

3
grad µo(ρb) with u = u io. Let us remark

that

∂µo(ρb)

∂x
=
∂µo

∂ρb

∂ρb

∂h

∂h

∂x
≡

1

ρb

∂P (ρb)

∂ρ

∂ρb

∂h

∂h

∂x
.

The pressure Pvb
in the vapor bulk is constant along flow motions and

Π(h) = Pvb
−P (ρb); consequently, we get

∂µo(ρb)

∂x
= −

1

ρb

∂Π(h)

∂h

∂h

∂x
and

χb u =
h2

3
grad Π(h). (19)

where χb = ρbν is the liquid kinetic viscosity.

Eq. (19) yields the mean spatial velocity of the isothermal liquid nanolayer

as a function of the disjoining pressure gradient. Like as the disjoining

pressure depends on the nanolayer thickness, the mean flow velocity is a

function of thickness variations along the flow.

Taking into account that in the liquid nanolayer ρ ≃ ρb, then
(

∫ h

o

ρ dz

)

u ≃

∫ h

o

ρu dz

and the mean spatial velocity corresponds also to the mean velocity with

respect to the mass density.

In shallow water approximation, the equation of continuity yields

∂

∂t

(

∫ h

o

ρ dz

)

+ div

{(

∫ h

o

ρ dz

)

u

}

= 0
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and we obtain Eq. (14) in ref. (21) associated with h−perturbations :

∂h

∂t
+ h divu = 0.

Thanks to Eq. (19) an equation for h−perturbations is :

∂h

∂t
+

h

3χb

∂

∂x

(

h2 ∂

∂x
Π(h)

)

= 0. (20)

Eq. (20) is an equation of diffusion in parabolic structure with a good sign

of diffusion coefficient associated with stability when
∂Π(h)

∂h
< 0.17
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