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Large scale applications on parallel computers
of a mixed domain decomposition method

L. Champaney, J. Y. Cognard, D. Dureisseix, P. Ladevèze

Abstract A strategy using a mixed domain decomposition
technique is discussed in the case of problems involving a
large number of degrees of freedom. The implementation,
on parallel computers, of this ‘‘mechanical’’ strategy which
splits the structure into substructures and interfaces is
presented. Several industrial-type examples, in the case of
elastic behaviour and frictional contact, show the inter-
esting features and the capabilities of such an approach.
The numerical behaviour on different computers of the
iterative procedure and comparisons with the direct re-
solution method are also presented.

1
Introduction
The analysis of an assembly of three-dimensional struc-
tures is not so straightforward when the behaviour is
globally nonlinear. Taking into account a complex geo-
metry and trying to obtain an accurate solution lead to
increase the size of the problem. Moreover, the treatment of
contact and friction nonlinearities needs the use of an
iterative process on the whole problem (Simo and Laursen,
1992; Zhong and Mackerle, 1992) which can be costly when
the number of contact conditions is high. The use of par-
allel computers (Noor, 1994) can lead to a reduction in the
numerical cost, but their efficiency is improved when
adapted algorithms are used (Escaig, Vayssade and Touzot,
1994; Farhat and Roux, 1992, 1994; Heath, Ng and Peyton,
1991; Ladevèze, 1996). For instance, domain decomposi-
tion methods have been a great asset for structural analysis
over the last few years because they allow parallel-oriented
algorithms for use with modern scientific super-computers.

We use a method, based on a decomposition of the
structure, that takes into account the mechanical proper-
ties of the problem in order to build a ‘‘mechanical and
parallel’’-oriented algorithm. It allows a reduction of both
the size of the problem and the numerical cost of its re-
solution with respect to classical F.E. techniques, even on
sequential computers. A general presentation of this ap-
proach is given by Ladevèze and Lorong (1992) and some
sufficient convergence conditions are given by Ladevèze
(1996). In the particular case of perfect liaisons and linear
elasticity, it has been formulated with other entirely dif-
ferent approaches. One of them is based on an extension of
the Schwarz algorithm to a nonoverlapping subdomain
method by Lions (1990) and two others use an augmented
Lagrangian formulation (Glowinski and Le Tallec, 1990;
Ladevèze, 1985). The extension of this approach to the
treatment of unilateral contact nonlinearities is presented
in Blanzé et al (1996) and Cognard et al (1996).

A partition of the structure is introduced from two en-
tities: substructures and interfaces. Each substructure is
considered as a structure on its own and communicates
only with its neighbouring interfaces. The local non-
linearities are treated by a local and mixed manner
through a constitutive law associated to an interface. Thus,
interfaces are bidimensional entities with their own be-
haviour and their own associated unknowns. An iterative
scheme leads to the resolution of independent problems
on each substructure and independent nonlinear mixed
problems on the interfaces. It is, therefore, well suited to
the use of parallel computers. This domain decomposition
method also introduces some modularity when consider-
ing local nonlinearities through suited interfaces which
easily model the technological reality (prestresses, gaps,
unilateral contact, friction, rubber joints, etc.).

This paper focuses on the resolution of problems in-
volving a large number of degrees of freedom. The size of
the stiffness matrices is a severe limitation for the finite
element treatment of such problems. The reduction of this
size, brought by the decomposition technique, and the
influence of the number and of the shape of the sub-
structures is shown on a simple problem. The computa-
tional cost of the direct resolution method and of the
proposed iterative approach are compared on a CRAY
C90, for an example of linear elasticity with more than
340 000 d.o.f.. The analysis of an assembly of three-di-
mensional structures (with prestresses, gaps, unilateral
contact and friction) illustrates the flexibility and the
possibilities of the method. Moreover, the numerical be-
haviour of the iterative procedure on a parallel computer,
IBM SP2 with 16 processors, is presented.
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2
Principle of the mechanical strategy

2.1
Partition of the structure and problem to be solved
A structure X is decomposed into substructures in order
to reduce the globality of the problem. This partition is
introduced from two different mechanical entities: sub-
structures denoted by XE and interfaces denoted by cEE0

.
The considered structure X is now represented as the as-
sembly of substructures that communicate only with their
neighbouring interfaces (Fig. 1).

A displacement field WE and a field of surface traction
density FE (FE is the action of the interface onto the sub-
structure) represent the interaction between a substructure
and an interface (Fig. 2). These fields are defined on the
interfaces and on the boundaries of the substructures.
Boundary conditions are also prescribed through inter-
faces between the substructure and the outside.

We assume a linear behaviour of the material under
small perturbations. We suppose that the loading is quasi-
static. f d denotes the density of body forces.

On each substructure XE, the following problem is
posed: find fUE

;WE
; rE

; FE
g satisfying:

� Kinematic constrains:

UE
joXE � WE

;UE
2 UE

with UE
� UE

; regular in XE� 	 �1�

� Equilibrium equation: 8U�

2 UE

Z

XE
Tr�rEe�U�

��dX �

Z

XE
f d:U

�dX

�

Z

oXE
FE
:U�dS

�2�

� Constitutive law:

rE
� Ke�UE

� �K denotes Hooke’s elasticity tensor�

�3�

UE and rE denote the displacement field and the stress
tensor in XE, respectively, and e�U�

� denotes the strain
tensor produced by a displacement field U�.

For each interface cEE0

, the equations depend on the
behaviour that has to be modelled. They are local in space
variables and can be written as a constitutive law:

R�WE
; FE

;WE0

; FE0

� � 0 �4�

which can be a nonlinear relation (unilateral contact and
friction). For instance, the equations which describe the
behaviour of a perfect liaison between XE et XE0

are:

WE
� WE0

continuity of displacement �5�

FE
� FE0

� 0 equilibrium of forces �6�

2.2
Description of the algorithm
This approach is based on the LArge Time INcrement
method (LATIN method) proposed by Ladevèze (1996,
1992). We are, in this case, in a degenerate situation where
we only consider the final configuration.

The LATIN method separates the difficulties of the
problem: it avoids the simultaneity of the global aspect and
the nonlinear aspect. Thus, it takes into account the me-
chanical properties of the equations to separate them into
two groups: local in space variables and possibly nonlinear
equations, on the one hand, and linear and possibly global
in space variable equations, on the other hand. They define
two subspaces of elements s which denote the set of un-
knowns of the complete problem:

s � �e;W; r; F� � 0
E

sE
� �eE

;WE
;rE

; FE
�;

sE defined on XE	

S denotes the corresponding functional space of elements
s. Since the only nonlinearities studied are defined on the
interfaces and in order to have independent global linear
problems on each substructure, the two subspaces are
defined as follows:

Ad � fs 2 S satisfying8 XE
:

� the kinematic constrains �Eq: �1��

� the equilibrium equation �Eq: �2��

� the constitutive law on XE
�Eq: �3��g

�
�
�
�
�
�
�

C � fs 2 S satisfying8M 2 cEE0 :

j � R�WE
; FE; WE0

; FE0

� � 0 �Eq: �4��g

The problem is to find an element sex satisfying both the
behaviour of the substructures (s 2 Ad) and the behaviour
of the interfaces (s 2 C), i.e. which is located at the in-
tersection of Ad and C (Fig. 3) �sex � C/Ad). The LArge
Time INcrement method starts with s0, an element of Ad
(for instance s0 � 0), and builds elements s, which belong
to C and Ad successively, up to the solution sex. Each

Fig. 1. The two mechanical entities

Fig. 2. Interactions between substructures and interfaces Fig. 3. Presentation of the iterative procedure
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iteration, i.e. the building of a new element sn�1 of Ad
from a given one sn, requires two stages: the local stage
and the global stage. The problem associated with the
equations that define Ad is ill-posed, and the problem
associated with the equations that define C has more than
one solution. Thus, other equations have to be introduced;
they are called ‘‘search directions’’.

local stage:
At the local stage, independent computations are carried
out on each interface (on each point of the interfaces). The
selected search direction E� is associated with a constant
operator k0. The problem to be solved, at iteration ‘‘n’’, is:
sn 2 Ad being known, find ŝ satisfying:

ŝ 2 C , R
�

^W
E
; ^F

E
; ^W

E0

; ^F
E0
�

� 0 8M 2 cEE0

�7�

�ŝ ÿ sn� 2 E�

,

^F
E
ÿ FE

n � k0� ^W
E
ÿ WE

n� 8M 2 cEE0

�8�
^FE0

ÿ FE0

n � k0� ^WE0

ÿ WE0

n � 8M 2 cEE0

�9�

�
�
�
�

In the case of perfect liaisons, an explicit solution is ob-
tained from Eqs. (7), (8) and (9):

^WE
� ^WE0

�

1
2

�

WE
n � WE0

n

�

ÿ kÿ1
0

�

FE
n � FE0

n

�n o

8M 2 cEE0

�10�

^FE
�ÿ^FE0

�

1
2

�

FE
n ÿ FE0

n

�

ÿk0

�

WE0

n ÿ WE
n

�n o

8M 2 cEE0

�11�

The treatment of unilateral contact with friction is pre-
sented in a following section.

For a given interface cEE0

, the computation of the local
stage only requires information on this interface; therefore
at the local stage, only information between neighbouring
substructures is exchanged. Moreover, using the equations
that define the search direction, one may only need the
displacement quantities WE

n and WE0

n on cEE0

.

global stage:
The search direction Eÿ is also associated with the k0
operator on the interface:
ŝ 2 C being known, find sn�1 satisfying:
sn�1 2 Ad

�sn�1 ÿ ŝ� 2 Eÿ

, FE
n�1 ÿ

^FE
� ÿk0�W

E
n�1 ÿ

^WE
� 8M 2 cEE0

�12�

Using Eq. (12) to express FE
n�1 as a function of WE

n�1 and
of quantities generated by the solution at the local stage,
the problem to be solved is:

Find UE
n�1 2 U

E such that 8U�

2 UE
;

Z

XE
Tr�Ke�UE

n�1�e�U
�

��dX �

Z

oXE
k0UE

n�1:U
�dS

�

Z

XE
f d � U�dX�

Z

oXE

~F:U�dS
�13�

where ~F � ^FE
� k0 ^WE

�boundary density of

surface traction on oXE
� �14�

then:

8XE rE
n�1 � KeE

n�1 � Ke�UE
n�1� �15�

WE
n�1 � UE

n�1joXE �16�

FE
n�1 �

~F ÿ k0WE
n�1 �17�

This is a classical linear problem of structural analysis with
a density of body forces and a density of surface traction
on oXE. A finite element discretisation of Eq. (13) leads to
the global linear problem on each substructure:
ÿ

KE
e � kE�qE

� FE
�18�

Where KE
e ; qEand FE denote the classical elastic stiffness

of the substructure, the vector of nodal displacement and
the vector of nodal forces, respectively. kE denotes the
interface stiffness.

Therefore, the global stage leads to independent com-
putations on each substructure. It is important to notice
that, in Eq. (18)

ÿ

KE
e � kE� is a constant matrix. Thus, the

factorisation is performed only once.
For the numerical examples, we choose:

k0 � k Id with k � E=L0 �19�

where Id is the identity operator, E the Young’s modulus
and L0 a characteristic length of the structure. L0 is a
parameter of the method and, in most cases, its optimal
value is near the maximum length of the structure (Cog-
nard et al, 1996).

An error estimator can be based on the non-satisfaction
of the behaviour of the interfaces for an approximate so-
lution sn element of Ad (it satisfies all of the other rela-
tions). To stop the algorithm, we use an energy error
indicator, which is computed after each local stage:

g2
�

P

E
jjsE

n ÿ ŝE
jj

2

P

E
fjjsE

njj
2
� jĵsE

jj
2
g

�20�

with jjsE
jj

2
�

Z

oXE
FE
: kÿ1

0 FE dS

�

Z

oXE
WE

: k0WE dS 8XE
�21�

2.3
Simple example: a beam in traction
The beam which is split into 32 substructures is subjected
to a prescribed traction Fd � 100 MPa (Figs. 4, 5); the bar
length is L � 40 mm; and the bar width is l � 10 mm. The
characteristics of the material are Young’s modulus E =
200 GPa and Poisson ratio v = 0.3. To show the influence
of the parameter k, three computations have been carried
out. We have chosen: (a) k0 � k; (b) k0 = 0.5 k and (c) k0 =
1.5 k, where k is the ‘‘optimal’’ value of the search direction
parameter (k � E=L0 with L0 � 2L). Figure 6 shows the
evolution of the error indicator with respect to the itera-
tion number, and Figure 7 presents, with respect to the
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iteration number, the evolution of the stress at the origin
point O (near the cantilevered part) and the displacement
at the point A (Fig. 4). One can note that a small modi-
fication, near the ‘‘optimal’’ value of the parameter k, has
only very little influence on the convergence speed;
moreover, the number of elements of the substructures has
no influence on the convergence speed (Cognard et al,
1996).

In the case (a), a good level of accuracy is obtained in 60
iterations (Fig. 6); for this value of k, Figure 8 shows the
space evolution of the stress rxx and of the displacement
Ux with a magnitude of 100.

Fig. 4. Studied problem

Fig. 5. Splitting of the beam

Fig. 6. Evolution of the error indicator with respect to the iteration
number

Fig. 7. Evolution of the stress rxx (MPa) and evolution of the
displacement Ux (mm) with respect to the iteration number

Fig. 8. Space evolution of the stress rxx (MPa) and of the
displacement Ux (mm) (magnitude 100)
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3
Large-scale linear problems

3.1
Influence of the number of substructures
Very often, for large-scale problems, the size of the stiff-
ness matrix is a limitation. This section presents the in-
fluence of the number of substructures and the influence
of their shape on the size of the problem. A mesh of a
beam with 64 �16� 16 elements (20 node bricks) is taken
as an example (Fig. 9). For different configurations of
substructures, Table 1 gives the total size required for the
proposed substructuring technique resolution (sub) along
with a comparison with the required size for a direct re-
solution (dir). For this example, the size of the problem for
a direct resolution is divided by more than 5 when 32
substructures are used.

Long-shaped substructures increase the number of du-
plicated nodes on the interfaces, but they allow a reduction
of the size of the problem. This kind of splitting can be
difficult to implement in the case of complex structures;
therefore, it is better to increase the number of sub-
structures in order to limit the size of the problem. Since a
substructure only communicates with its neighbours, the
convergence speed decreases with the number of sub-
structures in a given direction (classical phenomenon for
domain decomposition methods). In such cases, con-
vergence acceleration methods (Farhat, Mandel and Roux,
1994; Mandel, 1993) can be used in order to quickly
broadcast information between the substructures; these
strategies are more powerful for long-shaped structures
than for massive three-dimensional structures.

3.2
Implementation on parallel computers
with distributed memory
A global stage can be computed concurrently on the
substructures XE; for the local stages, the computations
can be performed concurrently on the interfaces cEE0

. To

limit the amount of communication between processors,
we choose to assign one substructure and its neighbouring
interfaces to one processor (Ladevèze and Lorong, 1992).
This parallelisation technique leads to the duplication of
several local computations on the interfaces, but this is not
penalising since the amount of duplicated computation is
small. On distributed memory computers, the information
exchange between the neighbouring substructures (dis-
placement WE

� is performed by message passing. The
computation of the accuracy of the approximate solution
sn needs the contribution of all the substructures, but the
information to be exchanged is then small; moreover, this
computation does not need to be carried out at each
iteration.

The sequential and the parallel algorithms have been
implemented with the industrial F.E. code CASTEM 2000
(Verpeaux, Charras and Millard, 1988). The difference
between the two versions comes from the fact that, in the
first one, a sole program manages all the substructures,
whereas in the second one, a program only manages one
substructure and only knows the number of its neigh-
bouring substructures. Since the organisation of the
computations is different, each version has a specific op-
erating manager system (Fig. 10).

In order to reduce the total size of the problem, one can
use more substructures than processors. Therefore, a
node-program (on a processor) can manage more than
one substructure. This leads to more complicated algo-
rithms, but this technique reduces the amount of com-
munication and is useful in balancing the load on the
different processors.

Several tests have been carried out on an IBM SP2. This
computer has 16 processors with 128 Mb RAM each. The
PVM system (Parallel Virtual Machine system) (Geist et al,
1994; Sunderam et al, 1994) is used to support the com-
munication between different processors.

3.3
Example involving a large number of d.o.f.
These tests were carried out on a biaxial tensile specimen
(Fig. 11) (Batisse et al, 1994), whose dimensions are
230 � 230� 8 mm (the thickness of the central part is
3 mm). The symmetries allow us to study only one-six-
teenth of the specimen. Displacements (Ud � 1 mm) are
prescribed on one part of the bores that are drilled into the

Fig. 9. Splitting of the beam into substructures

Table 1. Size of the problem for different splittings of the beam

number shape of nb d.o.f. size for total size size sub/
of sub a sub of a sub a sub (Mb) (Mb) size dir

1 64–16–16 217 923 6 168 6 168 1
8 (d) 8–16–16 29 427 440 3 514 0.57
8 (d) 32–4–16 31 227 258 2 062 0.33
8 (d) 64–4–8 32 235 149 1 193 0.19

32 (➀) 8–8–8 8 019 66 2 121 0.34
32 (➁) 16–4–8 8 331 39 1 238 0.20
32 (➂) 32–4–4 8 835 25 808 0.13

Fig. 10. Sequential and parallel computations
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combs (linking system to the testing machine). A de-
composition into 31 roughly load-balanced substructures
is used to reduce the size of the stiffness matrices. The
characteristics of the material are: Young’s modulus
E = 200 GPa and Poisson ratio m � 0:3, and the search
direction parameter is such that k � E=L0 with L0 �

230 mm. Table 2 gives the characteristics of the 3 meshes
that were used. The size of the problem is given for a
skyline storage of the stiffness matrices; a morse storage of
the matrices can reduce the size of these problems.

For this example, an accurate solution is obtained after
100 iterations (Fig. 12, 13). Table 3 gives the numerical
costs of the 3 tests; ‘‘total/proc’’ is the maximum CPU time
per processor, and ‘‘total’’ is the cumulative time. On this
computer, a direct computation is feasible only for the first
mesh. For a given decomposition into substructures, the
numerical cost of the resolution increases slowly with the
number of d.o.f.

For this example, with a large number of d.o.f., the
computational costs of the direct resolution method and of
the proposed iterative approach have been compared on a
CRAY C90 by using the sequential version of the algorithm

Fig. 11. Biaxial tensile specimen (mesh 1 with 175 740 d.o.f.)

Table 2. Characteristics of the different meshes

Direct computation Substructuration

nb d.o.f. elements size nb d.o.f.
(sub)

elements
(sub)

total
size

mesh 1 175 740 11 961 2 160 Mb 6 573 364 750 Mb
mesh 2 259 077 18 471 4 000 Mb 10 011 600 1 350 Mb
mesh 3 340 734 24 764 6 400 Mb 12 687 800 2 130 Mb

Fig. 12. Evolution of the error indicator with respect to the
iteration number

Fig. 13. Mises equivalent stress (in MPa)

Table 3. Cost of the different tests on an IBM SP2 (16 processors)
(CPU time in s)

Direct Substructuration

total init iteration total/proc total
(sub) (sub) (100 it) (100 it)

mesh 1 4 300 37 0.6 194 2 910
mesh 2 – 70 1.0 340 5 100
mesh 3 – 130 1.6 580 8 700
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on one processor. Figure 14 displays the results, but they
are only indicative; as a matter of fact, this algorithm has
not been optimised, and the efficiency of the CRAY C90 is,
to a great extent, due to the vectorisation. However, it is
important to notice that as the size of the problem in-
creases, the size of the stiffness matrices and the numerical
cost for the substructure decomposition method increase
more slowly than for the direct resolution method.

4
Structure assembly analysis
Interfaces are also used to model liaisons between struc-
tures (prestresses, gaps, unilateral contact, friction, rubber
joints, etc.). These interfaces do not increase the compu-
tational cost with respect to perfect liaisons because the
possibly nonlinear realationships are solved locally in
space variables. The following section presents the re-
solution of the local stage for an interface which models
the unilateral contact with friction (Blanzé et al, 1996).

4.1
Unilateral contact with friction
On the supposedly-known part of the boundary suscep-
tible to contact, N denotes the exterior unit vector to XE.
The displacement field WE and the surface traction density
FE can be written:

WE
��N:WE

�N � PWE and FE
� �N:FE

�N � PFE

�22�

Where P denotes the tangential projection operator. l
denotes the Coulomb friction coefficient and is assumed
constant and positive. For static or monotonous quasi-
static cases, a displacement formulation is used (Duvaut
and Lions, 1976). The different possible cases (separation,
contact with sticking or sliding) are easily found by
computing, from the known element sn, local in space
variable quantities at each point of the interface.

The operator which defines the search direction is sup-
posed to be such that k0 � kId(where Id is the identity

operator and k a scalar). A contact scalar indicator Cn
gives the solution on the normal components (Table 4):

2Cn �

�

^W
E0

ÿ
^W

E
�

:N ÿ

1
k

�

^F
E0

ÿ
^F

E
�

:N

�

�

WE0

n ÿ WE
n

�

:N ÿ

1
k

�

FE0

n ÿ FE
n

�

:N �23�

In the contact case, a sliding vectorial indicator Gn
(computed in the same fashion as Cn) gives the solution on
the tangential components (Table 5):

2Gn � kP
�

^W
E0

ÿ ^W
E
�

ÿP
�

^F
E0

ÿ ^F
E
�

� kP
�

WE0

n ÿ WE
n

�

ÿ P
�

FE0

n ÿ FE
n

�

�g � lj^F
E
:Nj� �24�

4.2
Bolted joint
A comparison with the industrial F.E. code ABAQUS
(Pawtucket, 1994) is shown on this example of a bolted
joint between three plates. One fourth of the joint is stu-
died (Fig. 15) and the prescribed displacements (zero
displacement at the end of the middle plate and 2.10ÿ2 mm
at the end of the other ones) are such that the forces are
transmitted by friction between the plates. Frictional
contact is modelled between the plates and between the
plates and the bolts (with gap) which are prestressed. The
characteristics of the material are: Young’s modulus
E � 200 GPa and Poisson ratio m � 0:3. The approximate
length of the studied part of the joint is 200 mm.

The frictional contact conditions are prescribed in
ABAQUS using node-to-node ‘‘GAP’’ elements. A 10ÿ5 mm
elastic slip is to be allowed on the friction conditions to
obtained the convergence of ABAQUS algorithm. The
same mesh is used by ABAQUS and by the sequentialFig. 14. Cost of the different computations (sequential algorithm)

Table 4. Calculation of the normal components

Separation: Cn > 0 Contact: Cn � 0

�
^WE0

ÿ
^WE

�:N > 0 �
^WE0

ÿ
^WE

�:N � 0

N:^FE
� N:^FE0

� 0 N:^FE
� ÿN:^FE0

� 0

^FE
�

^FE0

� 0 ^FEN � ÿ
^FE0

N � kCn

^WE
� WE

n ÿ
1
k FE

n
^WEN �

1
2

n�

WE
n � WE0

n

�

ÿ
1
k

�

FE
n � FE0

n

�o

:N

^WE0

� WE0

n ÿ
1
k FE0

n
^WE0

:N �
^WE

:N

Table 5. Calculation of the tangential components

Sliding: jjGnjj � g Sticking: jjGnjj < g

P�
^WE0

ÿ
^WE

� � ÿkP^FE P�
^WE0

ÿ
^WE

� � 0

jjP^FE
jj � g jjP^FE

jj � jjP^FE0

jj � g

P^FE
� ÿP^FE0

� g Gn
jjGn jj

P^FE
� ÿP^FE0

� Gn

P ^WE
� PWE

n �
1
k P�

^FE
ÿ FE

n� P ^WE
� PWE

n �
1
k P�

^FE
ÿ FE

n�

P ^WE0

� PWE0

n �
1
k P�^FE0

ÿ FE0

n � P ^WE0

� P ^WE

7



version of the mixed domain decomposition method. Two
different meshes (5 190 and 27 0788 d.o.f.) were tried.

Table 6 presents the results of the numerical compari-
sons that were carried out on a HP700 workstation. The
number of unknowns is larger in ABAQUS resolution
because of the great number of Lagrange multipliers that
are used on the prescribed displacement conditions. About
twenty load increments are to be carried out in this re-

solution because the amount of elastic slip allowed is small
and thus the first increment has to be very small. In fact,
after a few load increments, no changing appears on the
contact status. A great reduction of the size of the problem
and of the computation time is brought by the domain
decomposition approach.

It is important to notice that this study only concerns
some particular simple cases of frictional conditions where
the time evolution has no influence. Some further devel-
opments will consider this evolution in order to model
complex time dependant loadings. Further developments
will also concern the optimisation of the algorithm in or-
der to reduce the numerical costs.

4.3
Car differential
This example deals with a car differential (Champaney et
al, 1995) for which we only model the box, the ring gear,
the cap and the screws (Fig. 17). We consider that the sun
wheel axis is cantilevered, and we model the action of the
sun wheels and of the planet wheels on the differential box.
We consider an action on one tooth of the ring gear; the
amplitude and the direction of the forces are parametered
by the applied torque and the geometry of the gears
(Fig. 18). The action of the ball bearings on the box is
modelled with some unilateral contact interfaces. The
centrifugal force is also modelled. The characteristics of
the material are: Young’s modulus E � 200 GPa, Poisson
ratio m � 0:3 and q � 7 800 kg=m3. The parameter is such
that k � E=L0 with L0 � 800 mm.

Interfaces are used to model the perfect liaisons between
the different substructures of the box, the ring wheel and
the cap; they also model the unilateral contact with friction
between the different parts. The prestresses in the screws
are prescribed with suitable interfaces between the screws
and their heads. Three meshes (Fig. 20) have been used
and Table 7 presents the size of the problem for two dif-
ferent splittings (each of the 18 screws is always split into 2
substructures). For the first decomposition (39 sub-
structures), the box, the ring gear and the cap are each
considered as one substructure; for the other decomposi-
tion (84 substructures and 223 interfaces, Fig. 18), the ring
gear and the cap are each split into 8 substructures, and
the box is split into 24 substructures. For the second de-
composition, the symmetries of the structures and an
automatic mesh decomposer, like in (Farhat, 1988), have
been used. One can note that in this example, the increase
of the number of substructures leads to a large reduction
of the problem’s size.

Convergence is reached after 200 iterations (Fig. 21).
Figure 22 shows, at iteration 200, the stress rxx drawn on
the ring (normal traction between the box and the ring
gear) and the screws, and the Mises equivalent stress
drawn on the box and the cap, for a 2 000 Nm applied
torque and a 2 000 rpm rotation speed.

Figure 23 shows how the substructures are distributed
on the different processors of a IBM SP2 (with 16 pro-
cessors). The management of several substructures per
processor, by the same node-program, leads to a well-
balanced load on the different processors and reduces the
amount of the communication. Moreover, the cost of the

Table 6. Comparison with ABAQUS (CPU times on HP700)

ABAQUS Mixed approach

nb size nb. CPU nb size nb CPU
d.o.f. (Mb) incr. time (s) d.o.f. (Mb) iter. time (s)

mesh 1 6 140 15 23 673 5 190 1 200 55
mesh 2 31 137 260 26 35 000 27 078 50 200 720

Fig. 15. Bolted joint and the decomposition that is used

Fig. 16. First mesh and deformed shape
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communication between the different processors is quite
low. The cumulative CPU time increases slowly with res-
pect to the number of processors (Fig. 24); for one pro-
cessor, there is no communication. For this example, with
a large number of contact zones, the numerical cost in-
creases slowly with respect to the number of d.o.f.
(Fig. 24); in fact, the cost for a perfect interface is nearly
the same as the cost for an interface which models uni-
lateral contact with friction.

Fig. 17. Differential and the model that is used

Table 7. Characteristics of different problems

nb d.o.f. size for 39 sub size for 84 sub

mesh 1 35 136 128 Mb 31 Mb
mesh 2 129 924 1 391 Mb 310 Mb
mesh 3 236 976 4 574 Mb 790 Mb

Fig. 18. Prescribed tractions (3/4 of the model)

Fig. 19. Model partitioned into 84 substructures (1/4 of the model)
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5
Conclusions
We have presented a ‘‘parallel-oriented’’ algorithm for the
resolution of three-dimensional problems based on a de-
composition of the structure and on an iterative resolution

scheme. This algorithm allows a reduction of both the size
of the problems and the numerical costs, even on se-
quential computers. Moreover, the proposed strategy in-
troduces some modularity when considering local
nonlinearities through suited interfaces; it is an efficient
tool to easily model the technological reality of an as-
sembly of three-dimensional structures. The use of such
interfaces leads to solve only local in space variable rela-
tions; therefore, these interfaces do not increase the nu-
merical cost with respect to perfect liaisons. The first
numerical results in the case of elastic problems involving
a large number of d.o.f. are encouraging. On parallel
computers, the management of several substructures per
processor leads to a well-balanced load on the different
processors; moreover, the cost of the communications
between the different processors is low. An optimisation of
the algorithm and a better management of the information
should allow a reduction of the numerical costs on every
kind of computer. Another solution would be to use some
convergence acceleration methods (Farhat, Mandel and
Roux, 1994) in order to quickly broadcast the information
between the substructures. Some hierarchical strategies are

Fig. 20. Different meshes used

Fig. 21. Evolution of the error indicator with respect to the iteration
number

Fig. 22. Numerical results (stress in MPa)
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under way to increase the efficiency of the proposed
method when the number of substructures is large.
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