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Abstract

By analogy with Thompson’s classification of nonsolvable finite N-

groups, we classify groups of finite Morley rank with solvable local sub-

groups of even and of mixed type. We also consider miscellaneous aspects

concerning “small” groups of finite Morley rank of odd type.

1 Introduction

When they are present, involutions play a major role in the classification of
infinite simple groups of finite Morley in a way much reminiscent of their use
in the Classification of the Finite Simple Groups. This is at least the goal
of Borovik’s Program to tranfer as much as possible of arguments based on
involutions from the finite case to the case of finite Morley rank. In both cases,
most critical configurations occur when considering “small” groups, which are
at the same time, and by far, the most difficult to handle. In the present paper
we will consider the easiest cases among these remarkably difficult cases.

Groups of finite Morley rank are equipped with a rudimentary notion of
dimension on their first-order definable sets which behaves, or at least can be
seen as, an abstract version of the Zariski dimension of algebraic varieties over
algebraically closed fields. We refer to [BN94, ABC08] for the developments of
the theory of groups of finite Morley rank and its links with finite group theory
and algebraic group theory, which it encapsulates in a much more general and
unified theory. Finite groups are exactly the groups of Morley rank 0, and for
algebraic groups over algebraically closed fields (with no additional structure)
the Morley rank corresponds to the geometric Zariski dimension.

It is known from [BBC07] that a connected group of finite Morley has either
trivial or infinite Sylow 2-subgroups. Considering connected groups of finite
Morley rank with involutions one has thus only to focus on groups with infinite
Sylow 2-subgroups. Groups without involutions lead to situations similar to

∗Rutgers University
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that of the Feit-Thompson (Odd Order) Theorem in finite group theory, with
no known infinite analog and actually different problems in this case [Jal01a].

The preliminary result for Borovik’s Program in presence of involutions is
the following.

Fact 1 [BP90] Let G be a group of finite Morley rank. Then Sylow 2-subgroups
of G are conjugate and if S is one of them, then S◦ is nilpotent and a central
product, with finite intersection, of a 2-torus and a 2-unipotent subgroup.

As usual, Sylow p-subgroups are defined as the maximal p-subgroups. A
2-torus is a divisible abelian 2-group of finite Prüfer rank, and a 2-unipotent
group is a definable connected (nilpotent) 2-group of bounded exponent. These
are similar in nature to the Sylow 2-subgroup structure of an algebraic group
over an algebraically closed field of characteristic different from and equal to
2, respectively. Accordingly, we usually say that the group G has the follwing
type, depending on the nontriviality of the 2-torus T and/or of the 2-unipotent
subgroup U :

U 6= 1 U = 1
T 6= 1 Mixed Odd
T = 1 Even Degenerate

We note that the terminology “Degenerate” has been adopted at a time
when connected groups of finite Morley rank with finite but nontrivial Sylow
2-subgroups were possibilities not entirely excluded, but since [BBC07] it seems
more informative to speak just of groups without involutions as far as connected
groups are concerned.

For some reasons related to a global unipotence theory in groups of finite
Morley rank explained in [Jal08b, FJ08], the following notation may be used.
For a group G of finite Morley rank, π a set of primes and p a prime, we let
U(∞,0),π(G) denote the subgroup of G generated by definable decent tori of G
which coincide with the definable hull of their Hall π-subgroups, and U(p,∞)(G)
the subgroup of G generated by its p-unipotent subgroups. In general, a decent
torus is a definable divisible abelian group of finite Morley rank which coin-
cides with the definable hull, that is the smallest definable containing subgroup
[ABC08, §I 2.3], of its (divisible) torsion subgroup, and for an arbitrary prime
p a p-unipotent group is a definable connected nilpotent p-subgroup of bounded
exponent. Subgroups of the form U(∞,0),π(G) and U(p,∞)(G), and more gen-
erally any subgroup generated by an arbitrary family of definable connected
subgroups, are definable and connected by a well known application of Zilber’s
generation lemma [BN94, §5.4].

When considering only the prime 2, this allows one to define naturally the
odd and even parts of an arbitrary group of finite Morley rank. In particular, and
as the letters “T” and “U” are reserved for “torus” and “unipotent” respectively,
one uses as in [ABC08] the following simpler notation for the odd and even parts
of a group G of finite Morley rank:
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T2(G) = U(∞,0),{2}(G) and U2(G) = U(2,∞)(G).

Any group G of finite Morley rank has a solvable radical, that is a unique
maximal definable solvable normal subgroup, usually denoted R(G) [BN94, The-
orem 7.3]. Following the general classification of simple groups of finite Morley
rank of even type as algebraic groups over algebraically closed fields [ABC08],
the even part of an arbitrary group of finite Morley rank is best described as
follows.

Fact 2 [ABC08, Proposition II 4.8 and Proposition X 1] Let G be a
group of finite Morley rank. Then U2(G), modulo its solvable radical, is a di-
rect product of finitely many definable simple algebraic factors over algebraically
closed fields of characteristic 2.

The most general notion of “smallness” for a group of finite Morley rank,
incorporating notably all solvable groups and Chevalley groups of type PSL 2

and SL 2 over algebraically closed fields, is the following.

Definition 3 A group of finite Morley rank is locally◦ solvable◦ if the connected
component of the normalizer of any infinite solvable subgroup is solvable. This
is equivalent to require that the connected component of the normalizer of any
nontrivial definable connected abelian is solvable by [DJ07a, Lemma 3.4 (4)].

We refer to [DJ07a] for a detailed study of such groups without any special
assumption on the presence of involutions, and their analogies with those en-
countered in the Feit-Thompson Theorem and in Thompson’s classification of
finite “N -groups” with involutions [Tho68, Tho70, Tho71, Tho73].

We note that the latter series of papers also corresponds in the finite case
to a transfer from simplicity to nonsolvability of certain arguments for “small”
groups, and one of the goals of the present paper concerning groups of finite Mor-
ley rank is the same. In particular, we will study nonsolvable locally◦ solvable◦

groups of even and mixed types in Sections 1.1 and 1.2 respectively, by using
results and/or technics from the study of simple groups of finite Morley rank
[ABC08]. As naturally expectable, at least according to a long-standing feeling
that groups of finite Morley rank resemble algebraic groups, our conclusion will
be the following.

Theorem 4 Let G be a locally◦ solvable◦ group of finite Morley rank with an
infinite Sylow 2-subgroup. Then exactly one of the following three cases occur.

(1) G◦ is solvable.

(2) G◦ ≃ PSL 2(K) for some algebraically closed field K of characteristic 2,
in which case G = G◦ × E fome some finite subgroup E.

(3) G◦ is nonsolvable and has odd type.
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The case of nonsolvable connected groups of odd type has been studied in the
thick series of consecutive works [Jal00, CJ04, BCJ07, Del07b, Del07a, Del08b],
more precisely in the simple case, implying in this process large portions of
the current developments of the theory of groups of finite Morley rank. A
kind of “final” version of this voluminous work will be found in [DJ07b]. As a
preparation, we will consider here certain specialized topics concerning groups of
odd type, the case of solvable groups of odd type in Section 1.4 with generalities
on involutive actions in Section 1.3, and the case of groups of odd type with
“very small” Sylow 2-subgroups in Section 1.5.

In Section 1.6 we will also consider centralizers of involutions in groups of
finite Morley rank when such involutions satisfy certain geometric properties
reminiscent of small groups such as PSL 2. This requires specific arguments
analogous to the Cartan polar decomposition.

1.1 Locally◦ solvable◦ groups of even type

As in the case of simple groups [ABC08], the elimination of connected nonsolv-
able groups of mixed type primarily depends on a classification of even type
groups in the context of locally◦ solvable◦ groups. The most relevant statement
is the following.

Theorem 5 Let G be a locally◦ solvable◦ group of finite Morley rank of even
type. Then exactly one of the following two cases occur.

(1) G◦ is solvable, or

(2) G◦ ≃ PSL 2(K) for some algebraically closed field K of characteristic 2,
in which case G = G◦ × E fome some finite subgroup E.

We proceed to the proof of Theorem 5. Let G be a locally◦ solvable◦ group
of finite Morley rank of even type, which may be assumed to be connected as
long as one considers only its connected component. We then have

R(U2(G)) E U2(G) E G.

If R◦(U2(G)) is nontrivial, then U2(G) is solvable by local◦ solvability◦ of G. It
follows then that G◦ is solvable by local◦ solvability◦ again, so we are in case
(1) of Theorem 5.

Assuming now that we are not in case (1) of Theorem 5, we have thus
R(U2(G)) finite. Dividing U2(G) by its finite solvable radical, one gets a semisim-
ple group, which is still locally◦ solvable◦ by [DJ07a, Lemma 3.5]. Let

H = U2(G)/R(U2(G)).

By Fact 2, H is a direct product of finitely many definable normal simple sub-
groups. One sees that it is in fact a single definable normal simple subgroup by
local◦ solvability◦ of H . Hence H is a simple group of even type.

4



By the classification of the simple groups of even type, the main theorem
of [ABC08], H is a simple algebraic group over an algebraically closed field of
characteristic 2. By local◦ solvability◦ of H , one concludes that

(∗) H ≃ PSL 2(K)

for some algebraically closed field K of characteristic 2. The analysis can be
continued as follows.

Lemma 6 Z(U2(G)) = 1.

Proof. We have Z(U2(G)) ≤ R(U2(G)) which is finite, and in fact one has
equality by [DJ07a, Fact 3.14].

Now U2(G) is a connected group. Its commutator subgroup is definable
and connected by a well known corollary of Zilber’s generation lemma [BN94,
Corollary 5.29]. As U2(G)/Z(U2(G)) = H is a nonabelian simple connected
group, one gets that U2(G)′ covers H , and thus U2(G) = Z(U2(G)) · U2(G)′.
Now finiteness of the center together with the connectedness of U2(G) forces
that U2(G) is perfect, that is equal to its commutator subgroup.

Then the result of [AC99] on central extensions of algebraic groups implies
that U2(G) is a Chevalley group over the same field K. As we are in character-
istic 2 and dealing with PSL 2, we conclude that the center is trivial. �

At this point we have U2(G) ≃ PSL 2(K) for some algebraically closed field
K of characteristic 2.

Lemma 7 G = U2(G).

Proof. Let U be a maximal 2-unipotent subgroup of U2(G). By conjugacy of
such subgroups in U2(G) ≃ PSL 2, a Frattini Argument gives

G = U2(G) ·N◦(U)

and the factor N◦(U) is solvable by local◦ solvability◦. Now N◦(U) acts on
U2(G) ≃ PSL 2(K) by inner automorphisms as PSL 2 has no graph automor-
phisms. In particular

N◦(U) = NU2(G)(U) × CG(U2(G))

and as the latter factor is finite by local◦ solvability◦ of G and nonsolvability
of U2(G) ≃ PSL 2, one even has by connectedness of N◦(U) that N◦(U) =
NU2(G)(U) ≤ U2(G), and it follows that G = U2(G) ·N◦(U) ≤ U2(G). �

We have thus shown that G ≃ PSL 2(K) for some algebraically closed field
K of characteristic 2 whenever G is connected and not solvable as in case (1)
of Theorem 5. To complete the statement as in case (2) of that theorem, it just
remains to show the following.
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Lemma 8 Let G be a locally◦ solvable◦ group of finite Morley rank such that
G◦ ≃ PSL 2(K) for some algebraically closed field K of characteristic 2. Then
G = G◦ × E fome some finite subgroup E.

Proof. Again, by a Frattini Argument, G = G◦ · N(U) for some maximal
2-unipotent subgroup U of G◦, and as there are no graph automorphisms of
PSL 2 we get N(U) = NG◦(U)×CN(U)(G

◦), and thus G = G◦ ×CG(G◦). Now
E = CG(G◦) is the desired group. �

This completes the proof of Theorem 5.
The reader might however wonder whether one really needs the big gun of

the full classification of simple groups of even type for the isomorphism (∗)
above. Fortunately, one can obtain this isomorphism much more directly in the
case of locally◦ solvable◦ groups. Here is how a baby version of the proof would
work along the lines of the original papers in the simple case, even though we
are not going to review all details entirely.

We thus have a simple locally◦ solvable◦ group H of finite Morley rank of
even type, and we want to show that H ≃ PSL 2(K) for some algebraically
closed field K of characteristic 2.

Fix U a maximal 2-unipotent subgroup of H . Let B = N◦(U) and M =
N(U) = N(B). We know that B is a Borel subgroup of H by [DJ07a, Lemma
3.9]. One sees easily that M is weakly embedded in H , which means that it is
a proper definable subgroup containing an infinite Sylow 2-subgroup and such
that M ∩Mh has finite Sylow 2-subgroups for any element h of H not in M
[ABC99]. Actually the strict inclusion M < H follows from the nonsolvabil-
ity of the ambient locally◦ solvable◦ group H (see [DJ07a, Lemma 3.7]). The
property of finiteness of Sylow 2-subgroups of intersections of distinct conju-
gates of M follows from specific Uniqueness Theorems, analogous to those of
the so-called Bender Method in finite group theory, available in the context of
locally◦ solvable◦ groups of finite Morley rank, [DJ07a, Corollary 4.4] or [DJ07a,
Corollary 5.12].

One sees easily with the same kind of arguments that for any nontrivial 2-
unipotent subgroup V of U , N◦(X) ≤M for any infinite definable subgroup X
of C◦(V ). This is because N◦(X) is solvable by local◦ solvability◦, and thus
one can use the Uniqueness Theorems of [DJ07a, §4.1], more specifically [DJ07a,
Corollary 4.4] according to which B is the unique Borel subgroup containing any
of its nontrivial 2-unipotent subgroups.

This shunts the most difficult part of the analysis, [Jal01b, Théorème 4.1],
reducing essentially to the situation of [Jal01b, §3], with M◦ = B solvable
by local◦ solvability◦ (a rather undirect fact in the general case of [ABC08],
but rather direct in the case of [Jal01b]). We leave to the reader the pleasure
of accomplishing the final recognition of PSL 2 along the lines of arguments
and the computations of [Jal01b, Théorème 3.1], using here the fact that all
normalizers◦ of nontrivial solvable infinite subgroups are solvable.
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1.2 Locally◦ solvable◦ groups of mixed type

A corollary of the full classification of simple groups of finite Morley rank of
even type [ABC08] and of the arguments of [Jal99] is the following.

Fact 9 [ABC08] There is no simple group of finite Morley rank of mixed type.

We obtain a similar result for connected locally◦ solvable◦ groups of finite
Morley rank replacing the simplicity assumption by a mere nonsolvability as-
sumption, which is best stated in the following form.

Theorem 10 Let G be a locally◦ solvable◦ group of finite Morley rank of mixed
type. Then G◦ is solvable.

Theorem 10 can be deduced as a special case of the general theory developed
in [ABC08], and at the end of the present section we will review how this can
be done. In any case, the core of the proof boils down in our special context to
the argument below.

To prove directly Theorem 10, we assume toward a contradiction that G is
a connected counterexample of minimal rank to the above statement.

As G is not solvable, it has a finite solvable radical by local◦ solvability◦.
Dividing by the latter, one gets a group still of mixed type, still locally◦ solvable◦

but now semisimple ([DJ07a, Lemma 3.15]), and in which all proper nonsolvable
definable connected subgroups are not of mixed type by minimality.

Fix U a maximal 2-unipotent subgroup of G. The first main claim is

M := N(U) is weakly embedded in G.

This is a special application of [DJ07a, Corollary 5.12] for the prime p = 2. We
also note that for this particular prime p = 2 it is necessary that a nontrivial
2-torus commutes with a nontrivial 2-unipotent subgroup by Fact 1, so that
the general strategy developed in the simple case [ABC97] also works here,
as explained after [DJ07a, Corollary 5.12]. It provides in particular a proof
very similar to the one used in the simple case: M = N(U) = N(U⊥) where
U⊥ = T2(C(U)), and one checks easily that M contains the normalizer of each
of its nontrivial 2-unipotent subgroups (By the Uniqueness Theorem of [DJ07a])
and similarly for its 2-tori T : N◦(T ) is solvable by local◦ solvability◦, contains
U , and the Uniqueness Theorem applies again.

The next point is the following remark.

Fact 11 [Jal99, Fait 2.18] Let G be a group of finite Morley rank, S a Sylow
2-subgroup of G, T the maximal 2-torus of S◦, and t an element of T . Then
tG ∩ S◦ is contained in T , and is in particular finite.

Proof. The first claim follows from an argument of control of fusion in p-tori
by their normalizers, which has been known for a long time for the particular
prime p = 2 [BN94, Lemma 10.22], and the present formulation can be tracked
in [Alt96, Fact 2.48]. Anyway we refer to [DJ07a, Corollary 2.20] for the most
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general formulation of such arguments of control of fusion, in a form which
directly applies here.

The finiteness of tG ∩ S◦ follows, as the 2-torus T has only finitely many
elements of order 2n for each n [BP90]. �

A proper definable subgroupM is strongly embedded if it has nontrivial Sylow
2-subgroups and M ∩Mg has trivial Sylow 2-subgroups for any element g of G
not in M . There is a much similar notion in the finite case, used notably by
Bender, and the notion of weak embedding is its neoclassical revival in the case
of groups of finite Morley rank.

The next point is then the following.

Lemma 12 M is not strongly embedded in G.

Proof. Assume towards a contradiction M strongly embedded. Then its invo-
lutions would necessarily be conjugate [BN94, Theorem 10.19]. In particular an
involution of a maximal 2-torus T of M would be conjugate to any involution
of U . But there are infinitely many involutions in 2-unipotent groups [BP90],
and this contradicts Fact 11. �

By general results on strong/weak embedding (see [ABC08, Part B]), one
then concludes that there exists an involution α of M which is problematic in
the sense that

C(α) � M

and the next step consists in applying Theorem 5 to its centralizer◦.

Lemma 13 Let α be a problematic involution of M . Then C◦(α) ≃ PSL 2(K)
for some algebraically closed field K of characteristic 2.

Proof. The involution α normalizes U = U2(B), as connected solvable groups
of finite Morley rank have only one maximal p-unipotent subgroup (see for
example [DJ07a, Fact 2.15] for the most general and contemporary version of
this, or [Nes90b] for the oldest results from which it can be deduced). As infinite
nilpotent-by-finite p-groups of finite Morley rank contain infinitely many central
elements of order p [BP90], α centralizes a nontrivial 2-unipotent subgroup of
U .

We claim that C◦(α) is not solvable. This follows from the Uniqueness
Theorems of [DJ07a, §4.1], according to which a nontrivial p-unipotent subgroup
of any locally◦ solvable◦ group of finite Morley rank is contained in a unique
Borel subgroup. In particular B is the unique Borel subgroup containing C◦

U (α).
Assuming C◦(α) solvable, we would get in particular C◦(α) ≤ B, and C(α) ≤
N(C◦

U (α)) ≤ N(B) = M , as B is the unique Borel subgroup containing C◦
U (α),

a contradiction since α is problematic.
By semisimplicity of G, C◦(α) < G, and by minimality, C◦(α) cannot be

of mixed type. As it contains a nontrivial 2-unipotent subgroup as just seen,
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C◦(α) is a locally◦ solvable◦ group of even type. Now Theorem 5 yields the
desired isomorphism type of C◦(α). �

For the final step we are now in a position to conclude as at the end of [Jal99],
using the same relevant technical lemma on involutions isolated to tackle the
configuration appearing.

Fact 14 [Jal99, Lemme 4.1] Let G be a group of finite Morley rank, with
involutions i, t, α, and α′ satisfying the following five conditions.

(1) i and t are not conjugate.

(2) U2(C(α)) ≃ PSL 2(K) for some algebraically closed field K of character-
istic 2.

(3) α′ is the unique involution of the definable hull H(it) of it (i · t, not it).

(4) i ∈ U2(C(α)), t ∈ C(α).

(5) α′ /∈ U2(C(α)).

Then tα′ ∈ U2(C(α)).

Proof of Theorem 10. We keep the previous notations.
Applying [DJ07a, Lemma 3.35 (2)] to the conjugacy class of a 2-toral invo-

lution t of G, one gets as G is not solvable that tG ∩M is not generic in tG

(notice that tG is infinite as C(t) < G and G is connected). In particular one
may assume, choosing a suitable conjugate of t, that t is a 2-toral involution
not in M .

Let α0 be a problematic involution of M . As seen in the proof of Lemma
13, there exists an involution i0 in C◦

U (α0). As involutions of the latter group
are all conjugate in C◦(α0) by Lemma 13, Corollary 11 implies that t and i0 are
not conjugate. In particular there exists an involution α in the definable hull
H(i0t) of i0t [BN94, Proposition 10.2]. We have

[i0, α] = 1 and [t, α] = 1.

Lemma 13 implies in particular that problematic involutions of M never belong
to a unipotent subgroup, as they cannot centralize a nontrivial 2-torus. In
particular i0 is not problematic in M , i.e., C(i0) ≤ M . The first commutation
implies thus that α is in M , and as t /∈M the second commutation implies that
α is a problematic involution of M .

Take an involution i in C◦
U (α). Again i and t are not conjugate, hence there

is an involution α′ in H(it). Similarly, α′ commutes with i and t, and is thus a
problematic involution of M .

One can check that the five conditions of Fact 14 are met for these involu-
tions i, t, α, and α′. For the third for example, we note that H(it) contains no
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nontrivial 2-torus, as α′ ∈ H(it) and by the structure of centralizers of prob-
lematic involutions. For the last point, this is by the fact that problematic
involutions cannot belong to a 2-unipotent subgroup. The conclusion of Fact
14 is then

tα′ ∈ U2(C(α)).

As t centralizes α, it acts on C◦(α), and by the structure of the latter the action
must be by inner automorphism. Since t centralizes tα′, it centralizes the Sylow
2-subgroup Atα′ of C◦(α) containing tα′.

Now Atα′ ≤ C(t) < G, and hence by our minimality assumption C(t) is of
even type. But t belongs to a nontrivial 2-torus, and in particular centralizes
it. This is a contradiction which ends the proof of Theorem 10. �

Another approach to Theorem 10 would be to use the fact that

[T2(G), U2(G)] = 1.

This is a general corollary of the full classification of simple groups of finite
Morley rank of even type [ABC08, Lemma V 2.3, Theorem X 1, Chap. V
Mixed Type L∗ Theorem]. With this commutation, one concludes easily to the
solvability of G when both factors in the commutator are nontrivial, as both
the normal factors are then solvable by local◦ solvability◦ of G. If one tries to
prove directly this commutation in our case, then as in [ABC08, Lemma V 2.3]
one may want to look at the action of 2-tori on U2(G). As in Section 1.1, or
[ABC08, Proposition II 6.2, Lemma II 6.3], one is then interested into the socle
of U2(G) modulo R(U2(G)), a direct product of connected simple factors. If no
such factor is of mixed type, then one can conclude that [T2(G), U2(G)] = 1 as
in [ABC08, Lemma V 2.3]. Otherwise, the situation reduces to the case where
G is a simple group such that G = U2(G) = T2(G), and in our case this was
disposed of by the core of the proof given above.

As it is was explained in [DJ07a, §3.3], there might be serious obstructions
if one wants a version of Theorem 10 for primes different from 2.

We now note that Theorem 4 follows from Theorems 5 and 10. By-the-by,
we mention the following corollary of Theorem 4 on connectedness of Sylow
2-subgroups in small groups of finite Morley rank.

Corollary 15 Let G be a connected locally◦ solvable◦ group of finite Morley
rank with a nonconnected Sylow 2-subgroup. Then G is nonsolvable and of odd
type.

Proof. It is known that Hall π-subgroups are connected in any connected solv-
able group of finite Morley rank and for any set π of primes. In PSL 2 over some
algebraically closed field K of characteristic 2, Sylow 2-subgroups are also con-
nected. It can be seen either by the transitivity of the action on them of their
normalizers or by the fact that they are definably isomorphic to the additive
group of the ground field K, which is interpretable and of finite Morley rank.

It follows that the only remaining possibility in Theorem 4 is case (3) in that
theorem. �
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1.3 Involutive actions

The structure of nonsolvable locally◦ solvable◦ groups of odd type, left un-
determined in Theorem 4, will be considered in [DJ07b] as mentioned in the
introduction. Now we merely deal with specialized topics concerning groups
of odd type in general and which will in particular be applied in the lengthy
analysis of [DJ07b].

Before moving ahead, we concentrate in general on definable involutive au-
tomorphisms of groups of finite Morley rank. When α is an automorphism of a
group G, we let

G+α = {g ∈ G | gα = g} and G−α = {g ∈ G | gα = g−1}.

Both sets are definable whenever α is a definable automorphism ofG. In general,
only the centralizer G+α of α in G is necessarily a subgroup of G. When there
is no risk of confusion between different possible automorphisms α, we will
sometimes omit the subscript ·α in the notation of the two sets as above, and
thus just speak of G+ and G−.

We start by mentioning the older results on involutive definable automor-
phisms α of groups of finite Morley rank in terms of G+ and G−.

Fact 16 [Nes90a] Let α be a definable involutive automorphism of a group G
of finite Morley rank. If α fixes only finitely many elements in G, then G has a
definable (abelian) subgroup of finite index inverted by α, i.e., G◦ ⊆ G−.

Fact 17 [BN94, Ex. 14, p. 73] Let G be a group of finite Morley rank
without involutions and α a definable involutive automorphism of G. Then G−

is 2-divisible and one has a decomposition G = G+ ·G−, where the corresponding
multiplication map is one-to-one.

In the present section we are essentially going to give a generalization of
Fact 17 when the group G contains a central and divisible Sylow 2-subgroup.
We first note the following general lemma.

Lemma 18 Let G be a group of finite Morley rank whose Sylow p-subgroup is
a central p-torus. Then G is p-divisible.

Proof. Let g be an arbitrary element of G. Then the definable hull H(g) of the
cyclic group 〈g〉 can be written as

H(g) = ∆ ⊕ 〈ζ〉

where ∆ is p-divisible and ζ a p-element, by using [ABC08, Lemma 2.16] and by
decomposing the finite cyclic part into its p-primary component and a (cyclic)
complement. Let h be a p-th root of gζ−1 in ∆. Let η be a p-th root of ζ in the
Sylow p-subgroup. As η is central in G, one gets

g = gζ−1ζ = hpηp = (hη)p.

11
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In general, a group of even type is not 2-divisible. One may wonder whether
groups of odd type are 2-divisible, but this need not hold in general neither
as the following example shows. If B is a Borel subgroup of SL 2(K), with
K an algebraically closed field of characteristic different from 2, u a nontrivial
unipotent element in B, and i the unique (central) involution of SL 2(K), then
ui is not a square in SL 2(K). In particular B is a connected 2-step solvable
group of finite Morley rank of odd type, and B is not 2-divisible!

Our generalization of Fact 17 is the following.

Theorem 19 Let G be a group of finite Morley rank whose Sylow 2-subgroup is
a (possibly trivial) central 2-torus, and α a definable involutive automorphism
of G. Then G = G+ · G− where the fibers of the associated product map are
finite. Furthermore one also has G = (G+)◦ ·G− whenever G is connected.

The proof of Theorem 19 generalizes that of Fact 17. We note that Theorem
19 also incorporates [Del08b, Fait 1.19]. We shall need the following intermedi-
ate general lemma whose proof has a flavor similar to that of [Jal01b, Lemme
4.45].

Lemma 20 Let G be a group of finite Morley rank whose Sylow 2-subgroup is
central. If ab = a−1 for two elements a and b of G, then a is either the identity
or an involution of G.

Proof. The set C±(a) = {x ∈ G, ax = a±1} is a definable subgroup of G. As
C±(a)/C(a) has exponent at most 2, there is a (possibly trivial) 2-element in
any coset of C(a) in C±(a) by [ABC08, Lemma 2.18]. As 2-elements are central
by assumption, this proves that any coset of C(a) in C±(a) is in C(a), and thus
C±(a) = C(a). In particular a = a−1, and a2 = 1. �

Proof of Theorem 19. Recall that G is a group of finite Morley rank whose
Sylow 2-subgroup is a (possibly trivial) central 2-torus, and that α is an auto-
morphism of G of order at most 2.

Step 1. If [g, α] is a non-trivial 2-element, then there exists h in G such that
[g, α] = [h, α]2.

Proof. Assume ζ = [g, α] has order n = 2k for some k. As G is 2-divisible by
Lemma 18, there exists an element h in G such that h2 = g. Now ζ = [g, α] =
[h2, α] = [h, α]h[h, α] is central and has order n, so h inverts q = [h, α]n. By
Lemma 20, q has order at most 2. In particular [h, α] is a 2-element, and it is
in particular central in G. One then gets [g, α] = [h, α]h[h, α] = [h, α]2. �

The moral of Step 1 is that in general G− needs not be 2-divisible as in Fact
17, but its subset {[g, α], g ∈ G} is 2-divisible as we will see in the course of the
next step.
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Step 2. G = G+ ·G−.

Proof. Let g ∈ G. One can write the definable hull H([g, α]) of [g, α] as in
Lemma 18 as H([g, α]) = ∆ ⊕ 〈ζ〉, where ∆ is a 2-divisible group and ζ is a 2-
element. Let h be a square root of [g, α]ζ−1 in ∆. Notice that h centralizes [g, α]
and is inverted by α. Hence [gh, α] = [g, α]h[h, α] = [g, α]h−2 = ζ. By Step 1,
there is x ∈ G such that ζ = [x, α]2. So η = [x, α] is a 2-element inverted by α,
whose square is ζ. As η ∈ Z(G), we find that η−1h−1 is inverted by α. Moreover,
[ghη, α] = [g, α]hη[h, α]η[η, α] = h2ζh−2η−2 = 1, so g = (ghη)(η−1h−1) is a
suitable decomposition. �

Step 3. If ax = by with a, b ∈ G+ and x, y ∈ G−, then a−1b is the identity
or an involution fixed by α. Hence the fibers of the product decomposition as in
Step 2 are of cardinal at most |{k ∈ G | k2 = 1}|.

Proof. We have

(a−1b)y = (xy−1)y = y−1x = α(yx−1) = α(b−1a) = b−1a = (a−1b)−1,

so y inverts a−1b. By Lemma 20, a−1b has order at most 2. In particular,
a−1b lies in the central elementary abelian 2-subgroup of G, and it is fixed by
α. We also note that the central elementary abelian 2-subgroup of G is exactly
{k ∈ G | k2 = 1}. �

Step 4. Left G+-translates of the set (G+)◦ ·G− are disjoint or equal.

Proof. Assume that a(G+)◦ · G− meets b(G+)◦ · G−, in say ag+g− = bh+h−
with natural notations. By Step 3, z = (ag+)−1(bh+) is central and fixed
by α. So z = (bh+)(ag+)−1. Hence for any bγ+γ− ∈ b(G+)◦ · G− one finds
bγ+γ− = zz−1bγ+γ− = a(g+h

−1
+ γ+)(γ−z), which lies in a(G+)◦ · G−. The

converse inclusion holds too. �

Step 5. Exactly deg(G) left G+-translates of (G+)◦ ·G− cover G. In particular,
if G is connected, then G = (G+)◦G−.

Proof. We consider such left translates. They all have rank rk (G) by Step 3.
As they are disjoint or equal by Step 4, exactly deg(G) of them suffice to cover
G. �

This ends the proof of Theorem 19. �

The following results are not used here, but it is worth mentioning them for
the sake of completeness of the present section. The first one is an important
commutation principle, and the second one is a downward invariance result.

Fact 21 [Del07a, Lemme 3.1] Let G be a group, H and K ≤ N(H) two
subgroups with K 2-divisible. Suppose that there is an involution i in G which
inverts K and centralizes or inverts H. Then [H,K] = 1.
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Fact 22 (Compare with [Del07a, Fait 3.12]) Let G be a group of finite
Morley rank, K ≤ G a definable 2-subgroup normalizing a definable subgroup H
of G, and S a Sylow 2-subgroup of H. Then an H-conjugate of K normalizes
S.

Proof. Consider the definable group HK, and let Ŝ denote a Sylow 2-subgroup
of HK containing S. By conjugacy of Sylow 2-subgroups, Kγ ≤ Ŝ for some
γ in HK, and in fact γ may be chosen in H . Now the H-conjugate Kγ of K
normalizes Ŝ ∩H = S. �

1.4 Solvable groups of odd type

Since the original unpublished [Jal00] on small groups of odd type, most of
the work has consisted in developing certain arguments based on considerations
involving strongly real elements, that is products of two involutions. The goal is
ultimately to adapt to odd type groups such arguments from finite group theory,
first imported by Nesin to groups of finite Morley rank.

In PSL 2(K), with K an algebraically closed field of characteristic different
from 2, the standard Borel subgroup contains two kinds of strongly real ele-
ments. Those of maximal unipotent subgroups on the one hand are inverted
by involutions inside their respective Borel subgroups, and those in maximal
tori on the other hand are inverted by involutions outside the Borel subgroup,
and corresponding to liftings of elements of the Weyl group. We may call these
strongly real elements “insiders” and “outsiders” respectively.

When working with small groups of odd type, most complications arise when
trying to get a control on outsiders, that is strongly real elements inside a Borel
subgroup but such that the two involutions forming the product are outside this
Borel subgroup. This is typically done for a standard Borel subgroup, that is
a Borel subgroup B containing the centralizer◦ of a particular involution. In
this case outsiders of this Borel subgroup B, inverted by a fixed involution, are
expected to form a torus of B in the expected group PSL 2. Other compli-
cations arise when one has to compare insiders and outsiders of such a Borel
subgroup, and in this case one also occasionally needs in this delicate work a
good understanding of insiders. We refer to [DJ07b] anyway.

The study of insiders merely boils down to the study of connected solvable
groups of odd type, and this is the purpose of the present section. Recall
first from [BP90] that the connected component of the Sylow 2-subgroup of a
group of finite Morley rank is a direct product of finitely many copies of the
quasicyclic group Z2∞ , with this finite number called the Prüfer 2-rank of the
group. As connected solvable groups of finite Morley rank have connected Sylow
2-subgroups, the Sylow 2-subgroup S of a connected solvable group of odd type
satisfies

S = S◦ ≃ Z2∞ × · · · ×Z2∞

where the number of factors involved is the Prüfer 2-rank.
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Before moving ahead, we recall some more general background. As for the
solvable radical, there is a similar notion of Fitting subgroup in any group G of
finite Morley rank [BN94, Theorem 7.3], where nilpotence replaces solvability,
usually denoted by F (G). A Carter subgroup of a group of finite Morley rank is
a definable connected nilpotent subgroup of finite index in its normalizer, and
it is nontrivial but a fact that any group of finite Morley rank contains a Carter
subgroup [FJ05].

Lemma 23 Let G be a connected group of finite Morley rank without nontrivial
p-unipotent subgroups for some prime p, and t a p-element of G. Then

(1) The element t belongs to a Carter subgroup Q of G, and Q ≤ C◦(t).

(2) If furthermore G = NQ for some normal definable subgroup N , then G =
C◦(t)N .

Proof. (1). By the main result of [BC07], t belongs to a p-torus, say Tp. Now
any decent torus is contained in a Carter subgroup by the construction given in
[FJ05]. We have thus t ∈ Tp ≤ Q for some Carter subgroup Q of G, and as any
connected nilpotent group of finite Morley rank has a unique decent torus which
is central, by earlier work of Nesin, one concludes that Q ≤ C◦(Tp) ≤ C◦(t).
The reader can also consult [Jal08a, Fact 4] for similar facts in this direction.

(2). We have G = QN ≤ C◦(t)N ≤ G, and thus G = C◦(t)N . �

Here are the main lemmas used in [DJ07b] concerning strongly real elements
inside connected solvable groups of odd type. We stress the fact that the Prüfer
2-rank is not 1 in general, a technical complication which has to be entirely
taken into account in [Del08b] and in [DJ07b]. For an element normalizing a
subgroup we confound below the element with the automorphism it induces by
conjugation in the notation introduced at the begining of Section 1.3.

Lemma 24 (Inner Computation) Let B be a connected solvable group of
finite Morley rank of odd type and let j be an involution of B. Then

(1) B = C◦
B(j) · [F ◦(B)]−j , where the fibers of the associated product map are

finite. In particular rk (B) = rk (C◦
B(j)) + rk ([F ◦(B)]−j ).

(2) For any definable subgroup U of Z(F ◦(B)) normal in B, the subgroup U−j

is normal in B.

Proof. (1). As B is of odd type, there are finitely many involutions in the
connected nilpotent group F ◦(B) [BN94, §6.2].

We claim that the fibers of the multiplication map

P : C◦(j) × (F ◦(B))−j → B

are finite. If cf = c′f ′, with obvious notations, then c′−1c = f ′f−1, and this
element is centralized by j. Hence one gets f ′f−1 = (f ′f−1)j = f ′−1f , and
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f ′2 = f2. The nilpotent group F ◦(B) has the form T ∗ U , a central product
with finite intersection, where T denotes the maximal decent torus of F ◦(B) and
U is a definable connected nilpotent subgroup. In particular all the 2-torsion of
F ◦(B) is in T . In F ◦(B) modulo T one also has f ′2 = f2 in this quotient. Now
in groups of finite Morley rank without involutions any element has a unique
square root ([BN94, p. 72], [ABC97, Fact 2.25]), and one concludes that f = f ′

modulo T , i.e., f ′ = ft for some t in T . As T is central in F ◦(B), one gets
by taking squares that t2 = 1, and as T has only finitely many involutions it
implies that there are only finitely many possibilities for f ′, once f is fixed. This
gives the desired finiteness of the fibers of the multiplication map P .

So our statement reduces to proving that the map P is onto.
In connected solvable groups B of finite Morley rank, Carter subgroups are

conjugate and cover the connected nilpotent quotient B/F ◦(B) by [Nes90b] and
[FJ08, Theorem 3.11 and Proposition 5.1]. Combined with Lemma 23 this yields

B = C◦(j)F ◦(B)

and for our desired factorisation it suffices thus to show that

(†) F ◦(B) = C◦
F◦(B)(j) · [F

◦(B)]−j .

But the Sylow 2-subgroup of F ◦(B) is a central 2-torus, again by earlier results
of Nesin according to which divisible torsion is central in connected nilpotent
groups of finite Morley rank. Hence Theorem 19 can be applied with the action
by conjugation of j on F ◦(B), and this gives exactly the desired factorisation
(†) as above.

(2). If c ∈ C◦(j) and u ∈ U−j , then (uc)j = ucj = ujc = u−c = (uc)−1,
and as uc ∈ U by normality of U in B one gets uc ∈ U−j . Hence the subgroup
U−j is normalized by C◦(j), and as it is also central in F ◦(B) it is normal in
B = C◦(j)F ◦(B). �

The following application of Lemma 24 will be used in the most critical situ-
ations in [DJ07b]. In the second claim of the corollary below the two involutions
considered are not necessarily conjugate, a point we will use fully in the analysis
of [DJ07b].

Corollary 25 Let G be a group of finite Morley rank, i an involution of G,
and assume C◦(i) ≤ B for some definable connected solvable subgroup B of odd
type. Let j be an involution of B. Then

(1) rk (B) = rk (C◦
B(j)) + rk ([F ◦(B)]−j ).

(2) In particular, if C◦(j) ≤ B and C◦(i) and C◦(j) have the same rank
(which is the case in particular if i and j are conjugate), then rk ([F ◦(B)]−j ) =
rk ([F ◦(B)]−i).
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Proof. By assumption, C◦(i) contains trivial 2-unipotent subgroups. It follows
from the torality result of [BC07] that i belongs to a 2-torus, say T . Then
i ∈ T ≤ C◦(i) ≤ B. Now Lemma 24 applies in B. �

We also mention the following additional information to Lemma 24 when
the Prüfer 2-rank is 1. Of course, this corresponds more and more to abstract
descriptions of the Borel subgroups of PSL 2 or SL 2 over algebraically closed
fields of characteristic different from 2.

Lemma 26 Adopt the same assumptions and notations as in Lemma 24 and
assume furthermore that the Prüfer 2-rank is 1. Then

(1) C◦(j) < B if and only if F (B) contains no involutions.

(2) CB(j) is connected, B = C◦(j) · [F ◦(B)]−j , and the multiplication map
giving this decomposition is one-to-one whenever C◦(j) < B.

(3) The set of involutions of B is exactly jF◦(B).

Proof. First, we note that a connected solvable group of finite Morley rank
has connected Sylow 2-subgroups. In particular a connected solvable group of
finite Morley rank of odd type and of Prüfer 2-rank 1 has Sylow 2-subgroups
isomorphic to Z2∞ .

(1). If F ◦(B) contains an involution, its maximal 2-torus is nontrivial. As
it is central in B by [DJ07b, Fact 2.12 (1)], the toral involution is central in B,
and it must be j. If the Sylow 2-subgroup of F (B) is finite, then it is central in
B by [DJ07b, Fact 1.2]. One gets again that an involution of B must be central
in B and by connectedness of the Sylow 2-subgroups of B it must be j again.

Conversely, if CB(j) = B, then F (B) contains the involution j.
(2). We can prove the factorisation much more directly here. By (1), we may

assume F ◦(B) without involutions. We work in B/F ◦(B). As this quotient is
abelian by [Nes90b], j induces by conjugation a trivial action on this quotient.

In particular, for every b ∈ B, there exists f ∈ F ◦(B) such that bj = bf .
Conjugating again by j one gets f j = f−1, so f ∈ [F ◦(B)]−j . By (1) and Fact
17, f = g2 for some g still in [F ◦(B)]−j . Then b = (bg)g−1, where (bg)j =
(bf)g−1 = bg ∈ CB(j) and g ∈ [F ◦(B)]−j .

Hence B = CB(j)·[F ◦(B)]−j . We show the uniqueness of this decomposition
whener C◦(j) < B. If c1f1 = c2f2, with natural notations, then f2f

−1
1 ∈ C(j),

and f2
1 = f2

2 , which in the group without involutions F ◦(B) implies f1 = f2,
and then the uniqueness of the decomposition follows.

The product map corresponding to the decomposition B = CB(j)·[F ◦(B)]−j

has finite fibers. Hence each definable generic subset of the source set has a
generic image in B. When the product map is one-to-one, this forces that
CB(j) has Morley degree one. Otherwise, CB(j) = B is also connected.

(3). As the Prüfer 2-rank is 1, all involutions of the connected solvable
group B are conjugate by the structure of Sylow 2-subgroups. Then (2) gives
the desired equality. �
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1.5 Groups of Prüfer 2-rank 1

It is proved in [CJ04, Lemma 2.34] that if S is a Sylow 2-subgroup of a group of
finite Morley rank of odd type and of Prüfer 2-rank 1, and if w is an involution
conjugate to the unique involution i of S◦, then w cannot centralize S◦ unless
it is i. From this one can deduce that such involutions w which normalize S◦

but are not inside must invert S◦, and one gets in this situation a subgroup of
the Sylow 2-subgroup isomorphic to that of Chevalley groups of type PSL 2 over
algebraically closed fields of characteristic different from 2.

We are going to delineate entirely the structure of Sylow 2-subgroups of
connected groups of odd type and Prüfer 2-rank 1, showing in any case analogy
with the structure of Sylow 2-subgroups in groups of the form PSL 2 or SL 2 over
some algebraically closed field of characteristic different from 2 or of connected
solvable groups. First, we recall from the main result of [BC07] that any 2-
element of a connected group of finite Morley rank of odd type is 2-toral, i.e.,
belongs to a 2-torus. When the Prüfer 2-rank is 1 it implies by Fact 1 that all
involutions are conjugate.

Proposition 27 Let G be a connected group of finite Morley rank of odd type
and of Prüfer 2-rank 1. Then there are exactly three possibilities for the iso-
morphism type of a Sylow 2-subgroup S of G.

(1) S = S◦ ⋊ 〈w〉 for some involution w which acts on S◦ by inversion.

(2) S = S◦ · 〈w〉 for some element w of order 4 which acts on S◦ by inversion.

(3) S = S◦.

Our proof of Proposition 27 uses the following results.

Fact 28 [BC08] Let G be a connected group of finite Morley rank of odd type,
and fix some Sylow 2-subgroup S of G. Then CS(S◦) = S◦.

Fact 29 Aut (Z2∞) ≃ Z×
2 . In particular the only nontrivial automorphism of

finite order of Z2∞ is the inversion.

Proof. It is clear that Aut (Z2∞) is isomorphic to the group of invertible ele-
ments of the ring Z2. But Z2

× ≃ Z/2Z×Z2 and the right factor is torsion-free
as the characteristic is 0. In particular Aut (Z2∞) has only one nontrivial auto-
morphism of finite order, inversion. �

Lemma 30 Let G be a connected group of finite Morley rank of odd type and
of Prüfer 2-rank 1, and S a Sylow 2-subgroup of G. Then [S : S◦] ≤ 2 and
elements of S \ S◦ act on S◦ by inversion.

Proof. By Fact 28, every element of S \S◦ has a nontrivial action on S◦. (This
is the original argument in [CJ04, Lemma 2.34] in the light of the torality of
[BC07].)
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Now Fact 29 implies that this action is by inversion, and in particular all
elements of S \ S◦ have the same action on S◦. By Fact 28 again one gets that
there is at most one coset of S◦ distinct from S◦ in S, which proves our claim.
�

Proof of Proposition 27. Assume that S is not connected. We prove that
S is either isomorphic to the Sylow 2-subgroup of PSL 2 or to that of SL 2 in
characteristic different from 2.

Let w ∈ S \ S◦. By Lemma 30, S = S◦ · 〈w〉, w inverts S◦, and w2 ∈ S◦. If
w2 = 1, then S is obviously as in PSL 2. Now suppose w2 6= 1. As w inverts S◦

and w2 ∈ S◦, one has w2 = (w2)w = (w2)−1. So w2 is the involution of S◦, as
in SL 2. �

Remarkably, the conclusion of Proposition 27 will be obtained in a very gen-
eral setting in the case of connected locally◦ solvable◦ groups of odd type, in the
early analysis of [DJ07b]. This has the effect of simplifying slightly certain argu-
ments in the entire classification of small groups of odd type, not spectacularly
as the main difficulties with strongly real elements remain throughout, but at
least morally and technically, removing certain residual involutions sometimes
occuring in Weyl groups. As an example of such minor but seemingly simplifi-
cations, it entirely eliminates the need for the lengthy Sections 6.1 and 6.2 in
the analysis of Weyl groups in [CJ04].

1.6 The Borovik-Cartan decomposition

In quadratic algebra, the Cartan polar form yields a decomposition f = u ·
s of any automorphism f of Cn, with u in the unitary group and s a self-
adjoint automorphism. It is well known by french taupins that the Cartan
decomposition can be used to prove connectedness of the unitary group. Lines of
arguments, formally similar, were implicitely (and unconsciously) rediscovered
to prove connectedness of centralizers of involutions in certain context of groups
of finite Morley rank in [BBC07]. We are going to rework this in a form more
suitable for [DJ07b], but let us first serve some refreshments.

We denote (Hermitian) adjunction on Cn by ∗, so that

(xy)∗ = y∗x∗ and x∗∗ = x

for any automorphisms x and y of Cn. We note that it follows from the first
equality that 1∗ = 1 and (x−1)∗ = (x∗)−1 for any automorphism x.

If g is an automorphism of Cn, then g∗g is a self-adjoint automorphism, and
one can sometimes get a self-adjoint square root s of g∗g. Letting u = gs−1,
one finds

u∗u = (gs−1)∗(gs−1) = s−1g∗gs−1 = 1

as g∗g = s2, and thus u is orthogonal with respect to ∗ (which might be called
unitary here). Moreover, it is usually possible to choose s in a consistent fashion
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when g varies, and the decomposition turns out to be continuous. Using the
assignment g 7→ u to map GL n onto Un, one finds the connectedness of the
latter.

An analog of the Cartan decomposition was used implicitly in [BBC07] with

g∗ = g−i

for arbitrary elements g and a fixed involution i of a given group G of finite
Morley rank. This operation on elements of the (ambient) group behaves for-
mally like an adjunction as one sees immediately that (gg′)∗ = g′∗g∗ for any
elements g and g′ and that 1∗∗ = 1. Using this notation, one notices also that

g∗g = ig−1ig = iig,

i.e., g∗g is nothing else than a strongly real element iig, inverted by the invo-
lution i and its conjugate ig. We further remark that with our definition the
unitary group “U(∗)” corresponds naturally to C(i) and that the set of self-
adjoint automorphisms corresponds to the set of strongly real elements inverted
by i. In our abstract context, the only technical point consists thus in finding a
well defined, and definable, square root function corresponding to the extraction
of square roots of iig = g∗g.

We prove the following theorem using this decomposition.

Theorem 31 Let G be a connected group of finite Morley rank in which com-
muting is an equivalence relation on the set of involutions, and with no nontrivial
normal 2-unipotent subgroup. Then C(i) is connected for any involution i of G.

Before passing to the proof of Theorem 31, it is worth commenting on the
assumption of the absence of a normal 2-unipotent subgroup. In fact, the con-
clusion of Theorem 31 may fail if one drops this assumption, as the following
example shows. If K is an algebraically closed field of characteristic 2, then in
the connected solvable group of matrices

{(

t a
0 t4

)

: t ∈ K× , a ∈ K+

}

one sees that the centralizer of every involution is the cyclic extension of order
3 of the 2-unipotent subgroup (consisting of strictly upper triangular matrices).
In particular centralizers of involutions are not connected in this group, even
though commutation is an equivalence relation on the set of involutions.

Lemma 32 Let G be a connected group of finite Morley rank in which com-
mutation is an equivalence relation on the set of involutions, and assume there
exists a noncentral involution i of G. Then, either

(1) The definable subset X of elements g of G such that Z(C(iig)) contains
no involutions is generic in G, or

(2) iG generates an infinite normal elementary abelian 2-group.
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Proof. Assuming we are not in case (1), then the definable subset Y of elements
g such that Z(C(iig)) contains an involution, that is the complement of X , is
generic in G. Notice that Y is a union of right cosets of C(i).

For any g in Y , Z(C(iig)) contains a nontrivial Sylow 2-subgroup, normalized
by i and ig. Hence each involution i and ig has to commute with an involution in
Z(C(iig)), and the transitivity of the commutation of involutions implies that i
and ig commute. Now the transitivity of the commutation of involutions forces
that any two involutions ig1 and ig2 , where g1 and g2 ∈ Y , have to commute
also. In particular iY is a set of commuting involutions. As Y is generic in G,
iY is generic in iG.

Now iG is infinite as C(i) < G by assumption, and iG has Morley degree one
as it is in definable bijection with G/C(i). As iY is generic in iG, it follows that
any two G-conjugates of iY intersect on a subset generic in iG, and thus in par-
ticular any two such conjugates, consisting of pairwise commuting involutions,
commute by the transitivity of the commutation on the set of involutions. As
G acts transitively by conjugation on iG, it follows that iG consists of pairwise
commuting involutions. But iG is a normal subset of G. Hence we conclude
that iG generates an infinite elementary abelian 2-group, normal in G. We are
thus necessarily in case (2).

It remains just to show that cases (1) and (2) are mutually exclusive. But
in case (2), one has that iig is an involution, necessarily in Z(C(iig)), for any g
in G \ C(i). Hence X ⊆ C(i), and X is in particular not generic in G �

Proof of Theorem 31. If i belongs to the center of G, then C(i) = G is
connected. Assume now C(i) < G. By Lemma 32, the definable subset X of
elements g of G such that Z(C(iig)) contains no involutions is generic. Notice
that X is a union of right cosets of C(i). We can define the Borovik-Cartan
function associated to the operation

g∗ = g−i.

For g in X , there exists a unique square root s of iig = g∗g in Z(C(iig)),
and the function

ψ : g 7→ gs−1

from X to G is well defined and definable. We also note that the square root
s is necessarily in the subgroup of Z(C(iig)) of elements inverted by i, as this
subgroup has no involutions also, and thus s∗ = s and (s−1)∗ = s−1. We then
get

ψ(g)∗ψ(g) = (gs−1)∗gs−1 = s−1g∗gs−1 = 1

as g∗g = s2. In other words, the function ψ takes all its values in C(i).
Furthermore, for any c in C(i) one has

(cg)∗(cg) = g∗c∗cg = g∗g,
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so that the square roots scg and sg of (cg)∗ and g∗ are the same. This shows
the following covariant property:

ψ(cg) = (cg)s−1
cg = (cg)s−1

g = c(gs−1
g ) = cψ(g).

In particular, the fibers of ψ are of constant rank, say f , and any subset of C(i)
of rank r lifts to a subset of X of rank r+f . If C(i) were not connected, then it
would have two disjoint generic subsets of full rank, which would necessarily lift
to disjoint generic subsets of X , contradicting the connectedness of G. Hence
C(i) is connected. �

In connection of Theorem 31, it is worth mentioning the so-called Z∗-theorem
(correcting also a slightly inacurate statement in [BBC07]). We say that an
involution k of a group G of finite Morley rank is isolated whenever

|kG ∩ S| = 1

for some (any) Sylow 2-subgroup S of G.

Fact 33 (Z∗-theorem [BBC07, Theorem 6]) Let G be a connected group of
finite Morley rank. If some involution k of G is isolated, then C(k) is connected.

We stress the fact that one only has an implication as in Fact 33, and not
an alternative “either k is not isolated or C(k) is connected” as suggested by
the statement used in [BBC07, Theorem 6]. In fact there are connected groups
of finite Morley rank with non-isolated involutions k and with C(k) connected,
as the following examples show. In SL 2 over some algebraically closed field of
characteristic 2, centralizers of involutions are connected and all involutions of
the elementary abelian 2-subgroups are conjugate at the same time. Another
example is provided by GL 2 over an algebraically closed field of characteristic
different from 2, where the centralizer of the involution

(

1 0
0 −1

)

is the definable subgroup of diagonal matrices (a connected torus), and this
involution is conjugate to the other non-central involution

(

−1 0
0 1

)

.

To conclude, we mention the following special case of Theorem 31, which
will be used notably in our reworking of [BCJ07, Case I] in [DJ07b].

Corollary 34 Let G be a connected group of finite Morley rank such that U2(F (G)) =
1.
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(1) If G contains a strongly embedded subgroup in which an involution is cen-
tral, then the centralizers of involutions of G are connected.

(2) In particular, if G has odd type, Prüfer 2-rank 1, and connected Sylow
2-subgroups, then the centralizers of involutions of G are connected.

Proof. (1). Let M denote the strongly embedded subgroup of G. By assump-
tion, M = C(i) for some of its involutions, and as all involution of M are
M -conjugate ([BN94, Theorem 10.19]) this holds for any involution of M . We
also note that the set of involutions of M form an elementary abelian 2-group
(central in M). By strong embedding of M , we also see that any two distinct
conjugates of the elementary abelian 2-subgroup ofM have a trivial intersection.
Hence Theorem 31 gives the desired result.

(2). By assumption, a Sylow 2-subgroup S of G has the isomorphism type

S ≃ Z2∞ .

Let i denote the unique involution of G, and M = C(i). As i is the unique
involution of M , M is strongly embedded in G. Hence we are in a special case
of case (1). �

We note that Corollary 34 (2) follows also more generally from the recent
proof that C(i)/C◦(i) has exponent at most 2 for any involution i in a connected
group of finite Morley rank of odd type [Del08a]. Actually, this result implies,
more generally, that centralizers of involutions are connected in any connected
groups of finite Morley rank of odd type with connected Sylow 2-subgroups.
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impair. J. Algebra, 317(2):877–923, 2007.

[Del07b] A. Deloro. Groupes simples connexes minimaux de type impair. Thèse
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[FJ05] O. Frécon and E. Jaligot. The existence of Carter subgroups in groups
of finite Morley rank. J. Group Theory, 8(5):623–644, 2005.
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