
HAL Id: hal-00321320
https://hal.science/hal-00321320

Submitted on 15 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Numerical experimentations of parallel strategies in
structural non-linear analysis

Laurent Champaney, Jean-Yves Cognard, David Dureisseix, Pierre Ladevèze

To cite this version:
Laurent Champaney, Jean-Yves Cognard, David Dureisseix, Pierre Ladevèze. Numerical experimenta-
tions of parallel strategies in structural non-linear analysis. Réseaux et systèmes répartis, calculateurs
parallèles, 1996, 8 (2), pp.245-249. �hal-00321320�

https://hal.science/hal-00321320
https://hal.archives-ouvertes.fr

Numerical experimentations of parallel

strategies in structural non-linear analysis

L. Champaney, J.-Y. Cognard, D. Dureisseix, P. Ladevèze

Laboratoire de Mécanique et Technologie,
(E.N.S. de Cachan / C.N.R.S. / Université Paris 6),

61, Avenue du Président Wilson, 94235 CACHAN CEDEX, FRANCE

Abstract

La simulation de structures à comportement non linéaire conduit souvent à des coûts numériques
élevés. Pour les réduire, nous utilisons une stratégie adaptée aux calculateurs parallèles. Nous
présentons alors deux applications (disque de fatigue biaxiale et éprouvette biaxiale), pour des struc-
tures de type industriel à grand nombre de degrés de liberté. Les simulations ont été réalisées sur
un ordinateur ibm sp2 à 16 processeurs utilisant pvm.

Numerical simulation of structures with non-linear behaviour often leads to high numerical costs.
In order to reduce these costs, we use a strategy well-suited to parallel computers. Two applications
(biaxial fatigue disk and biaxial specimen) are presented in the case of industrial-type problems with
a large number of degrees of freedom. They have been performed on a 16-processor ibm sp2 using
pvm .

This is a preprint of the article published in its final form in: Laurent Champaney, Jean-Yves
Cognard, David Dureisseix, Pierre Ladevèze. Numerical experimentations of parallel strategies in
structural non-linear analysis. Calculateurs Parallèles 8(2):245-249, 1996, Hermes.

Mots clés : simulation, viscoplasticité, parallélisme, sous-structuration

Keywords: simulation, viscoplasticity, parallelism, substructuring

1 Introduction

In structural mechanics, models for materials are numerous and describe with increasing accuracy the
materials’ real behaviour for more and more complex loadings. In order to predict the life expectancy
of industrial structures, the classical step-by-step methods lead to the resolution of a costly non-linear,
time-independent problem at each increment of the loading path. Speed-up techniques have been
developed in order to reduce the computational cost, but complex simulations do often give rise to
large numerical costs.

An approach called the latin method (LArge Time INcrement method), suited to parallel com-
puters and whose goal is to reduce the numerical costs, has been proposed; its general presentation
can be found in [5].

Two applications using pvm ([4]) on a mimd parallel machine, an ibm sp2 with 16 processors
at the cea of Saclay, France, illustrate the numerical behaviour of this approach for large-scale
industrial-type problems.

2 Viscoplastic simulations under cyclic loading

2.1 A two time scale representation suitable for cyclic phenomena

The latin method is an iterative procedure which takes into account the entire loading process at
each iteration. It only confronts one of the main difficulties at each stage of the iterative scheme
([5]). Non-linear relationships are solved locally in space, and global-in-space problems are linear.
The unknowns are space-time functions and a key point of the method is to choose appropriate
space-time representations: the corrections are defined as a sum of products of space fields by scalar
time functions. Moreover, for cyclic loadings, the time functions are represented over the whole
loading time from their value over a few selected cycles ([1]).

1

Since the latin algorithms require many independent calculations for each element, the use of
parallel computers is expected to reduce the computational costs. At the local stages, the problem
is a small non-linear, time-dependent one over the studied time interval [0, T], and it can be solved
at each integration point concurrently. At the global stages, integrals over the body Ω at each time
t and integrals over [0, T] at each integration point have to be evaluated; they can also be computed
concurrently. At the end of the loop on the elements, the host program has to finish the calculation
(Table 1), ([1]). The code “viscolatin” that we have built, uses the database of the finite element
code castem 2000 ([7]) and pvm system ([4]).

2.2 Model of an aircraft turbine disk under cyclic loading

We consider a model of an aircraft turbine disk (figure 1) submitted to centrifugal force, which
has been used many times in studies on viscoplasticity and failure ([1]). The material behaviour
is described by a modified Chaboche’s viscoplastic model. The used mesh contains 10 208 elements
(three-node elements) and 10 714 d.o.f. The computation was carried out over 500 cycles in a single
increment. A two time-scale approximation uses only 18 cycles to represent the time functions.
A high level of accuracy is reached after only 18 iterations (figure 2). Speed-ups are shown on
figure 3. These quite encouraging results can be explained with a well-balanced load on the different
processors. Figure 1 shows the distribution of elements among the processors when 4 processors are
used on a 1 137 elements mesh. For such kind of problems, the influence of the size of the problem
is reported in Figure 4 using xpvm flow trace, when changing both the number of elements and the
number of loading cycles. The portion of time spent in synchronisations and in exchange of messages
only slowly increases with the size of the problem; so, the efficiency increases with it.

3 The latin method and a substructuring technique

3.1 Decomposition into sub-structures and interfaces

Domain decomposition methods allow parallel-oriented algorithms along with a reduction of the size
of stiffness matrices ([3]), and thus of the size of the problems. Such a substructuring is used with the
latin approach in order to manage with “massive” parallelism. The structure is seen as an assembly
of sub-structures and interfaces ([6], [2]), each having its own behaviour equations. We assume that
sub-structures remain elastic; each communicates only with its neighbouring interfaces. An iterative
scheme based onto the latin method leads to the resolution of independent linear problems on
each sub-structure, and independent local in space variable problems on the interface. The linear
problems consist, here, in satisfying the behaviour of each sub-structure ΩE , onto which it looks like
an elasticity-type problem with a constant matrix [KE]. Table 2 shows the differences between the
sequential and parallel implementations when one node program manages only one sub-structure.

3.2 Example involving a large number of d.o.f.

The example concerns a tensile biaxial specimen used in our laboratory. The symmetries allow us
to study only one sixteenth of the specimen that has been decomposed into 31 roughly equilibrated
sub-structures (Figure 5). For this example (linear elasticity) and for different meshes (Table 3),
a valuable solution is obtained after 100 iterations. The computation costs of the direct resolu-
tion method and of the proposed iterative approach (sequential version) has been compared on the
cray c90 of the idris at Orsay, France, (Table 4). It is important to notice that, when the size of
the problem increases, the size of the stiffness matrices and the numerical cost for the substructuring
technique increase slower than for the direct one.

4 Conclusion

The first numerical results obtained with pvm show that taking into account the intrinsic parallelism
of the latin approach allows good efficiency for “coarse-grain” parallelism. With a substructuring
technique, the reduction of storage requirements has been shown; moreover, this approach is better
suited to “massive” parallelism. A coupling between the aforementioned sources of parallelism will
have to be studied in order to take advantage of both for non-linear complex simulations.

References

[1] J.-Y. Cognard. Simulation sur ordinateur à architecture parallèle de structures viscoplastiques
sous chargements cycliques. 5(1):101–119, 1996.

2

[2] J.-Y. Cognard, D. Dureisseix, P. Ladevèze, and P. Lorong. Expérimentation d’une approche
parallèle en calcul de structures. 5(2):197–220, 1996.

[3] C. Farhat and F.-X. Roux. Implicit parallel processing in structural mechanics. In J. T. Oden,
editor, Computational Mechanics Advances, volume 2. North-Holland, June 1994.

[4] A. Geist, A. Berguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam. PVM: A user’s
guide and tutorial for networked parallel computing. MIT Press, Tennessee, 1994.

[5] P. Ladevèze. Mécanique non-linéaire des structures — Nouvelle approche et méthodes de calcul
non incrémentales. Hermès, Paris, 1996.

[6] P. Ladevèze and P. Lorong. A large time increment approach with domain decomposition tech-
nique for mechanical non linear problems. In R. Glowinski, editor, Comput. Meths. Appl. Sc.
Engng., pages 569–578, New York, 1992. INRIA, Nova Science.

[7] P. Verpeaux, T. Charras, and A. Millard. CASTEM 2000 : une approche moderne du calcul
des structures. In J.-M. Fouet, P. Ladevèze, and R. Ohayon, editors, Calcul des Structures et
Intelligence Artificielle, volume 2, pages 261–271. Pluralis, 1988.

3

host program node program
Loop on processes
Distribution of the calculations
messages to node programs →

End of loop

Same computation as node programs

Loop on processes
Recovery of the results
messages from node programs ←

End of loop
Last part of the calculation

Recovery of the data
→ message from host program
Loop on each local element
Loop on each integration point of the element
Computation over [0,T]
Contribution of each integration point

End of loop
End of loop
Transfer of the results
← messages to host program

Table 1: host and node algorithms for viscoplastic computations

 0

 z

r

Proc 1 Proc 2 Proc 3 Proc 4

Figure 1: model for an aircraft turbine disk (biaxial fatigue disk)

εθθ x 1.E3

σθθ (MPa)

 0 .2 .4 .6 .8 1.0 1.2
-40

-20

 0

 20

 40

 60

convergence

initialisation

iteration number

error indicator

 0 2 4 6 8 10 12 14 16 18
 .0

 .2

 .4

 .6

 .8

1.0

Figure 2: results for the disk model
speed up (T1 / Tn)

1

8

12

16

1 8 12 164

4

speed up (T1 / Tn)

1

16

32

48

64

1 8 16 24 32 40 48 56 64

+
+

+
+

+
+

+
+

Complete computation
Parallelised part+

number of processors number of processors

Figure 3: speed-up for the disk model

host
node 1
node 2
node 3

60 elements, 2 cycles

host
node 1
node 2
node 3

240 elements, 2 cycles

host
node 1
node 2
node 3

60 elements, 8 cycles

Figure 4: xpvm flow chart between processors

4

sequential (one processor) parallel (1 processor—1 sub-structure)

Loop on each sub-structure (ΩE)

Factorisation of [KE]
End of loop

Loop on iterations

Loop on each interface (LEE′
)

Local stage (error estimation)
End of loop
Convergence test

Loop on each sub-structure (ΩE)

Global stage [KE][qE] = [fE]
End of loop

End of loop

Factorisation of [KE] for the sub-structure (ΩE)
Loop on iterations

Loop on the interfaces of the substructure (LEE′
)

Inner interface ← receiving message ([qE]|LEE′)

End of loop
Convergence test ↔ messages
(contribution of each sub-structure)

Global stage [KE][qE] = [fE]

Loop on the interfaces of the substructure (LEE′
)

Inner interface → sending message ([qE]|LEE′)

End of loop
End of loop

Table 2: sequential and parallel algorithms for sub-structuration

Direct computation Sub-structuration
nodes d.o.f. elements size nodes (s-s) d.o.f. (s-s) elements (s-s) size (s-s) total size

mesh1 58 580 175 740 11 961 2 160 Mb 2 191 6 573 364 25 Mb 750 Mb
mesh2 86 359 259 077 18 471 4 000 Mb 3 337 10 011 600 45 Mb 1 350 Mb
mesh3 113 578 340 734 24 764 6 400 Mb 4 229 12 687 800 71 Mb 2 130 Mb

Table 3: characteristics of the meshes for the biaxial specimen

ibm sp2 (16 processors) cray c90
Direct Sub-structuration Direct Sub-structuration
total init.(s-s) iteration (s-s) total (s-s) total (100 it.) total init. iteration total (100 it.)

mesh 1 4 300s 37 s 0.6 s 97 s 2 910 s 1 100 s 316 s 5.9 s 935 s
mesh 2 - 70 s 1.0 s 170 s 5 100 s 2 100 s 548 s 10 s 1 548 s
mesh 3 - 130 s 1.6 s 290 s 8 700 s 3 050 s 861 s 15.5 s 2 411 s

Table 4: computation costs for the biaxial specimen

Figure 5: sub-structuration and results for the biaxial specimen

5

