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Abstract. By analogy with Thompson’s classification of nonsolvable finite N-
groups, we classify groups of finite Morley rank with solvable local subgroups of even
and of mixed type. We also consider several aspects reminiscent of ‘‘small’’ groups of finite
Morley rank of odd type.

1. Introduction

When they are present, involutions play a major role in the classification of infinite
simple groups of finite Morley in a way much reminiscent of their use in the Classification
of the Finite Simple Groups. This is at least the goal of Borovik’s Program to transfer argu-
ments based on involutions from the finite case to the case of finite Morley rank. In both
cases, most critical configurations occur when considering ‘‘small’’ groups, which are at the
same time, and by far, the most di‰cult to handle. In the present paper we will consider the
easiest cases among these remarkably di‰cult configurations.

Groups of finite Morley rank are equipped with a rudimentary notion of dimension
on their first-order definable sets which behaves as an abstract version of the Zariski dimen-
sion of algebraic varieties over algebraically closed fields. We refer to [8], [4] for the devel-
opments of the theory of groups of finite Morley rank and its links with finite group theory
and algebraic group theory, which it encapsulates in a much more general and unified
theory. Finite groups are exactly the groups of Morley rank 0, and for algebraic groups
over algebraically closed fields (with no additional structure) the Morley rank corresponds
to the geometric Zariski dimension.

It is known from [6] that a connected group of finite Morley rank has either trivial or
infinite Sylow 2-subgroups. Considering connected groups of finite Morley rank with invo-
lutions one has thus only to focus on groups with infinite Sylow 2-subgroups. Groups with-
out involutions lead to situations similar to that of the Feit-Thompson (Odd Order) Theo-
rem in finite group theory, with no known infinite analog and actually di¤erent problems in
this case [23].
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The preliminary result for Borovik’s Program in presence of involutions is the
following.

Fact 1 ([9]). Let G be a group of finite Morley rank. Then Sylow 2-subgroups of G are

conjugate and if S is one of them, then S� is nilpotent and a central product, with finite inter-

section, of a 2-torus and a 2-unipotent subgroup.

As usual, Sylow p-subgroups are defined as the maximal p-subgroups. A 2-torus is a
divisible abelian 2-group of finite Prüfer rank, and a 2-unipotent group is a definable con-
nected (nilpotent) 2-group of bounded exponent. These are similar in nature to the Sylow
2-subgroup structure of an algebraic group over an algebraically closed field of character-
istic di¤erent from and equal to 2, respectively. Accordingly, we usually say that the group
G has the following type, depending on the nontriviality of the 2-torus T and/or of the
2-unipotent subgroup U :

U 3 1 U ¼ 1

T 3 1 mixed odd
T ¼ 1 even degenerate

We note that the terminology ‘‘degenerate’’ has been adopted at a time when con-
nected groups of finite Morley rank with finite but nontrivial Sylow 2-subgroups were pos-
sibilities not entirely excluded, but since [6] it seems more informative to speak just of
groups without involutions as far as connected groups are concerned.

For some reasons related to a global unipotence theory in groups of finite Morley
rank explained in [26], [20], the following notation may be used. For a group G of finite
Morley rank, p a set of primes and p a prime, we let Uðy;0Þ;pðGÞ denote the subgroup of
G generated by the definable decent tori of G which coincide with the definable hull of their
Hall p-subgroups, and Uðp;yÞðGÞ the subgroup of G generated by its p-unipotent sub-
groups. In general, a decent torus is a definable divisible abelian group of finite Morley
rank which coincides with the definable hull of, that is the smallest definable subgroup
[4], §I 2.3, containing, its (divisible) torsion subgroup, and for an arbitrary prime p a p-

unipotent group is a definable connected nilpotent p-subgroup of bounded exponent. Sub-
groups of the form Uðy;0Þ;pðGÞ and Uðp;yÞðGÞ, and more generally any subgroup generated
by an arbitrary family of definable connected subgroups, are definable and connected by a
well known application of Zilber’s generation lemma [8], §5.4.

When considering only the prime 2, this allows one to define naturally the odd and
even parts of an arbitrary group of finite Morley rank. In particular, and as the letters
‘‘T ’’ and ‘‘U ’’ are reserved for ‘‘torus’’ and ‘‘unipotent’’ respectively, one uses as in [4] the
following simpler notation for the odd and even parts of a group G of finite Morley rank:

T2ðGÞ ¼ Uðy;0Þ;f2gðGÞ and U2ðGÞ ¼ Uð2;yÞðGÞ:

Any group G of finite Morley rank has a solvable radical, that is a unique maximal
definable solvable normal subgroup, usually denoted RðGÞ [8], Theorem 7.3. Following the
general classification of simple groups of finite Morley rank of even type as algebraic groups
over algebraically closed fields [4], the even part of an arbitrary group of finite Morley rank
is best described as follows.
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Fact 2 ([4], Proposition II 4.8 and Proposition X 1). Let G be a group of finite Mor-

ley rank. Then U2ðGÞ, modulo its solvable radical, is a direct product of finitely many defin-

able simple algebraic factors over algebraically closed fields of characteristic 2.

The most general notion of ‘‘smallness’’ for a group of finite Morley rank, incorpo-
rating notably all solvable groups and Chevalley groups of type PSL2 and SL2 over alge-
braically closed fields, is the following.

Definition 3. A group of finite Morley rank is locally� solvable� if the connected
component of the normalizer of any infinite solvable subgroup is solvable. This is equiva-
lent to requiring that the connected component of the normalizer of any nontrivial defin-
able connected abelian subgroup is solvable by [17], Lemma 3.4 ð4Þ.

We refer to [17] for a detailed study of such groups without any special assumption
on the presence of involutions, and their analogies with those encountered in the Feit-
Thompson Theorem and in Thompson’s classification of finite ‘‘N-groups’’ with involu-
tions [29], [30], [31], [32].

We note that the latter series of papers also corresponds in the finite case to a transfer
from simplicity to nonsolvability of certain arguments for ‘‘small’’ groups, and one of the
goals of the present paper concerning groups of finite Morley rank is the same. In particu-
lar, we will study nonsolvable locally� solvable� groups of even and mixed types in Sections
2 and 3 respectively, by using results and/or technics from the study of simple groups of
finite Morley rank [4]. As naturally expectable, at least according to a long-standing feeling
that groups of finite Morley rank resemble algebraic groups, our conclusion will be the fol-
lowing.

Theorem 4. Let G be a locally� solvable� group of finite Morley rank with an infinite

Sylow 2-subgroup. Then exactly one of the following three cases occurs.

(1) G� is solvable.

(2) G� FPSL2ðKÞ for some algebraically closed field K of characteristic 2, in which

case G ¼ G� � E fome some finite subgroup E.

(3) G� is nonsolvable and has odd type.

The case of nonsolvable connected groups of odd type has been studied in the thick
series of consecutive works [22], [12], [11], [14], [13], [16], more precisely in the simple case,
implying in this process large portions of the current developments of the theory of groups
of finite Morley rank. A kind of ‘‘final’’ version of this voluminous work will be found in
[18]. As a preparation, we will consider here certain specialized topics concerning groups
of odd type, the case of solvable groups of odd type in Section 5 with generalities on invol-
utive actions in Section 4, and the case of groups of odd type with ‘‘very small’’ Sylow 2-
subgroups in Section 6. In Section 7 we will also consider centralizers of involutions in
groups of finite Morley rank when such involutions satisfy certain geometric properties
reminiscent of small groups such as PSL2.
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2. LocallyN solvableN groups of even type

As in the case of simple groups [4], the elimination of connected nonsolvable groups
of mixed type primarily depends on a classification of even type groups in the context of
locally� solvable� groups. The most relevant statement is the following.

Theorem 5. Let G be a locally� solvable� group of finite Morley rank of even type.

Then exactly one of the following two cases occurs.

(1) G� is solvable, or

(2) G� FPSL2ðKÞ for some algebraically closed field K of characteristic 2, in which

case G ¼ G� � E for some finite subgroup E.

We proceed to the proof of Theorem 5. Let G be a locally� solvable� group of finite
Morley rank of even type, which may be assumed to be connected as long as one considers
only its connected component. We then have

R
�
U2ðGÞ

�
tU2ðGÞtG:

If R��U2ðGÞ
�

is nontrivial, then U2ðGÞ is solvable by local� solvability� of G. It follows
then that G� is solvable by local� solvability� again, so we are in case ð1Þ of Theorem 5.

Assuming now that we are not in case ð1Þ of Theorem 5, we have thus R
�
U2ðGÞ

�
fi-

nite. Dividing U2ðGÞ by its finite solvable radical, one gets a semisimple group, which is still
locally� solvable� by [17], Lemma 3.5. Let

H ¼ U2ðGÞ=R
�
U2ðGÞ

�
:

By Fact 2, H is a direct product of finitely many definable normal simple subgroups. One
sees that it is in fact a single definable normal simple subgroup by local� solvability� of H.
Hence H is a simple group of even type.

By the classification of the simple groups of even type, the main theorem of [4], H is a
simple algebraic group over an algebraically closed field of characteristic 2. By local� solv-
ability� of H, one concludes that

H FPSL2ðKÞð*Þ

for some algebraically closed field K of characteristic 2. The analysis can be continued as
follows.

Lemma 6. Z
�
U2ðGÞ

�
¼ 1.

Proof. We have Z
�
U2ðGÞ

�
eR

�
U2ðGÞ

�
which is finite, and in fact one has equality

by [17], Fact 3.14.

Now U2ðGÞ is a connected group. Its commutator subgroup is definable and con-
nected by a well known corollary of Zilber’s generation lemma [8], Corollary 5.29. As
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U2ðGÞ=Z
�
U2ðGÞ

�
¼ H is a nonabelian simple connected group, one gets that U2ðGÞ0

covers H, and thus U2ðGÞ ¼ Z
�
U2ðGÞ

�
� U2ðGÞ0. Now finiteness of the center together

with the connectedness of U2ðGÞ forces that U2ðGÞ is perfect, that is equal to its commuta-
tor subgroup.

Then the result of [5] on central extensions of algebraic groups implies that U2ðGÞ is a
Chevalley group over the same field K. As we are in characteristic 2 and dealing with PSL2,
we conclude that the center is trivial. r

At this point we have U2ðGÞFPSL2ðKÞ for some algebraically closed field K of char-
acteristic 2.

Lemma 7. G ¼ U2ðGÞ.

Proof. Let U be a maximal 2-unipotent subgroup of U2ðGÞ. By conjugacy of such
subgroups in U2ðGÞFPSL2, a Frattini argument gives

G ¼ U2ðGÞ � N �ðUÞ

and the factor N �ðUÞ is solvable by local� solvability�. Now N �ðUÞ acts on
U2ðGÞFPSL2ðKÞ by inner automorphisms as PSL2 has no graph automorphisms. In par-
ticular

N �ðUÞ ¼ NU2ðGÞðUÞ � CG

�
U2ðGÞ

�

and as the latter factor is finite by local� solvability� of G and nonsolvability of
U2ðGÞFPSL2, one even has by connectedness of N �ðUÞ that

N �ðUÞ ¼ NU2ðGÞðUÞeU2ðGÞ;

and it follows that G ¼ U2ðGÞ � N �ðUÞeU2ðGÞ. r

We have thus shown that G FPSL2ðKÞ for some algebraically closed field K of char-
acteristic 2 whenever G is connected and not solvable as in case ð1Þ of Theorem 5. To com-
plete the statement as in case ð2Þ of that theorem, it just remains to show the following.

Lemma 8. Let G be a locally� solvable� group of finite Morley rank such that

G� FPSL2ðKÞ for some algebraically closed field K of characteristic 2. Then G ¼ G� � E

for some finite subgroup E.

Proof. Again, by a Frattini argument, G ¼ G� � NðUÞ for some maximal 2-
unipotent subgroup U of G�, and as there are no graph automorphisms of PSL2 we get
NðUÞ ¼ NG�ðUÞ � CNðUÞðG�Þ, and thus G ¼ G� � CGðG�Þ. Now E ¼ CGðG�Þ is the de-
sired group. r

This completes the proof of Theorem 5.

The reader might however wonder whether one really needs the big gun of the full
classification of simple groups of even type for the isomorphism (*) above. Fortunately,
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one can obtain this isomorphism much more directly in the case of locally� solvable�

groups. Here is how a baby version of the proof would work along the lines of the original
papers in the simple case, even though we are not going to review all details entirely.

We thus have a simple locally� solvable� group H of finite Morley rank of even type,
and we want to show that H FPSL2ðKÞ for some algebraically closed field K of character-
istic 2.

Fix a maximal 2-unipotent subgroup U of H. Let

B ¼ N �ðUÞ and M ¼ NðUÞ ¼ NðBÞ:

We know that B is a Borel subgroup of H by [17], Lemma 3.9. One sees easily that M is
weakly embedded in H, which means that it is a proper definable subgroup containing
an infinite Sylow 2-subgroup and such that M XM h has finite Sylow 2-subgroups for any
element h of H not in M [3]. Actually the proper inclusion M < H follows from the non-
solvability of the ambient locally� solvable� group H (see [17], Lemma 3.7). The property
of finiteness of Sylow 2-subgroups of intersections of distinct conjugates of M follows from
specific uniqueness theorems, analogous to those of the so-called Bender Method in finite
group theory, available in the context of locally� solvable� groups of finite Morley rank,
[17], Corollary 4.4 or Corollary 5.12.

One sees easily with the same kind of arguments that for any nontrivial 2-unipotent
subgroup V of U , N �ðXÞeM for any infinite definable subgroup X of C�ðVÞ. This is be-
cause N �ðX Þ is solvable by local� solvability�, and thus one can use the uniqueness theo-
rems of [17], §4.1, more specifically [17], Corollary 4.4, according to which B is the unique
Borel subgroup containing any of its nontrivial 2-unipotent subgroups.

This shunts the most di‰cult part of the analysis, [24], Théorème 4.1, reducing essen-
tially to the situation of [24], §3, with M � ¼ B solvable by local� solvability� (a rather un-
direct fact in the general case of [4], but rather direct in the case of [24]). We leave to the
reader the pleasure of accomplishing the final recognition of PSL2 along the lines of argu-
ments and the computations of [24], Théorème 3.1, using here the fact that all normalizers�

of nontrivial solvable infinite subgroups are solvable.

3. LocallyN solvableN groups of mixed type

A corollary of the full classification of simple groups of finite Morley rank of even
type [4] and of the arguments of [21] is the following.

Fact 9 ([4]). There is no simple group of finite Morley rank of mixed type.

We obtain a similar result for connected locally� solvable� groups of finite Morley
rank replacing the simplicity assumption by a mere nonsolvability assumption, which is
best stated in the following form.

Theorem 10. Let G be a locally� solvable� group of finite Morley rank of mixed type.

Then G� is solvable.

28 Deloro and Jaligot, Small groups of finite Morley rank with involutions
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Theorem 10 can be deduced as a special case of the general theory developed in [4],
and at the end of the present section we will review how this can be done. In any case, the
core of the proof boils down in our special context to the argument below.

To prove directly Theorem 10, we assume toward a contradiction that G is a con-
nected counterexample of minimal rank to the above statement.

As G is not solvable, it has a finite solvable radical by local� solvability�. Dividing by
the latter, one gets a group still of mixed type, still locally� solvable� but now semisimple
([17], Lemma 3.15), and in which all proper nonsolvable definable connected subgroups are
not of mixed type by minimality.

Fix a maximal 2-unipotent subgroup U of G. The first main claim is

M :¼ NðUÞ is weakly embedded in G:

This is a special application of [17], Corollary 5.12, for the prime p ¼ 2. We also note that
for this particular prime p ¼ 2 it is necessary that a nontrivial 2-torus commutes with a
nontrivial 2-unipotent subgroup by Fact 1, so that the general strategy developed in the
simple case [2] also works here, as explained after [17], Corollary 5.12. It provides in par-
ticular a proof very similar to the one used in the simple case: M ¼ NðUÞ ¼ NðU?Þ where
U? ¼ T2

�
CðUÞ

�
, and one checks easily that M contains the normalizer of each of its non-

trivial 2-unipotent subgroups (by the Uniqueness Theorem of [17]) and similarly for its
2-tori T : N �ðTÞ is solvable by local� solvability�, contains U , and the Uniqueness Theorem
applies again.

The next point is the following remark.

Fact 11 ([21], Fait 2.18). Let G be a group of finite Morley rank, S a Sylow 2-

subgroup of G, T the maximal 2-torus of S�, and t an element of T. Then tG XS� is con-

tained in T , and is in particular finite.

Proof. The first claim follows from an argument of control of fusion in p-tori by
their normalizers, which has been known for a long time for the particular prime p ¼ 2
([8], Lemma 10.22), and the present formulation can be tracked in [1], Fact 2.48. Anyway
we refer to [17], Corollary 2.20, for the most general formulation of such arguments of con-
trol of fusion, in a form which directly applies here.

The finiteness of tG XS� follows, as the 2-torus T has only finitely many elements of
order 2n for each n ([9]). r

A proper definable subgroup M is strongly embedded if it has nontrivial Sylow 2-
subgroups and M XM g has trivial Sylow 2-subgroups for any element g of G not in M.
There is a much similar notion in the finite case, used notably by Bender, and the notion
of weak embedding is its neoclassical revival in the case of groups of finite Morley rank.

The next point is then the following.

Lemma 12. M is not strongly embedded in G.

29Deloro and Jaligot, Small groups of finite Morley rank with involutions
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Proof. Assume towards a contradiction M strongly embedded. Then its involutions
would necessarily be conjugate ([8], Theorem 10.19). In particular an involution of a max-
imal 2-torus T of M would be conjugate to any involution of U . But there are infinitely
many involutions in 2-unipotent groups ([9]), and this contradicts Fact 11. r

By general results on strong/weak embedding (see [4], Part B), one then concludes
that there exists an involution a of M which is problematic in the sense that

CðaÞKM

and the next step consists in applying Theorem 5 to its centralizer�.

Lemma 13. Let a be a problematic involution of M. Then C�ðaÞFPSL2ðKÞ for some

algebraically closed field K of characteristic 2.

Proof. The involution a normalizes U ¼ U2ðBÞ, as connected solvable groups of fi-
nite Morley rank have only one maximal p-unipotent subgroup (see for example [17], Fact
2.15, for the most general and contemporary version of this, or [28] for the oldest results
from which it can be deduced). As infinite nilpotent-by-finite p-groups of finite Morley
rank contain infinitely many central elements of order p ([9]), a centralizes a nontrivial 2-
unipotent subgroup of U .

We claim that C�ðaÞ is not solvable. This follows from the uniqueness theorems of
[17], §4.1, according to which a nontrivial p-unipotent subgroup of any locally� solvable�

group of finite Morley rank is contained in a unique Borel subgroup. In particular B is the
unique Borel subgroup containing C�

UðaÞ. Assuming C�ðaÞ solvable, we would get in par-
ticular C�ðaÞeB, and CðaÞeN

�
C�

UðaÞ
�
eNðBÞ ¼ M, as B is the unique Borel subgroup

containing C�
UðaÞ, a contradiction since a is problematic.

By semisimplicity of G, C�ðaÞ < G, and by minimality, C�ðaÞ cannot be of mixed
type. As it contains a nontrivial 2-unipotent subgroup as just seen, C�ðaÞ is a locally�

solvable� group of even type. Now Theorem 5 yields the desired isomorphism type of
C�ðaÞ. r

For the final step we now are in position to conclude as at the end of [21], using
the same relevant technical lemma on involutions isolated to tackle the configuration
appearing.

Fact 14 ([21], Lemme 4.1). Let G be a group of finite Morley rank, with involutions

i, t, a, and a 0 satisfying the following five conditions:

(1) i and t are not conjugate.

(2) U2

�
CðaÞ

�
FPSL2ðKÞ for some algebraically closed field K of characteristic 2.

(3) a 0 is the unique involution of the definable hull HðitÞ of it (i � t, not it).

(4) i A U2

�
CðaÞ

�
, t A CðaÞ.

30 Deloro and Jaligot, Small groups of finite Morley rank with involutions
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(5) a 0 B U2

�
CðaÞ

�
.

Then ta 0 A U2

�
CðaÞ

�
.

Proof of Theorem 10. We keep the previous notations.

Applying [17], Lemma 3.35 ð2Þ, to the conjugacy class of a 2-toral involution t of G,
one gets as G is not solvable that tG XM is not generic in tG (notice that tG is infinite as
CðtÞ < G and G is connected). In particular one may assume, choosing a suitable conjugate
of t, that t is a 2-toral involution not in M.

Let a0 be a problematic involution of M. As seen in the proof of Lemma 13, there
exists an involution i0 in C�

Uða0Þ. As involutions of the latter group are all conjugate in
C�ða0Þ by Lemma 13, Corollary 11 implies that t and i0 are not conjugate. In particular
there exists an involution a in the definable hull Hði0tÞ of i0t [8], Proposition 10.2. We have

½i0; a� ¼ 1 and ½t; a� ¼ 1:

Lemma 13 implies in particular that problematic involutions of M never belong to a uni-
potent subgroup, as they cannot centralize a nontrivial 2-torus. In particular i0 is not prob-
lematic in M, i.e., Cði0ÞeM. The first commutation implies thus that a is in M, and as
t B M the second commutation implies that a is a problematic involution of M.

Take an involution i in C�
UðaÞ. Again i and t are not conjugate, hence there is an in-

volution a 0 in HðitÞ. Similarly, a 0 commutes with i and t, and is thus a problematic involu-
tion of M.

One can check that the five conditions of Fact 14 are met for the involutions i, t, a,
and a 0. For the third for example, we note that HðitÞ contains no nontrivial 2-torus, as
a 0 A HðitÞ and by the structure of centralizers of problematic involutions. For the last point,
this is by the fact that problematic involutions cannot belong to a 2-unipotent subgroup.
The conclusion of Fact 14 is then

ta 0 A U2

�
CðaÞ

�
:

As t centralizes a, it acts on C�ðaÞ, and by the structure of the latter the action must be by
some inner automorphism. Since t centralizes ta 0, it centralizes the Sylow 2-subgroup Ata 0

of C�ðaÞ containing ta 0.

Now Ata 0 eCðtÞ < G, and hence by our minimality assumption CðtÞ is of even type.
But t belongs to a nontrivial 2-torus, and in particular centralizes it. This is a contradiction
which ends the proof of Theorem 10. r

Another approach to Theorem 10 would be to use the fact that

½T2ðGÞ;U2ðGÞ� ¼ 1:

This is a general corollary of the full classification of simple groups of finite Morley rank
of even type [4], Lemma V 2.3, Theorem X 1, Chap. V Mixed Type L� Theorem. With this
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commutation, one concludes easily to the solvability of G when both factors in the commu-
tator are nontrivial, as both the normal factors are then solvable by local� solvability� of G.
If one tries to prove directly this commutation in our case, then as in [4], Lemma V 2.3, one
may want to look at the action of 2-tori on U2ðGÞ. As in Section 2, or [4], Proposition II
6.2, Lemma II 6.3, one is then interested in the socle of U2ðGÞ modulo R

�
U2ðGÞ

�
, a direct

product of connected simple factors. If no such factor is of mixed type, then one can con-
clude that ½T2ðGÞ;U2ðGÞ� ¼ 1 as in [4], Lemma V 2.3. Otherwise, the situation reduces to
the case where G is a simple group such that G ¼ U2ðGÞ ¼ T2ðGÞ, and in our case this was
disposed of by the core of the proof given above.

As it is was explained in [17], §3.3, there might be serious obstructions if one wants a
version of Theorem 10 for primes di¤erent from 2.

We now note that Theorem 4 follows from Theorems 5 and 10. By-the-by, we men-
tion the following corollary of Theorem 4 on connectedness of Sylow 2-subgroups in small
groups of finite Morley rank.

Corollary 15. Let G be a connected locally� solvable� group of finite Morley rank

with a nonconnected Sylow 2-subgroup. Then G is nonsolvable and of odd type.

Proof. It is known that Hall p-subgroups are connected in any connected solvable
group of finite Morley rank and for any set p of primes. In PSL2 over any algebraically
closed field K of characteristic 2, Sylow 2-subgroups are also connected. It can be seen ei-
ther by the transitivity of the action on them of their normalizers or by the fact that they
are definably isomorphic to the additive group of the ground field K, which is interpretable
and of finite Morley rank.

It follows that here the only remaining possibility in Theorem 4 is case ð3Þ. r

4. Involutive actions

The structure of nonsolvable locally� solvable� groups of odd type, left undetermined
in Theorem 4, will be considered in [18] as mentioned in the introduction. Now we merely
deal with specialized topics concerning groups of odd type in general and which will in par-
ticular be applied in the lengthy analysis of [18].

Before moving ahead, we concentrate in general on definable involutive automor-
phisms of groups of finite Morley rank. When a is an automorphism of a group G, we let

Gþa ¼ fg A G j ga ¼ gg and G�a ¼ fg A G j ga ¼ g�1g:

Both sets are definable whenever a is a definable automorphism of G. In general, only the
centralizer Gþa of a in G is necessarily a subgroup of G. When there is no risk of confusion
between di¤erent possible automorphisms a, we will sometimes omit the subscript �a in the
notation of the two sets as above, and thus just speak of Gþ and G�.

We start by mentioning the older results on involutive definable automorphisms a of
groups of finite Morley rank in terms of Gþ and G�.
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Fact 16 ([27]). Let a be a definable involutive automorphism of a group G of finite

Morley rank. If a fixes only finitely many elements in G, then G has a definable (abelian) sub-

group of finite index inverted by a, i.e., G� LG�.

Fact 17 ([8], Ex. 14, p. 73). Let G be a group of finite Morley rank without involutions

and a a definable involutive automorphism of G. Then G� is 2-divisible and one has a decom-

position G ¼ Gþ � G�, where the corresponding multiplication map is one-to-one.

In the present section we are essentially going to give a generalization of Fact 17
when the group G contains a central and divisible Sylow 2-subgroup. We first note the fol-
lowing general lemma.

Lemma 18. Let G be a group of finite Morley rank whose Sylow p-subgroup is a cen-

tral p-torus. Then G is p-divisible.

Proof. Let g be an arbitrary element of G. Then the definable hull HðgÞ of the cyclic
group hgi can be written as

HðgÞ ¼ Dlhzi

where D is p-divisible and z a p-element, by [4], Lemma 2.16, and decomposing the finite
cyclic part into its p-primary component and a (cyclic) complement. Let h be a p-th root of
gz�1 in D. Let h be a p-th root of z in the Sylow p-subgroup. As h is central in G, one gets

g ¼ gz�1z ¼ hphp ¼ ðhhÞp: r

In general, a group of even type is not 2-divisible. One may wonder whether groups of
odd type are 2-divisible, but this need not hold in general neither as the following example
shows. If B is a Borel subgroup of SL2ðKÞ, with K an algebraically closed field of charac-
teristic di¤erent from 2, u a nontrivial unipotent element in B, and i the unique (central)
involution of SL2ðKÞ, then ui is not a square in SL2ðKÞ. In particular B is a connected
2-step solvable group of finite Morley rank of odd type, and B is not 2-divisible!

Our generalization of Fact 17 is the following.

Theorem 19. Let G be a group of finite Morley rank whose Sylow 2-subgroup is a

(possibly trivial) central 2-torus, and a a definable involutive automorphism of G. Then

G ¼ Gþ � G� where the fibers of the associated product map are finite. Furthermore one

also has G ¼ ðGþÞ� � G� whenever G is connected.

The proof of Theorem 19 generalizes that of Fact 17. We note that Theorem 19 also
incorporates [16], Fait 1.19. We shall need the following intermediate general lemma whose
proof has a flavor similar to that of [24], Lemme 4.45.

Lemma 20. Let G be a group of finite Morley rank whose Sylow 2-subgroup is cen-

tral. If ab ¼ a�1 for two elements a and b of G, then a is either the identity or an involution

of G.

Proof. The set CGðaÞ ¼ fx A G j ax ¼ aG1g is a definable subgroup of G. As
CGðaÞ=CðaÞ has exponent at most 2, there is a (possibly trivial) 2-element in any coset of
CðaÞ in CGðaÞ by [4], Lemma 2.18. As 2-elements are central by assumption, this proves
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that any coset of CðaÞ in CGðaÞ is in CðaÞ, and thus CGðaÞ ¼ CðaÞ. In particular a ¼ a�1,
and a2 ¼ 1. r

Proof of Theorem 19. Recall that G is a group of finite Morley rank whose Sylow
2-subgroup is a (possibly trivial) central 2-torus, and that a is a definable automorphism
of G of order at most 2.

Step 1. If ½g; a� is a non-trivial 2-element, then there exists h in G such that

½g; a� ¼ ½h; a�2.

Proof. Assume z ¼ ½g; a� has order n ¼ 2k for some k. As G is 2-divisible by Lemma
18, there exists an element h in G such that h2 ¼ g. Now z ¼ ½g; a� ¼ ½h2; a� ¼ ½h; a�h½h; a�
is central and has order n, so h inverts q ¼ ½h; a�n. By Lemma 20, q has order at most 2.
In particular ½h; a� is a 2-element, and it is in particular central in G. One then gets
½g; a� ¼ ½h; a�h½h; a� ¼ ½h; a�2. r

The moral of Step 1 is that in general G� need not be 2-divisible as in Fact 17, but its
subset f½g; a� j g A Gg is 2-divisible as we will see in the course of the next step.

Step 2. G ¼ Gþ � G�.

Proof. Let g A G. One can write the definable hull Hð½g; a�Þ of ½g; a� as in Lemma 18
as Hð½g; a�Þ ¼ Dlhzi, where D is a 2-divisible group and z is a 2-element. Let h be a
square root of ½g; a�z�1 in D. Notice that h centralizes ½g; a� and is inverted by a. Hence
½gh; a� ¼ ½g; a�h½h; a� ¼ ½g; a�h�2 ¼ z. By Step 1, there is x A G such that z ¼ ½x; a�2. So
h ¼ ½x; a� is a 2-element inverted by a, whose square is z. As h A ZðGÞ, we find that
h�1h�1 is inverted by a. Moreover, ½ghh; a� ¼ ½g; a�hh½h; a�h½h; a� ¼ h2zh�2h�2 ¼ 1, so
g ¼ ðghhÞðh�1h�1Þ is a suitable decomposition. r

Step 3. If ax ¼ by with a; b A Gþ and x; y A G�, then a�1b is the identity or an invo-

lution fixed by a. Hence the fibers of the product decomposition as in Step 2 are of cardinal at

most jfk A G j k2 ¼ 1gj.

Proof. We have

ða�1bÞy ¼ ðxy�1Þy ¼ y�1x ¼ aðyx�1Þ ¼ aðb�1aÞ ¼ b�1a ¼ ða�1bÞ�1;

so y inverts a�1b. By Lemma 20, a�1b has order at most 2. In particular, a�1b lies in the
central elementary abelian 2-subgroup of G, and it is fixed by a. We also note that the cen-
tral elementary abelian 2-subgroup of G is exactly fk A G j k2 ¼ 1g. r

Step 4. Left Gþ-translates of the set ðGþÞ� � G� are disjoint or equal.

Proof. Assume that aðGþÞ� � G� meets bðGþÞ� � G�, in say agþg� ¼ bhþh�
with natural notations. By Step 3, z ¼ ðagþÞ�1ðbhþÞ is central and fixed by a. So
z ¼ ðbhþÞðagþÞ�1. Hence for any bgþg� A bðGþÞ� � G� one finds

bgþg� ¼ zz�1bgþg� ¼ aðgþh�1
þ gþÞðg�zÞ;

which lies in aðGþÞ� � G�. The converse inclusion holds too. r
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Step 5. Exactly degðGÞ left Gþ-translates of ðGþÞ� � G� cover G. In particular, if G

is connected, then G ¼ ðGþÞ�G�.

Proof. We consider such left translates. They all have rank rkðGÞ by Step 3. As they
are disjoint or equal by Step 4, exactly degðGÞ of them su‰ce to cover G. r

This ends the proof of Theorem 19. r

The following results are not used here, but it is worth mentioning them for the sake
of completeness of the present section. The first one is an important commutation principle,
and the second one is a downward invariance result.

Fact 21 ([13], Lemme 3.1). Let G be a group, H and K eNðHÞ two subgroups with

K 2-divisible. Suppose that there is an involution i in G which inverts K and centralizes or

inverts H. Then ½H;K � ¼ 1.

Fact 22 (Compare with [13], Fait 3.12). Let G be a group of finite Morley rank,
K eG a definable 2-subgroup normalizing a definable subgroup H of G, and S a Sylow 2-

subgroup of H. Then an H-conjugate of K normalizes S.

Proof. Consider the definable group HK , and let ŜS denote a Sylow 2-subgroup of
HK containing S. By conjugacy of Sylow 2-subgroups, K g e ŜS for some g in HK , and in
fact g may be chosen in H. Now the H-conjugate K g of K normalizes ŜS XH ¼ S. r

5. Solvable groups of odd type

Since the original unpublished [22] on small groups of odd type, most of the work has
consisted in developing certain arguments based on considerations involving strongly real

elements, that is products of two involutions. The goal is ultimately to adapt to odd type
groups similar arguments from finite group theory, first imported by Nesin to groups of fi-
nite Morley rank.

In PSL2ðKÞ, with K an algebraically closed field of characteristic di¤erent from 2, the
standard Borel subgroup contains two kinds of strongly real elements. Those of maximal
unipotent subgroups on the one hand are inverted by involutions inside their respective
Borel subgroups, and those in maximal tori on the other hand are inverted by involutions
outside the Borel subgroup, corresponding to liftings of elements of the Weyl group. We
may call these strongly real elements ‘‘insiders’’ and ‘‘outsiders’’ respectively.

When working with small groups of odd type, most complications arise when trying
to get a control on outsiders, that is strongly real elements inside a Borel subgroup but such
that the two involutions forming the product are outside this Borel subgroup. This is typi-
cally done for a standard Borel subgroup, that is a Borel subgroup B containing the central-
izer� of a particular involution. In this case outsiders of the Borel subgroup B, inverted by a
fixed involution, are expected to form a torus of B in the expected group PSL2. Other com-
plications arise when one has to compare insiders and outsiders of such a Borel subgroup,
and in this case one also occasionally needs in this delicate work a good understanding of
insiders. We refer to [18] anyway.
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The study of insiders merely boils down to the study of connected solvable groups of
odd type, and this is the purpose of the present section. Recall first from [9] that the con-
nected component of the Sylow 2-subgroup of a group of finite Morley rank is a direct
product of finitely many copies of the quasicyclic group Z2y , with this finite number called
the Prüfer 2-rank of the group. As connected solvable groups of finite Morley rank have
connected Sylow 2-subgroups, the Sylow 2-subgroup S of a connected solvable group of
odd type satisfies

S ¼ S� FZ2y � � � � � Z2y

where the number of factors involved is the Prüfer 2-rank.

Before moving ahead, we recall some more general background. As for the solvable
radical, there is a notion of the Fitting subgroup in any group G of finite Morley rank [8],
Theorem 7.3, where nilpotence replaces solvability, usually denoted by FðGÞ. A Carter sub-
group of a group of finite Morley rank is a definable connected nilpotent subgroup of finite
index in its normalizer, and it is nontrivial but a fact that any group of finite Morley rank
contains a Carter subgroup [19].

Lemma 23. Let G be a connected group of finite Morley rank without nontrivial p-

unipotent subgroups for some prime p, and t a p-element of G. Then:

(1) The element t belongs to a Carter subgroup Q of G, and QeC�ðtÞ.

(2) If furthermore G ¼ NQ for some normal definable subgroup N, then G ¼ C�ðtÞN.

Proof. ð1Þ By the main result of [10], t belongs to a p-torus, say Tp. Now any decent
torus is contained in a Carter subgroup by the construction given in [19]. We have thus
t A Tp eQ for some Carter subgroup Q of G, and as any connected nilpotent group of fi-
nite Morley rank has a unique decent torus which is central, by earlier work of Nesin, one
concludes that QeC�ðTpÞeC�ðtÞ. The reader can also consult [25], Fact 4, for similar
facts in this direction.

ð2Þ We have G ¼ QN eC�ðtÞN eG, and thus G ¼ C�ðtÞN. r

Here are the main lemmas used in [18] concerning strongly real elements inside con-
nected solvable groups of odd type. We stress the fact that the Prüfer 2-rank is not 1 in gen-
eral, a technical complication which has to be entirely taken into account in [16] and in [18].
For an element normalizing a subgroup we confound below the element with the automor-
phism it induces by conjugation in the notation introduced at the beginning of Section 4.

Lemma 24 (Inner computation). Let B be a connected solvable group of finite Morley

rank of odd type and let j be an involution of B. Then:

(1) B ¼ C�
Bð jÞ � ½F �ðBÞ��j , where the fibers of the associated product map are finite. In

particular rkðBÞ ¼ rk
�
C�

Bð jÞ
�
þ rk

�
½F �ðBÞ��j

�
.

(2) For any definable subgroup U of Z
�
F �ðBÞ

�
normal in B, the subgroup U�j is nor-

mal in B.
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Proof. ð1Þ As B is of odd type, there are finitely many involutions in the connected
nilpotent group F �ðBÞ ([8], §6.2).

We claim that the fibers of the multiplication map

P : C�ð jÞ �
�
F �ðBÞ

��j ! B

are finite. If cf ¼ c 0f 0, with obvious notations, then c 0�1c ¼ f 0f �1, and this element is cen-
tralized by j. Hence one gets f 0f �1 ¼ ð f 0f �1Þ j ¼ f 0�1f , and f 02 ¼ f 2. The nilpotent group
F �ðBÞ has the form T � U , a central product with finite intersection, where T denotes the
maximal decent torus of F �ðBÞ and U is a definable connected nilpotent subgroup. In par-
ticular all the 2-torsion of F �ðBÞ is in T . One also has f 02 ¼ f 2 in F �ðBÞ modulo T . Now
in groups of finite Morley rank without involutions any element has a unique square root
(see [8], p. 72, or [2], Fact 2.25), and one concludes that f ¼ f 0 modulo T , i.e., f 0 ¼ ft for
some t in T . As T is central in F �ðBÞ, one gets by taking squares that t2 ¼ 1, and as T has
only finitely many involutions it implies that there are only finitely many possibilities for f 0,
once f is fixed. This gives the desired finiteness of the fibers of the multiplication map P.

So our statement reduces to proving that the map P is onto.

In connected solvable groups B of finite Morley rank, Carter subgroups are conjugate
and cover the connected nilpotent quotient B=F �ðBÞ by [28] and [20], Theorem 3.11 and
Proposition 5.1. Combined with Lemma 23 this yields

B ¼ C�ð jÞF �ðBÞ

and for our desired factorisation it su‰ces thus to show that

F �ðBÞ ¼ C�
F �ðBÞð jÞ � ½F �ðBÞ��j :ðyÞ

But the Sylow 2-subgroup of F �ðBÞ is a central 2-torus, again by earlier results of Nesin
according to which divisible torsion is central in connected nilpotent groups of finite Mor-
ley rank. Hence Theorem 19 can be applied with the action by conjugation of j on F �ðBÞ,
and this gives exactly the desired factorisation ðyÞ as above.

(2) If c A C�ð jÞ and u A U�j , then ðucÞ j ¼ ucj ¼ u jc ¼ u�c ¼ ðucÞ�1, and as uc A U by
normality of U in B one gets uc A U�j . Hence the subgroup U�j is normalized by C�ð jÞ,
and as it is also central in F �ðBÞ it is normal in B ¼ C�ð jÞF �ðBÞ. r

The following application of Lemma 24 will be used in the most critical situations in
[18]. In the second claim of the corollary below the two involutions considered are not nec-
essarily conjugate, a point we will use fully in the analysis of [18].

Corollary 25. Let G be a group of finite Morley rank, i an involution of G, and as-

sume C�ðiÞeB for some definable connected solvable subgroup B of odd type. Let j be an

involution of B. Then:

(1) rkðBÞ ¼ rk
�
C�

Bð jÞ
�
þ rk

�
½F �ðBÞ��j

�
.
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(2) In particular, if C�ð jÞeB and C�ðiÞ and C�ð jÞ have the same rank (which occurs

in particular if i and j are conjugate), then rk
�
½F �ðBÞ��j

�
¼ rk

�
½F �ðBÞ��i

�
.

Proof. By assumption, C�ðiÞ contains trivial 2-unipotent subgroups. It follows from
the torality result of [10] that i belongs to a 2-torus, say T . Then i A T eC�ðiÞeB. Now
Lemma 24 applies in B. r

We also mention the following additional information to Lemma 24 when the Prüfer
2-rank is 1. Of course, this corresponds more and more to abstract descriptions of the Borel
subgroups of PSL2 or SL2 over algebraically closed fields of characteristic di¤erent from 2.

Lemma 26. Adopt the same assumptions and notations as in Lemma 24 and assume

furthermore that the Prüfer 2-rank is 1. Then:

(1) C�ð jÞ < B if and only if FðBÞ contains no involutions.

(2) CBð jÞ is connected, B ¼ C�ð jÞ � ½F �ðBÞ��j , and the multiplication map giving this

decomposition is one-to-one whenever C�ð jÞ < B.

(3) The set of involutions of B is exactly j F �ðBÞ.

Proof. First, we note that a connected solvable group of finite Morley rank has con-
nected Sylow 2-subgroups. In particular a connected solvable group of finite Morley rank
of odd type and of Prüfer 2-rank 1 has Sylow 2-subgroups isomorphic to Z2y .

(1) If F �ðBÞ contains an involution, its maximal 2-torus is nontrivial. As it is central
in B by [17], Fact 2.12 (1), the toral involution is central in B, and it must be j. If the Sylow
2-subgroup of FðBÞ is finite, then it is central in B by [17], Fact 1.2. One gets again that an
involution of B must be central in B and by connectedness of the Sylow 2-subgroups of B it
must be j again.

Conversely, if CBð jÞ ¼ B, then FðBÞ contains the involution j.

(2) We can prove the factorisation much more directly here. By ð1Þ, we may assume
F �ðBÞ without involutions. We work in B=F �ðBÞ. As this quotient is abelian by [28], j in-
duces by conjugation a trivial action on this quotient.

In particular, for every b A B, there exists f A F �ðBÞ such that b j ¼ bf . Conjugating
again by j one gets f j ¼ f �1, so f A ½F �ðBÞ��j . By ð1Þ and Fact 17, f ¼ g2 for some g still
in ½F �ðBÞ��j . Then b ¼ ðbgÞg�1, where ðbgÞ j ¼ ðbf Þg�1 ¼ bg A CBð jÞ and g A ½F �ðBÞ��j .

Hence B ¼ CBð jÞ � ½F �ðBÞ��j . We show the uniqueness of this decomposition when-
ever C�ð jÞ < B. If c1 f1 ¼ c2 f2, with natural notations, then f2 f �1

1 A Cð jÞ, and f 2
1 ¼ f 2

2 ,
which in the group without involutions F �ðBÞ implies f1 ¼ f2, and then the uniqueness of
the decomposition follows.

The product map corresponding to the decomposition B ¼ CBð jÞ � ½F �ðBÞ��j has finite
fibers. Hence each definable generic subset of the source set has a generic image in B. When
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the product map is one-to-one, this forces that CBð jÞ has Morley degree one. Otherwise,
CBð jÞ ¼ B is also connected.

(3) As the Prüfer 2-rank is 1, all involutions of the connected solvable group B are
conjugate by the structure of Sylow 2-subgroups. Then ð2Þ gives the desired equality. r

6. Groups of Prüfer 2-rank 1

It is proved in [12], Lemma 2.34, that if S is a Sylow 2-subgroup of a group of finite
Morley rank of odd type and of Prüfer 2-rank 1, and if w is an involution conjugate to the
unique involution i of S�, then w cannot centralize S� unless it is i. From this one can de-
duce that such involutions w which normalize S� but are not in it must invert S�, and one
gets in this situation a subgroup of the Sylow 2-subgroup isomorphic to that of Chevalley
groups of type PSL2 over algebraically closed fields of characteristic di¤erent from 2.

We are going to delineate entirely the structure of Sylow 2-subgroups of connected
groups of odd type and Prüfer 2-rank 1, showing in any case analogy with the structure of
Sylow 2-subgroups in groups of the form PSL2 or SL2 over some algebraically closed field
of characteristic di¤erent from 2, or of connected solvable groups. First, recall from the
main result of [10] that any 2-element of a connected group of finite Morley rank of odd
type is 2-toral, i.e., belongs to a 2-torus. When the Prüfer 2-rank is 1 it implies by Fact 1
that all involutions are conjugate.

Proposition 27. Let G be a connected group of finite Morley rank of odd type and of

Prüfer 2-rank 1. Then there are exactly three possibilities for the isomorphism type of a

Sylow 2-subgroup S of G.

(1) S ¼ S� z hwi for some involution w which acts on S� by inversion.

(2) S ¼ S� � hwi for some element w of order 4 which acts on S� by inversion.

(3) S ¼ S�.

Our proof of Proposition 27 uses the following results.

Fact 28 ([7]). Let G be a connected group of finite Morley rank of odd type, and fix

some Sylow 2-subgroup S of G. Then CSðS�Þ ¼ S�.

Fact 29. AutðZ2yÞFZ�
2 . In particular the only nontrivial automorphism of finite

order of Z2y is the inversion.

Proof. It is clear that AutðZ2yÞ is isomorphic to the group of invertible elements of
the ring Z2. But Z�

2 FZ=2Z� Z2 and the right factor is torsion-free as the characteristic is
0. In particular AutðZ2yÞ has only one nontrivial automorphism of finite order, inversion.

r

Lemma 30. Let G be a connected group of finite Morley rank of odd type and of Prü-

fer 2-rank 1, and S a Sylow 2-subgroup of G. Then ½S : S��e 2 and elements of SnS� act on

S� by inversion.
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Proof. By Fact 28, every element of SnS� has a nontrivial action on S�. (This is the
original argument in [12], Lemma 2.34, in the light of the torality of [10].)

Now Fact 29 implies that this action is by inversion, and in particular all elements of
SnS� have the same action on S�. By Fact 28 again one gets that there is at most one coset
of S� distinct from S� in S, which proves our claim. r

Proof of Proposition 27. Assume that S is not connected. We prove that S is either
isomorphic to the Sylow 2-subgroup of PSL2 or to that of SL2 in characteristic di¤erent
from 2.

Let w A SnS�. By Lemma 30, S ¼ S� � hwi, w inverts S�, and w2 A S�. If w2 ¼ 1, then
S is obviously as in PSL2. Now suppose w2 3 1. As w inverts S� and w2 A S�, one has
w2 ¼ ðw2Þw ¼ ðw2Þ�1. So w2 is the involution of S�, as in SL2. r

Remarkably, the conclusion of Proposition 27 will be obtained in a very general set-
ting in the case of connected locally� solvable� groups of odd type, in the early analysis of
[18]. This has the e¤ect of simplifying slightly certain arguments in the entire classification
of small groups of odd type, not spectacularly as the main di‰culties with strongly real
elements remain throughout, but at least morally and technically, removing certain residual
involutions sometimes occuring in Weyl groups. As an example of such minor but seem-
ingly simplifications, it entirely eliminates the need for the lengthy Sections 6.1 and 6.2 in
the analysis of Weyl groups in [12].

7. The Borovik-Cartan decomposition

In this final section we rework an argument of [6] in a form more suitable for [18].
This argument, inspired by computations in the theory of ‘‘black box’’ finite groups, also
resembles at a formal level the Cartan polar decomposition in quadratic algebra, an aspect
which will be further developed in a subsequent paper.

The argument runs as follows. Assume that there is an operation � on a group G such
that

ðghÞ� ¼ h�g� and g�� ¼ g

for all elements g and h of G. We note that it follows from the first equality that 1� ¼ 1 and
ðg�1Þ� ¼ ðg�Þ�1 for any g. Notice also that g�g is always fixed by �. Assuming that there
exists a square root s of g�g also fixed by �, and letting u ¼ gs�1, one finds

u�u ¼ ðgs�1Þ�ðgs�1Þ ¼ s�1g�gs�1 ¼ 1

as g�g ¼ s2, and thus u� ¼ u�1. Then g decomposes as

g ¼ ðgs�1Þ � s

where the first factor is inverted by �, and the second is a square root of g�g fixed by �.

40 Deloro and Jaligot, Small groups of finite Morley rank with involutions

Unauthenticated
Download Date | 4/19/16 10:55 AM



Such a decomposition was used in [6] with the operation

g� ¼ g�i

on arbitrary elements g and a fixed involution i of a given group G of finite Morley rank,
implying under certain circumstances the connectedness of the centralizer of i. Notice that
one sees immediately that ðghÞ� ¼ h�g� and g�� ¼ g for any elements g and h. Using this
operation, one notices also that

g�g ¼ ig�1ig ¼ iig;

i.e., g�g is nothing else than a strongly real element iig, inverted by the involution i and its
conjugate ig. We further remark that with this definition the set of elements inverted by � is
CðiÞ and that the set of elements fixed by � is the set of elements inverted by i. To make
further computations feasible with the above general decomposition, the only technical
point consists thus in finding a well defined, and definable, square root function corre-
sponding to the extraction of square roots of iig ¼ g�g.

Here we prove the following theorem using this decomposition.

Theorem 31. Let G be a connected group of finite Morley rank in which commuting is

an equivalence relation on the set of involutions, and with no nontrivial normal 2-unipotent

subgroup. Then CðiÞ is connected for any involution i of G.

Before passing to the proof of Theorem 31, it is worth commenting on the assumption
of the absence of a normal 2-unipotent subgroup. In fact, the conclusion of Theorem 31
may fail if one drops this assumption, as the following example shows. If K is an algebra-
ically closed field of characteristic 2, then in the connected solvable group of matrices

t a

0 t4

� ����� t A K�; a A Kþ

� �

one sees that the centralizer of every involution is the cyclic extension of order 3 of the
2-unipotent subgroup (consisting of strictly upper triangular matrices). In particular cen-
tralizers of involutions are not connected in this group, even though commutation is an
equivalence relation on the set of involutions.

Lemma 32. Let G be a connected group of finite Morley rank in which commutation is

an equivalence relation on the set of involutions, and assume there exists a noncentral involu-

tion i of G. Then, either

(1) the definable subset X of elements g of G such that Z
�
CðiigÞ

�
contains no involu-

tions is generic in G, or

(2) iG generates an infinite normal elementary abelian 2-group.

Proof. Assuming we are not in case ð1Þ, then the definable subset Y of elements g

such that Z
�
CðiigÞ

�
contains an involution, that is the complement of X , is generic in G.

Notice that Y is a union of right cosets of CðiÞ.
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For any g in Y , Z
�
CðiigÞ

�
contains a nontrivial Sylow 2-subgroup, normalized by i

and ig. Hence each involution i and ig has to commute with an involution in Z
�
CðiigÞ

�
,

and the transitivity of the commutation of involutions implies that i and ig commute.
Now the transitivity of the commutation of involutions forces that any two involutions ig1

and ig2 , where g1 and g2 A Y , have to commute also. In particular iY is a set of commuting
involutions. As Y is generic in G, iY is generic in iG.

Now iG is infinite as CðiÞ < G by assumption, and iG has Morley degree one as it is in
definable bijection with G=CðiÞ. As iY is generic in iG, it follows that any two G-conjugates
of iY intersect on a subset generic in iG, and thus in particular any two such conjugates,
consisting of pairwise commuting involutions, commute by the transitivity of the commu-
tation on the set of involutions. As G acts transitively by conjugation on iG, it follows that
iG consists of pairwise commuting involutions. But iG is a normal subset of G. Hence we
conclude that iG generates an infinite elementary abelian 2-group, normal in G. We are
thus necessarily in case ð2Þ.

It remains just to show that cases ð1Þ and ð2Þ are mutually exclusive. But in case ð2Þ,
one has that iig is an involution, necessarily in Z

�
CðiigÞ

�
, for any g in GnCðiÞ. Hence

X LCðiÞ, and X is in particular not generic in G. r

Proof of Theorem 31. If i belongs to the center of G, then CðiÞ ¼ G is connected.
Assume now CðiÞ < G. By Lemma 32, the definable subset X of elements g of G such
that Z

�
CðiigÞ

�
contains no involutions is generic. Notice that X is a union of right cosets

of CðiÞ. We can then define on X the Borovik-Cartan function associated to the operation

g� ¼ g�i:

For g in X , there exists a unique square root s of iig ¼ g�g in Z
�
CðiigÞ

�
, and the func-

tion

c : g 7! gs�1

from X to G is well defined and definable. We also note that the square root s is necessarily
in the subgroup of Z

�
CðiigÞ

�
of elements inverted by i, as this subgroup has no involutions

also, and thus s� ¼ s and ðs�1Þ� ¼ s�1. We then get

cðgÞ�cðgÞ ¼ ðgs�1Þ�gs�1 ¼ s�1g�gs�1 ¼ 1

as g�g ¼ s2. In other words, the function c takes all its values in CðiÞ.

Furthermore, for any c in CðiÞ one has

ðcgÞ�ðcgÞ ¼ g�c�cg ¼ g�g;

so that the square roots scg and sg of ðcgÞ� and g� are the same. This shows the following
covariance property:

cðcgÞ ¼ ðcgÞs�1
cg ¼ ðcgÞs�1

g ¼ cðgs�1
g Þ ¼ ccðgÞ:
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In particular, the fibers of c are of constant rank, say f , and any subset of CðiÞ of rank r

lifts to a subset of X of rank r þ f . If CðiÞ were not connected, then it would have two dis-
joint generic subsets of full rank, which would necessarily lift to disjoint generic subsets of
X , contradicting the connectedness of G. Hence CðiÞ is connected. r

In connection of Theorem 31, it is worth mentioning the so-called Z�-theorem (cor-
recting also a slightly inaccurate statement in [6]). We say that an involution k of a group G

of finite Morley rank is isolated whenever

jkG XSj ¼ 1

for some (any) Sylow 2-subgroup S of G.

Fact 33 (Z�-theorem [6], Theorem 6). Let G be a connected group of finite Morley

rank. If some involution k of G is isolated, then CðkÞ is connected.

We stress the fact that one only has an implication in Fact 33, and not an alternative
‘‘either k is not isolated or CðkÞ is connected’’ as suggested by the statement used in [6],
Theorem 6. In fact there are connected groups of finite Morley rank with non-isolated in-
volutions k and with CðkÞ connected, as the following examples show. In SL2 over some
algebraically closed field of characteristic 2, centralizers of involutions are connected and
all involutions of the elementary abelian 2-subgroups are conjugate at the same time. An-
other example is provided by GL2 over an algebraically closed field of characteristic di¤er-
ent from 2, where the centralizer of the involution

1 0

0 �1

� �

is the definable subgroup of diagonal matrices (a connected torus), and this involution is
conjugate to the other non-central involution

�1 0

0 1

� �
:

To conclude, we mention the following special case of Theorem 31, which will be
used notably in our reworking of [11], Case I, in [18].

Corollary 34. Let G be a connected group of finite Morley rank and assume that

U2

�
FðGÞ

�
¼ 1.

(1) If G contains a strongly embedded subgroup in which an involution is central, then

the centralizers of involutions of G are connected.

(2) In particular, if G has odd type, Prüfer 2-rank 1, and connected Sylow 2-subgroups,
then the centralizers of involutions of G are connected.

Proof. ð1Þ Let M denote the strongly embedded subgroup of G. By assumption,
M ¼ CðiÞ for some of its involutions, and as all involutions of M are M-conjugate ([8],
Theorem 10.19) this holds for any involution of M. We also note that the set of involutions
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of M forms an elementary abelian 2-group (central in M). By strong embedding of M, we
see further that any two distinct conjugates of the elementary abelian 2-subgroup of M

have a trivial intersection. Hence Theorem 31 gives the desired result.

(2) By assumption, a Sylow 2-subgroup S of G has the isomorphism type

S FZ2y :

Let i denote the unique involution of G, and M ¼ CðiÞ. As i is the unique involution of M,
M is strongly embedded in G. Hence we are in a special case of case ð1Þ. r

We note that Corollary 34 ð2Þ follows also more generally from the recent proof that
CðiÞ=C�ðiÞ has exponent at most 2 for any involution i in a connected group of finite Mor-
ley rank of odd type [15]. Actually, this result implies, more generally, that centralizers of
involutions are connected in any connected group of finite Morley rank of odd type with
connected Sylow 2-subgroups.
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